virtualx-engine/core/variant_op.cpp
2017-06-04 02:09:17 +02:00

3044 lines
81 KiB
C++

/*************************************************************************/
/* variant_op.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "variant.h"
#include "core_string_names.h"
#include "object.h"
#include "script_language.h"
Variant::operator bool() const {
bool b;
return booleanize(b);
}
bool Variant::booleanize(bool &r_valid) const {
r_valid = true;
switch (type) {
case NIL: return false;
case BOOL: return _data._bool;
case INT: return _data._int;
case REAL: return _data._real;
case STRING: return (*reinterpret_cast<const String *>(_data._mem)) != "";
case VECTOR2:
case RECT2:
case TRANSFORM2D:
case VECTOR3:
case PLANE:
case RECT3:
case QUAT:
case BASIS:
case TRANSFORM:
case COLOR:
case _RID: return (*reinterpret_cast<const RID *>(_data._mem)).is_valid();
case OBJECT: return _get_obj().obj;
case NODE_PATH: return (*reinterpret_cast<const NodePath *>(_data._mem)) != NodePath();
case DICTIONARY:
case ARRAY:
case POOL_BYTE_ARRAY:
case POOL_INT_ARRAY:
case POOL_REAL_ARRAY:
case POOL_STRING_ARRAY:
case POOL_VECTOR2_ARRAY:
case POOL_VECTOR3_ARRAY:
case POOL_COLOR_ARRAY:
r_valid = false;
return false;
default: {}
}
return false;
}
#define _RETURN(m_what) \
{ \
r_ret = m_what; \
return; \
}
#define DEFAULT_OP_NUM(m_op, m_name, m_type) \
case m_name: { \
switch (p_b.type) { \
case BOOL: _RETURN(p_a._data.m_type m_op p_b._data._bool); \
case INT: _RETURN(p_a._data.m_type m_op p_b._data._int); \
case REAL: _RETURN(p_a._data.m_type m_op p_b._data._real); \
default: {} \
} \
r_valid = false; \
return; \
};
#define DEFAULT_OP_NUM_NEG(m_name, m_type) \
case m_name: { \
\
_RETURN(-p_a._data.m_type); \
};
#define DEFAULT_OP_NUM_POS(m_name, m_type) \
case m_name: { \
\
_RETURN(p_a._data.m_type); \
};
#define DEFAULT_OP_NUM_VEC(m_op, m_name, m_type) \
case m_name: { \
switch (p_b.type) { \
case BOOL: _RETURN(p_a._data.m_type m_op p_b._data._bool); \
case INT: _RETURN(p_a._data.m_type m_op p_b._data._int); \
case REAL: _RETURN(p_a._data.m_type m_op p_b._data._real); \
case VECTOR2: _RETURN(p_a._data.m_type m_op *reinterpret_cast<const Vector2 *>(p_b._data._mem)); \
case VECTOR3: _RETURN(p_a._data.m_type m_op *reinterpret_cast<const Vector3 *>(p_b._data._mem)); \
default: {} \
} \
r_valid = false; \
return; \
};
#define DEFAULT_OP_STR(m_op, m_name, m_type) \
case m_name: { \
switch (p_b.type) { \
case STRING: _RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem) m_op *reinterpret_cast<const String *>(p_b._data._mem)); \
case NODE_PATH: _RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem) m_op *reinterpret_cast<const NodePath *>(p_b._data._mem)); \
default: {} \
} \
r_valid = false; \
return; \
};
#define DEFAULT_OP_LOCALMEM(m_op, m_name, m_type) \
case m_name: { \
switch (p_b.type) { \
case m_name: _RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem) m_op *reinterpret_cast<const m_type *>(p_b._data._mem)); \
default: {} \
} \
r_valid = false; \
return; \
}
#define DEFAULT_OP_LOCALMEM_NEG(m_name, m_type) \
case m_name: { \
_RETURN(-*reinterpret_cast<const m_type *>(p_a._data._mem)); \
}
#define DEFAULT_OP_LOCALMEM_POS(m_name, m_type) \
case m_name: { \
_RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem)); \
}
#define DEFAULT_OP_LOCALMEM_NUM(m_op, m_name, m_type) \
case m_name: { \
switch (p_b.type) { \
case m_name: _RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem) m_op *reinterpret_cast<const m_type *>(p_b._data._mem)); \
case BOOL: _RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem) m_op p_b._data._bool); \
case INT: _RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem) m_op p_b._data._int); \
case REAL: _RETURN(*reinterpret_cast<const m_type *>(p_a._data._mem) m_op p_b._data._real); \
default: {} \
} \
r_valid = false; \
return; \
}
#define DEFAULT_OP_PTR(m_op, m_name, m_sub) \
case m_name: { \
switch (p_b.type) { \
case m_name: _RETURN(p_a._data.m_sub m_op p_b._data.m_sub); \
default: {} \
} \
r_valid = false; \
return; \
}
#define DEFAULT_OP_PTRREF(m_op, m_name, m_sub) \
case m_name: { \
switch (p_b.type) { \
case m_name: _RETURN(*p_a._data.m_sub m_op *p_b._data.m_sub); \
default: {} \
} \
r_valid = false; \
return; \
}
#define DEFAULT_OP_ARRAY_EQ(m_name, m_type) \
DEFAULT_OP_ARRAY_OP(m_name, m_type, !=, !=, true, false, false)
#define DEFAULT_OP_ARRAY_LT(m_name, m_type) \
DEFAULT_OP_ARRAY_OP(m_name, m_type, <, !=, false, a_len < array_b.size(), true)
#define DEFAULT_OP_ARRAY_OP(m_name, m_type, m_opa, m_opb, m_ret_def, m_ret_s, m_ret_f) \
case m_name: { \
if (p_a.type != p_b.type) { \
r_valid = false; \
return; \
} \
const PoolVector<m_type> &array_a = *reinterpret_cast<const PoolVector<m_type> *>(p_a._data._mem); \
const PoolVector<m_type> &array_b = *reinterpret_cast<const PoolVector<m_type> *>(p_b._data._mem); \
\
int a_len = array_a.size(); \
if (a_len m_opa array_b.size()) { \
_RETURN(m_ret_s); \
} else { \
\
PoolVector<m_type>::Read ra = array_a.read(); \
PoolVector<m_type>::Read rb = array_b.read(); \
\
for (int i = 0; i < a_len; i++) { \
if (ra[i] m_opb rb[i]) \
_RETURN(m_ret_f); \
} \
\
_RETURN(m_ret_def); \
} \
}
#define DEFAULT_OP_ARRAY_ADD(m_name, m_type) \
case m_name: { \
if (p_a.type != p_b.type) { \
r_valid = false; \
_RETURN(NIL); \
} \
const PoolVector<m_type> &array_a = *reinterpret_cast<const PoolVector<m_type> *>(p_a._data._mem); \
const PoolVector<m_type> &array_b = *reinterpret_cast<const PoolVector<m_type> *>(p_b._data._mem); \
PoolVector<m_type> sum = array_a; \
sum.append_array(array_b); \
_RETURN(sum); \
}
#define DEFAULT_OP_FAIL(m_name) \
case m_name: { \
r_valid = false; \
return; \
}
void Variant::evaluate(const Operator &p_op, const Variant &p_a, const Variant &p_b, Variant &r_ret, bool &r_valid) {
r_valid = true;
switch (p_op) {
case OP_EQUAL: {
if ((int(p_a.type) * int(p_b.type)) == 0) {
//null case is an exception, one of both is null
if (p_a.type == p_b.type) //null against null is true
_RETURN(true);
//only against object is allowed
if (p_a.type == Variant::OBJECT) {
_RETURN(p_a._get_obj().obj == NULL);
} else if (p_b.type == Variant::OBJECT) {
_RETURN(p_b._get_obj().obj == NULL);
}
//otherwise, always false
_RETURN(false);
}
switch (p_a.type) {
case NIL: {
_RETURN(p_b.type == NIL || (p_b.type == Variant::OBJECT && !p_b._get_obj().obj));
} break;
DEFAULT_OP_NUM(==, BOOL, _bool);
DEFAULT_OP_NUM(==, INT, _int);
DEFAULT_OP_NUM(==, REAL, _real);
DEFAULT_OP_STR(==, STRING, String);
DEFAULT_OP_LOCALMEM(==, VECTOR2, Vector2);
DEFAULT_OP_LOCALMEM(==, RECT2, Rect2);
DEFAULT_OP_PTRREF(==, TRANSFORM2D, _transform2d);
DEFAULT_OP_LOCALMEM(==, VECTOR3, Vector3);
DEFAULT_OP_LOCALMEM(==, PLANE, Plane);
DEFAULT_OP_LOCALMEM(==, QUAT, Quat);
DEFAULT_OP_PTRREF(==, RECT3, _rect3);
DEFAULT_OP_PTRREF(==, BASIS, _basis);
DEFAULT_OP_PTRREF(==, TRANSFORM, _transform);
DEFAULT_OP_LOCALMEM(==, COLOR, Color);
DEFAULT_OP_STR(==, NODE_PATH, NodePath);
DEFAULT_OP_LOCALMEM(==, _RID, RID);
case OBJECT: {
if (p_b.type == OBJECT)
_RETURN((p_a._get_obj().obj == p_b._get_obj().obj));
if (p_b.type == NIL)
_RETURN(!p_a._get_obj().obj);
} break;
case DICTIONARY: {
if (p_b.type != DICTIONARY)
_RETURN(false);
const Dictionary *arr_a = reinterpret_cast<const Dictionary *>(p_a._data._mem);
const Dictionary *arr_b = reinterpret_cast<const Dictionary *>(p_b._data._mem);
_RETURN(*arr_a == *arr_b);
} break;
case ARRAY: {
if (p_b.type != ARRAY)
_RETURN(false);
const Array *arr_a = reinterpret_cast<const Array *>(p_a._data._mem);
const Array *arr_b = reinterpret_cast<const Array *>(p_b._data._mem);
int l = arr_a->size();
if (arr_b->size() != l)
_RETURN(false);
for (int i = 0; i < l; i++) {
if (!((*arr_a)[i] == (*arr_b)[i])) {
_RETURN(false);
}
}
_RETURN(true);
} break;
DEFAULT_OP_ARRAY_EQ(POOL_BYTE_ARRAY, uint8_t);
DEFAULT_OP_ARRAY_EQ(POOL_INT_ARRAY, int);
DEFAULT_OP_ARRAY_EQ(POOL_REAL_ARRAY, real_t);
DEFAULT_OP_ARRAY_EQ(POOL_STRING_ARRAY, String);
DEFAULT_OP_ARRAY_EQ(POOL_VECTOR2_ARRAY, Vector3);
DEFAULT_OP_ARRAY_EQ(POOL_VECTOR3_ARRAY, Vector3);
DEFAULT_OP_ARRAY_EQ(POOL_COLOR_ARRAY, Color);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_NOT_EQUAL: {
Variant res;
evaluate(OP_EQUAL, p_a, p_b, res, r_valid);
if (!r_valid)
return;
if (res.type == BOOL)
res._data._bool = !res._data._bool;
_RETURN(res);
} break;
case OP_LESS: {
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_NUM(<, BOOL, _bool);
DEFAULT_OP_NUM(<, INT, _int);
DEFAULT_OP_NUM(<, REAL, _real);
DEFAULT_OP_STR(<, STRING, String);
DEFAULT_OP_LOCALMEM(<, VECTOR2, Vector2);
DEFAULT_OP_FAIL(RECT2);
DEFAULT_OP_FAIL(TRANSFORM2D);
DEFAULT_OP_LOCALMEM(<, VECTOR3, Vector3);
DEFAULT_OP_FAIL(PLANE);
DEFAULT_OP_FAIL(QUAT);
DEFAULT_OP_FAIL(RECT3);
DEFAULT_OP_FAIL(BASIS);
DEFAULT_OP_FAIL(TRANSFORM);
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_LOCALMEM(<, _RID, RID);
case OBJECT: {
if (p_b.type == OBJECT)
_RETURN((p_a._get_obj().obj < p_b._get_obj().obj));
} break;
DEFAULT_OP_FAIL(DICTIONARY);
case ARRAY: {
if (p_b.type != ARRAY)
_RETURN(false);
const Array *arr_a = reinterpret_cast<const Array *>(p_a._data._mem);
const Array *arr_b = reinterpret_cast<const Array *>(p_b._data._mem);
int l = arr_a->size();
if (arr_b->size() < l)
_RETURN(false);
for (int i = 0; i < l; i++) {
if (!((*arr_a)[i] < (*arr_b)[i])) {
_RETURN(true);
}
}
_RETURN(false);
} break;
DEFAULT_OP_ARRAY_LT(POOL_BYTE_ARRAY, uint8_t);
DEFAULT_OP_ARRAY_LT(POOL_INT_ARRAY, int);
DEFAULT_OP_ARRAY_LT(POOL_REAL_ARRAY, real_t);
DEFAULT_OP_ARRAY_LT(POOL_STRING_ARRAY, String);
DEFAULT_OP_ARRAY_LT(POOL_VECTOR2_ARRAY, Vector3);
DEFAULT_OP_ARRAY_LT(POOL_VECTOR3_ARRAY, Vector3);
DEFAULT_OP_ARRAY_LT(POOL_COLOR_ARRAY, Color);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_LESS_EQUAL: {
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_NUM(<=, BOOL, _bool);
DEFAULT_OP_NUM(<=, INT, _int);
DEFAULT_OP_NUM(<=, REAL, _real);
DEFAULT_OP_STR(<=, STRING, String);
DEFAULT_OP_LOCALMEM(<=, VECTOR2, Vector2);
DEFAULT_OP_FAIL(RECT2);
DEFAULT_OP_FAIL(TRANSFORM2D);
DEFAULT_OP_LOCALMEM(<=, VECTOR3, Vector3);
DEFAULT_OP_FAIL(PLANE);
DEFAULT_OP_FAIL(QUAT);
DEFAULT_OP_FAIL(RECT3);
DEFAULT_OP_FAIL(BASIS);
DEFAULT_OP_FAIL(TRANSFORM);
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_LOCALMEM(<=, _RID, RID);
case OBJECT: {
if (p_b.type == OBJECT)
_RETURN((p_a._get_obj().obj <= p_b._get_obj().obj));
} break;
DEFAULT_OP_FAIL(DICTIONARY);
DEFAULT_OP_FAIL(ARRAY);
DEFAULT_OP_FAIL(POOL_BYTE_ARRAY);
DEFAULT_OP_FAIL(POOL_INT_ARRAY);
DEFAULT_OP_FAIL(POOL_REAL_ARRAY);
DEFAULT_OP_FAIL(POOL_STRING_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR2_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR3_ARRAY);
DEFAULT_OP_FAIL(POOL_COLOR_ARRAY);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_GREATER: {
Variant res;
evaluate(OP_LESS, p_b, p_a, res, r_valid);
if (!r_valid)
return;
_RETURN(res);
} break;
case OP_GREATER_EQUAL: {
Variant res;
evaluate(OP_LESS_EQUAL, p_b, p_a, res, r_valid);
if (!r_valid)
return;
_RETURN(res);
} break;
//mathematic
case OP_ADD: {
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_NUM(+, BOOL, _bool);
DEFAULT_OP_NUM(+, INT, _int);
DEFAULT_OP_NUM(+, REAL, _real);
DEFAULT_OP_STR(+, STRING, String);
DEFAULT_OP_LOCALMEM(+, VECTOR2, Vector2);
DEFAULT_OP_FAIL(RECT2);
DEFAULT_OP_FAIL(TRANSFORM2D);
DEFAULT_OP_LOCALMEM(+, VECTOR3, Vector3);
DEFAULT_OP_FAIL(PLANE);
DEFAULT_OP_LOCALMEM(+, QUAT, Quat);
DEFAULT_OP_FAIL(RECT3);
DEFAULT_OP_FAIL(BASIS);
DEFAULT_OP_FAIL(TRANSFORM);
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_FAIL(_RID);
DEFAULT_OP_FAIL(OBJECT);
DEFAULT_OP_FAIL(DICTIONARY);
case ARRAY: {
if (p_a.type != p_b.type) {
r_valid = false;
return;
}
const Array &array_a = *reinterpret_cast<const Array *>(p_a._data._mem);
const Array &array_b = *reinterpret_cast<const Array *>(p_b._data._mem);
Array sum;
int asize = array_a.size();
int bsize = array_b.size();
sum.resize(asize + bsize);
for (int i = 0; i < asize; i++)
sum[i] = array_a[i];
for (int i = 0; i < bsize; i++)
sum[i + asize] = array_b[i];
_RETURN(sum);
}
DEFAULT_OP_ARRAY_ADD(POOL_BYTE_ARRAY, uint8_t);
DEFAULT_OP_ARRAY_ADD(POOL_INT_ARRAY, int);
DEFAULT_OP_ARRAY_ADD(POOL_REAL_ARRAY, real_t);
DEFAULT_OP_ARRAY_ADD(POOL_STRING_ARRAY, String);
DEFAULT_OP_ARRAY_ADD(POOL_VECTOR2_ARRAY, Vector2);
DEFAULT_OP_ARRAY_ADD(POOL_VECTOR3_ARRAY, Vector3);
DEFAULT_OP_ARRAY_ADD(POOL_COLOR_ARRAY, Color);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_SUBSTRACT: {
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_NUM(-, BOOL, _bool);
DEFAULT_OP_NUM(-, INT, _int);
DEFAULT_OP_NUM(-, REAL, _real);
DEFAULT_OP_FAIL(STRING);
DEFAULT_OP_LOCALMEM(-, VECTOR2, Vector2);
DEFAULT_OP_FAIL(RECT2);
DEFAULT_OP_FAIL(TRANSFORM2D);
DEFAULT_OP_LOCALMEM(-, VECTOR3, Vector3);
DEFAULT_OP_FAIL(PLANE);
DEFAULT_OP_LOCALMEM(-, QUAT, Quat);
DEFAULT_OP_FAIL(RECT3);
DEFAULT_OP_FAIL(BASIS);
DEFAULT_OP_FAIL(TRANSFORM);
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_FAIL(_RID);
DEFAULT_OP_FAIL(OBJECT);
DEFAULT_OP_FAIL(DICTIONARY);
DEFAULT_OP_FAIL(ARRAY);
DEFAULT_OP_FAIL(POOL_BYTE_ARRAY);
DEFAULT_OP_FAIL(POOL_INT_ARRAY);
DEFAULT_OP_FAIL(POOL_REAL_ARRAY);
DEFAULT_OP_FAIL(POOL_STRING_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR2_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR3_ARRAY);
DEFAULT_OP_FAIL(POOL_COLOR_ARRAY);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_MULTIPLY: {
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_NUM(*, BOOL, _bool);
DEFAULT_OP_NUM_VEC(*, INT, _int);
DEFAULT_OP_NUM_VEC(*, REAL, _real);
DEFAULT_OP_FAIL(STRING);
DEFAULT_OP_LOCALMEM_NUM(*, VECTOR2, Vector2);
DEFAULT_OP_FAIL(RECT2);
case TRANSFORM2D: {
if (p_b.type == TRANSFORM2D) {
_RETURN(*p_a._data._transform2d * *p_b._data._transform2d);
};
if (p_b.type == VECTOR2) {
_RETURN(p_a._data._transform2d->xform(*(const Vector2 *)p_b._data._mem));
};
r_valid = false;
return;
} break;
DEFAULT_OP_LOCALMEM_NUM(*, VECTOR3, Vector3);
DEFAULT_OP_FAIL(PLANE);
case QUAT: {
switch (p_b.type) {
case VECTOR3: {
_RETURN(reinterpret_cast<const Quat *>(p_a._data._mem)->xform(*(const Vector3 *)p_b._data._mem));
} break;
case QUAT: {
_RETURN(*reinterpret_cast<const Quat *>(p_a._data._mem) * *reinterpret_cast<const Quat *>(p_b._data._mem));
} break;
case REAL: {
_RETURN(*reinterpret_cast<const Quat *>(p_a._data._mem) * p_b._data._real);
} break;
default: {}
};
r_valid = false;
return;
} break;
DEFAULT_OP_FAIL(RECT3);
case BASIS: {
switch (p_b.type) {
case VECTOR3: {
_RETURN(p_a._data._basis->xform(*(const Vector3 *)p_b._data._mem));
};
case BASIS: {
_RETURN(*p_a._data._basis * *p_b._data._basis);
};
default: {}
};
r_valid = false;
return;
} break;
case TRANSFORM: {
switch (p_b.type) {
case VECTOR3: {
_RETURN(p_a._data._transform->xform(*(const Vector3 *)p_b._data._mem));
};
case TRANSFORM: {
_RETURN(*p_a._data._transform * *p_b._data._transform);
};
default: {}
};
r_valid = false;
return;
} break;
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_FAIL(_RID);
DEFAULT_OP_FAIL(OBJECT);
DEFAULT_OP_FAIL(DICTIONARY);
DEFAULT_OP_FAIL(ARRAY);
DEFAULT_OP_FAIL(POOL_BYTE_ARRAY);
DEFAULT_OP_FAIL(POOL_INT_ARRAY);
DEFAULT_OP_FAIL(POOL_REAL_ARRAY);
DEFAULT_OP_FAIL(POOL_STRING_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR2_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR3_ARRAY);
DEFAULT_OP_FAIL(POOL_COLOR_ARRAY);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_DIVIDE: {
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_NUM(/, BOOL, _bool);
case INT: {
switch (p_b.type) {
case BOOL: {
int64_t b = p_b._data._bool;
if (b == 0) {
r_valid = false;
_RETURN("Division By False");
}
_RETURN(p_a._data._int / b);
} break;
case INT: {
int64_t b = p_b._data._int;
if (b == 0) {
r_valid = false;
_RETURN("Division By Zero");
}
_RETURN(p_a._data._int / b);
} break;
case REAL: _RETURN(p_a._data._int / p_b._data._real);
default: {}
}
r_valid = false;
return;
};
DEFAULT_OP_NUM(/, REAL, _real);
DEFAULT_OP_FAIL(STRING);
DEFAULT_OP_LOCALMEM_NUM(/, VECTOR2, Vector2);
DEFAULT_OP_FAIL(RECT2);
DEFAULT_OP_FAIL(TRANSFORM2D);
DEFAULT_OP_LOCALMEM_NUM(/, VECTOR3, Vector3);
DEFAULT_OP_FAIL(PLANE);
case QUAT: {
if (p_b.type != REAL) {
r_valid = false;
return;
}
_RETURN(*reinterpret_cast<const Quat *>(p_a._data._mem) / p_b._data._real);
} break;
DEFAULT_OP_FAIL(RECT3);
DEFAULT_OP_FAIL(BASIS);
DEFAULT_OP_FAIL(TRANSFORM);
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_FAIL(_RID);
DEFAULT_OP_FAIL(OBJECT);
DEFAULT_OP_FAIL(DICTIONARY);
DEFAULT_OP_FAIL(ARRAY);
DEFAULT_OP_FAIL(POOL_BYTE_ARRAY);
DEFAULT_OP_FAIL(POOL_INT_ARRAY);
DEFAULT_OP_FAIL(POOL_REAL_ARRAY);
DEFAULT_OP_FAIL(POOL_STRING_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR2_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR3_ARRAY);
DEFAULT_OP_FAIL(POOL_COLOR_ARRAY);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_POSITIVE: {
// Simple case when user defines variable as +value.
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_FAIL(STRING);
DEFAULT_OP_FAIL(RECT2);
DEFAULT_OP_FAIL(TRANSFORM2D);
DEFAULT_OP_FAIL(RECT3);
DEFAULT_OP_FAIL(BASIS);
DEFAULT_OP_FAIL(TRANSFORM);
DEFAULT_OP_NUM_POS(BOOL, _bool);
DEFAULT_OP_NUM_POS(INT, _int);
DEFAULT_OP_NUM_POS(REAL, _real);
DEFAULT_OP_LOCALMEM_POS(VECTOR3, Vector3);
DEFAULT_OP_LOCALMEM_POS(PLANE, Plane);
DEFAULT_OP_LOCALMEM_POS(QUAT, Quat);
DEFAULT_OP_LOCALMEM_POS(VECTOR2, Vector2);
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_FAIL(_RID);
DEFAULT_OP_FAIL(OBJECT);
DEFAULT_OP_FAIL(DICTIONARY);
DEFAULT_OP_FAIL(ARRAY);
DEFAULT_OP_FAIL(POOL_BYTE_ARRAY);
DEFAULT_OP_FAIL(POOL_INT_ARRAY);
DEFAULT_OP_FAIL(POOL_REAL_ARRAY);
DEFAULT_OP_FAIL(POOL_STRING_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR2_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR3_ARRAY);
DEFAULT_OP_FAIL(POOL_COLOR_ARRAY);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_NEGATE: {
switch (p_a.type) {
DEFAULT_OP_FAIL(NIL);
DEFAULT_OP_NUM_NEG(BOOL, _bool);
DEFAULT_OP_NUM_NEG(INT, _int);
DEFAULT_OP_NUM_NEG(REAL, _real);
DEFAULT_OP_FAIL(STRING);
DEFAULT_OP_LOCALMEM_NEG(VECTOR2, Vector2);
DEFAULT_OP_FAIL(RECT2);
DEFAULT_OP_FAIL(TRANSFORM2D);
DEFAULT_OP_LOCALMEM_NEG(VECTOR3, Vector3);
DEFAULT_OP_LOCALMEM_NEG(PLANE, Plane);
DEFAULT_OP_LOCALMEM_NEG(QUAT, Quat);
DEFAULT_OP_FAIL(RECT3);
DEFAULT_OP_FAIL(BASIS);
DEFAULT_OP_FAIL(TRANSFORM);
DEFAULT_OP_FAIL(COLOR);
DEFAULT_OP_FAIL(NODE_PATH);
DEFAULT_OP_FAIL(_RID);
DEFAULT_OP_FAIL(OBJECT);
DEFAULT_OP_FAIL(DICTIONARY);
DEFAULT_OP_FAIL(ARRAY);
DEFAULT_OP_FAIL(POOL_BYTE_ARRAY);
DEFAULT_OP_FAIL(POOL_INT_ARRAY);
DEFAULT_OP_FAIL(POOL_REAL_ARRAY);
DEFAULT_OP_FAIL(POOL_STRING_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR2_ARRAY);
DEFAULT_OP_FAIL(POOL_VECTOR3_ARRAY);
DEFAULT_OP_FAIL(POOL_COLOR_ARRAY);
case VARIANT_MAX: {
r_valid = false;
return;
} break;
}
} break;
case OP_MODULE: {
if (p_a.type == INT && p_b.type == INT) {
#ifdef DEBUG_ENABLED
if (p_b._data._int == 0) {
r_valid = false;
_RETURN("Division By Zero");
}
#endif
_RETURN(p_a._data._int % p_b._data._int);
} else if (p_a.type == STRING) {
const String *format = reinterpret_cast<const String *>(p_a._data._mem);
String result;
bool error;
if (p_b.type == ARRAY) {
// e.g. "frog %s %d" % ["fish", 12]
const Array *args = reinterpret_cast<const Array *>(p_b._data._mem);
result = format->sprintf(*args, &error);
} else {
// e.g. "frog %d" % 12
Array args;
args.push_back(p_b);
result = format->sprintf(args, &error);
}
r_valid = !error;
_RETURN(result);
}
r_valid = false;
return;
} break;
case OP_STRING_CONCAT: {
_RETURN(p_a.operator String() + p_b.operator String());
} break;
//bitwise
case OP_SHIFT_LEFT: {
if (p_a.type == INT && p_b.type == INT)
_RETURN(p_a._data._int << p_b._data._int);
r_valid = false;
return;
} break;
case OP_SHIFT_RIGHT: {
if (p_a.type == INT && p_b.type == INT)
_RETURN(p_a._data._int >> p_b._data._int);
r_valid = false;
return;
} break;
case OP_BIT_AND: {
if (p_a.type == INT && p_b.type == INT)
_RETURN(p_a._data._int & p_b._data._int);
r_valid = false;
return;
} break;
case OP_BIT_OR: {
if (p_a.type == INT && p_b.type == INT)
_RETURN(p_a._data._int | p_b._data._int);
r_valid = false;
return;
} break;
case OP_BIT_XOR: {
if (p_a.type == INT && p_b.type == INT)
_RETURN(p_a._data._int ^ p_b._data._int);
r_valid = false;
return;
} break;
case OP_BIT_NEGATE: {
if (p_a.type == INT)
_RETURN(~p_a._data._int);
r_valid = false;
return;
} break;
//logic
case OP_AND: {
bool l = p_a.booleanize(r_valid);
if (!r_valid)
return;
bool r = p_b.booleanize(r_valid);
if (!r_valid)
return;
_RETURN(l && r);
} break;
case OP_OR: {
bool l = p_a.booleanize(r_valid);
if (!r_valid)
return;
bool r = p_b.booleanize(r_valid);
if (!r_valid)
return;
_RETURN(l || r);
} break;
case OP_XOR: {
bool l = p_a.booleanize(r_valid);
if (!r_valid)
return;
bool r = p_b.booleanize(r_valid);
if (!r_valid)
return;
_RETURN((l || r) && !(l && r));
} break;
case OP_NOT: {
bool l = p_a.booleanize(r_valid);
if (!r_valid)
return;
_RETURN(!l);
} break;
case OP_IN: {
_RETURN(p_b.in(p_a, &r_valid));
} break;
case OP_MAX: {
r_valid = false;
ERR_FAIL();
}
}
r_valid = false;
}
void Variant::set_named(const StringName &p_index, const Variant &p_value, bool *r_valid) {
if (type == OBJECT) {
#ifdef DEBUG_ENABLED
if (!_get_obj().obj) {
if (r_valid)
*r_valid = false;
return;
} else {
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null() && !ObjectDB::instance_validate(_get_obj().obj)) {
if (r_valid)
*r_valid = false;
return;
}
}
#endif
_get_obj().obj->set(p_index, p_value, r_valid);
return;
}
set(p_index.operator String(), p_value, r_valid);
}
Variant Variant::get_named(const StringName &p_index, bool *r_valid) const {
if (type == OBJECT) {
#ifdef DEBUG_ENABLED
if (!_get_obj().obj) {
if (r_valid)
*r_valid = false;
return "Instance base is null.";
} else {
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null() && !ObjectDB::instance_validate(_get_obj().obj)) {
if (r_valid)
*r_valid = false;
return "Attempted use of stray pointer object.";
}
}
#endif
return _get_obj().obj->get(p_index, r_valid);
}
return get(p_index.operator String(), r_valid);
}
#define DEFAULT_OP_ARRAY_CMD(m_name, m_type, skip_test, cmd) \
case m_name: { \
skip_test; \
\
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) { \
int index = p_index; \
m_type *arr = reinterpret_cast<m_type *>(_data._mem); \
\
if (index < 0) \
index += arr->size(); \
if (index >= 0 && index < arr->size()) { \
valid = true; \
cmd; \
} \
} \
} break;
#define DEFAULT_OP_DVECTOR_SET(m_name, dv_type, skip_cond) \
DEFAULT_OP_ARRAY_CMD(m_name, PoolVector<dv_type>, if (skip_cond) return;, arr->set(index, p_value); return )
#define DEFAULT_OP_DVECTOR_GET(m_name, dv_type) \
DEFAULT_OP_ARRAY_CMD(m_name, const PoolVector<dv_type>, ;, return arr->get(index))
void Variant::set(const Variant &p_index, const Variant &p_value, bool *r_valid) {
static bool _dummy = false;
bool &valid = r_valid ? *r_valid : _dummy;
valid = false;
switch (type) {
case NIL: {
return;
} break;
case BOOL: {
return;
} break;
case INT: {
return;
} break;
case REAL: {
return;
} break;
case STRING: {
if (p_index.type != Variant::INT && p_index.type != Variant::REAL)
return;
int idx = p_index;
String *str = reinterpret_cast<String *>(_data._mem);
int len = str->length();
if (idx < 0)
idx += len;
if (idx < 0 || idx >= len)
return;
String chr;
if (p_value.type == Variant::INT || p_value.type == Variant::REAL) {
chr = String::chr(p_value);
} else if (p_value.type == Variant::STRING) {
chr = p_value;
} else {
return;
}
*str = str->substr(0, idx) + chr + str->substr(idx + 1, len);
valid = true;
return;
} break;
case VECTOR2: {
if (p_value.type != Variant::INT && p_value.type != Variant::REAL)
return;
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
// scalar index
int idx = p_index;
if (idx < 0)
idx += 2;
if (idx >= 0 && idx < 2) {
Vector2 *v = reinterpret_cast<Vector2 *>(_data._mem);
valid = true;
(*v)[idx] = p_value;
return;
}
} else if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Vector2 *v = reinterpret_cast<Vector2 *>(_data._mem);
if (*str == "x" || *str == "width") {
valid = true;
v->x = p_value;
return;
} else if (*str == "y" || *str == "height") {
valid = true;
v->y = p_value;
return;
}
}
} break; // 5
case RECT2: {
if (p_value.type != Variant::VECTOR2)
return;
if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Rect2 *v = reinterpret_cast<Rect2 *>(_data._mem);
if (*str == "position") {
valid = true;
v->position = p_value;
return;
} else if (*str == "size") {
valid = true;
v->size = p_value;
return;
} else if (*str == "end") {
valid = true;
v->size = Vector2(p_value) - v->position;
return;
}
}
} break;
case TRANSFORM2D: {
if (p_value.type != Variant::VECTOR2)
return;
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
int index = p_index;
if (index < 0)
index += 3;
if (index >= 0 && index < 3) {
Transform2D *v = _data._transform2d;
valid = true;
v->elements[index] = p_value;
return;
}
} else if (p_index.get_type() == Variant::STRING && p_value.get_type() == Variant::VECTOR2) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Transform2D *v = _data._transform2d;
if (*str == "x") {
valid = true;
v->elements[0] = p_value;
return;
} else if (*str == "y") {
valid = true;
v->elements[1] = p_value;
return;
} else if (*str == "o") {
valid = true;
v->elements[2] = p_value;
return;
}
}
} break;
case VECTOR3: {
if (p_value.type != Variant::INT && p_value.type != Variant::REAL)
return;
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
//scalar index
int idx = p_index;
if (idx < 0)
idx += 3;
if (idx >= 0 && idx < 3) {
Vector3 *v = reinterpret_cast<Vector3 *>(_data._mem);
valid = true;
(*v)[idx] = p_value;
return;
}
} else if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Vector3 *v = reinterpret_cast<Vector3 *>(_data._mem);
if (*str == "x") {
valid = true;
v->x = p_value;
return;
} else if (*str == "y") {
valid = true;
v->y = p_value;
return;
} else if (*str == "z") {
valid = true;
v->z = p_value;
return;
}
}
} break;
case PLANE: {
if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Plane *v = reinterpret_cast<Plane *>(_data._mem);
if (*str == "x") {
if (p_value.type != Variant::INT && p_value.type != Variant::REAL)
return;
valid = true;
v->normal.x = p_value;
return;
} else if (*str == "y") {
if (p_value.type != Variant::INT && p_value.type != Variant::REAL)
return;
valid = true;
v->normal.y = p_value;
return;
} else if (*str == "z") {
if (p_value.type != Variant::INT && p_value.type != Variant::REAL)
return;
valid = true;
v->normal.z = p_value;
return;
} else if (*str == "normal") {
if (p_value.type != Variant::VECTOR3)
return;
valid = true;
v->normal = p_value;
return;
} else if (*str == "d") {
valid = true;
v->d = p_value;
return;
}
}
} break;
case QUAT: {
if (p_value.type != Variant::INT && p_value.type != Variant::REAL)
return;
if (p_index.get_type() == Variant::STRING) {
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Quat *v = reinterpret_cast<Quat *>(_data._mem);
if (*str == "x") {
valid = true;
v->x = p_value;
return;
} else if (*str == "y") {
valid = true;
v->y = p_value;
return;
} else if (*str == "z") {
valid = true;
v->z = p_value;
return;
} else if (*str == "w") {
valid = true;
v->w = p_value;
return;
}
}
} break; // 10
case RECT3: {
if (p_value.type != Variant::VECTOR3)
return;
if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Rect3 *v = _data._rect3;
if (*str == "pos") {
valid = true;
v->pos = p_value;
return;
} else if (*str == "size") {
valid = true;
v->size = p_value;
return;
} else if (*str == "end") {
valid = true;
v->size = Vector3(p_value) - v->pos;
return;
}
}
} break;
case BASIS: {
if (p_value.type != Variant::VECTOR3)
return;
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
int index = p_index;
if (index < 0)
index += 3;
if (index >= 0 && index < 3) {
Basis *v = _data._basis;
valid = true;
v->set_axis(index, p_value);
return;
}
} else if (p_index.get_type() == Variant::STRING) {
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Basis *v = _data._basis;
if (*str == "x") {
valid = true;
v->set_axis(0, p_value);
return;
} else if (*str == "y") {
valid = true;
v->set_axis(1, p_value);
return;
} else if (*str == "z") {
valid = true;
v->set_axis(2, p_value);
return;
}
}
} break;
case TRANSFORM: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
if (p_value.type != Variant::VECTOR3)
return;
int index = p_index;
if (index < 0)
index += 4;
if (index >= 0 && index < 4) {
Transform *v = _data._transform;
valid = true;
if (index == 3)
v->origin = p_value;
else
v->basis.set_axis(index, p_value);
return;
}
} else if (p_index.get_type() == Variant::STRING) {
Transform *v = _data._transform;
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
if (*str == "basis") {
if (p_value.type != Variant::BASIS)
return;
valid = true;
v->basis = p_value;
return;
}
if (*str == "origin") {
if (p_value.type != Variant::VECTOR3)
return;
valid = true;
v->origin = p_value;
return;
}
}
} break;
case COLOR: {
if (p_value.type != Variant::INT && p_value.type != Variant::REAL)
return;
if (p_index.get_type() == Variant::STRING) {
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
Color *v = reinterpret_cast<Color *>(_data._mem);
if (*str == "r") {
valid = true;
v->r = p_value;
return;
} else if (*str == "g") {
valid = true;
v->g = p_value;
return;
} else if (*str == "b") {
valid = true;
v->b = p_value;
return;
} else if (*str == "a") {
valid = true;
v->a = p_value;
return;
} else if (*str == "h") {
valid = true;
v->set_hsv(p_value, v->get_s(), v->get_v());
return;
} else if (*str == "s") {
valid = true;
v->set_hsv(v->get_h(), p_value, v->get_v());
return;
} else if (*str == "v") {
valid = true;
v->set_hsv(v->get_h(), v->get_s(), p_value);
return;
} else if (*str == "r8") {
valid = true;
v->r = float(p_value) / 255.0;
return;
} else if (*str == "g8") {
valid = true;
v->g = float(p_value) / 255.0;
return;
} else if (*str == "b8") {
valid = true;
v->b = float(p_value) / 255.0;
return;
} else if (*str == "a8") {
valid = true;
v->a = float(p_value) / 255.0;
return;
}
} else if (p_index.get_type() == Variant::INT) {
int idx = p_index;
if (idx < 0)
idx += 4;
if (idx >= 0 || idx < 4) {
Color *v = reinterpret_cast<Color *>(_data._mem);
(*v)[idx] = p_value;
valid = true;
}
}
} break;
case NODE_PATH: {
} break; // 15
case _RID: {
} break;
case OBJECT: {
Object *obj = _get_obj().obj;
//only if debugging!
if (obj) {
#ifdef DEBUG_ENABLED
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null()) {
if (!ObjectDB::instance_validate(obj)) {
WARN_PRINT("Attempted use of stray pointer object.");
valid = false;
return;
}
}
#endif
if (p_index.get_type() != Variant::STRING) {
obj->setvar(p_index, p_value, r_valid);
return;
}
return obj->set(p_index, p_value, r_valid);
}
} break;
case DICTIONARY: {
Dictionary *dic = reinterpret_cast<Dictionary *>(_data._mem);
dic->operator[](p_index) = p_value;
valid = true; //always valid, i guess? should this really be ok?
return;
} break;
DEFAULT_OP_ARRAY_CMD(ARRAY, Array, ;, (*arr)[index] = p_value; return ) // 20
DEFAULT_OP_DVECTOR_SET(POOL_BYTE_ARRAY, uint8_t, p_value.type != Variant::REAL && p_value.type != Variant::INT)
DEFAULT_OP_DVECTOR_SET(POOL_INT_ARRAY, int, p_value.type != Variant::REAL && p_value.type != Variant::INT)
DEFAULT_OP_DVECTOR_SET(POOL_REAL_ARRAY, real_t, p_value.type != Variant::REAL && p_value.type != Variant::INT)
DEFAULT_OP_DVECTOR_SET(POOL_STRING_ARRAY, String, p_value.type != Variant::STRING)
DEFAULT_OP_DVECTOR_SET(POOL_VECTOR2_ARRAY, Vector2, p_value.type != Variant::VECTOR2) // 25
DEFAULT_OP_DVECTOR_SET(POOL_VECTOR3_ARRAY, Vector3, p_value.type != Variant::VECTOR3)
DEFAULT_OP_DVECTOR_SET(POOL_COLOR_ARRAY, Color, p_value.type != Variant::COLOR)
default: return;
}
}
Variant Variant::get(const Variant &p_index, bool *r_valid) const {
static bool _dummy = false;
bool &valid = r_valid ? *r_valid : _dummy;
valid = false;
switch (type) {
case NIL: {
return Variant();
} break;
case BOOL: {
return Variant();
} break;
case INT: {
return Variant();
} break;
case REAL: {
return Variant();
} break;
case STRING: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
//string index
int idx = p_index;
const String *str = reinterpret_cast<const String *>(_data._mem);
if (idx < 0)
idx += str->length();
if (idx >= 0 && idx < str->length()) {
valid = true;
return str->substr(idx, 1);
}
}
} break;
case VECTOR2: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
// scalar index
int idx = p_index;
if (idx < 0)
idx += 2;
if (idx >= 0 && idx < 2) {
const Vector2 *v = reinterpret_cast<const Vector2 *>(_data._mem);
valid = true;
return (*v)[idx];
}
} else if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Vector2 *v = reinterpret_cast<const Vector2 *>(_data._mem);
if (*str == "x" || *str == "width") {
valid = true;
return v->x;
} else if (*str == "y" || *str == "height") {
valid = true;
return v->y;
}
}
} break; // 5
case RECT2: {
if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Rect2 *v = reinterpret_cast<const Rect2 *>(_data._mem);
if (*str == "position") {
valid = true;
return v->position;
} else if (*str == "size") {
valid = true;
return v->size;
} else if (*str == "end") {
valid = true;
return v->size + v->position;
}
}
} break;
case VECTOR3: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
//scalar index
int idx = p_index;
if (idx < 0)
idx += 3;
if (idx >= 0 && idx < 3) {
const Vector3 *v = reinterpret_cast<const Vector3 *>(_data._mem);
valid = true;
return (*v)[idx];
}
} else if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Vector3 *v = reinterpret_cast<const Vector3 *>(_data._mem);
if (*str == "x") {
valid = true;
return v->x;
} else if (*str == "y") {
valid = true;
return v->y;
} else if (*str == "z") {
valid = true;
return v->z;
}
}
} break;
case TRANSFORM2D: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
int index = p_index;
if (index < 0)
index += 3;
if (index >= 0 && index < 3) {
const Transform2D *v = _data._transform2d;
valid = true;
return v->elements[index];
}
} else if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Transform2D *v = _data._transform2d;
if (*str == "x") {
valid = true;
return v->elements[0];
} else if (*str == "y") {
valid = true;
return v->elements[1];
} else if (*str == "o") {
valid = true;
return v->elements[2];
}
}
} break;
case PLANE: {
if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Plane *v = reinterpret_cast<const Plane *>(_data._mem);
if (*str == "x") {
valid = true;
return v->normal.x;
} else if (*str == "y") {
valid = true;
return v->normal.y;
} else if (*str == "z") {
valid = true;
return v->normal.z;
} else if (*str == "normal") {
valid = true;
return v->normal;
} else if (*str == "d") {
valid = true;
return v->d;
}
}
} break;
case QUAT: {
if (p_index.get_type() == Variant::STRING) {
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Quat *v = reinterpret_cast<const Quat *>(_data._mem);
if (*str == "x") {
valid = true;
return v->x;
} else if (*str == "y") {
valid = true;
return v->y;
} else if (*str == "z") {
valid = true;
return v->z;
} else if (*str == "w") {
valid = true;
return v->w;
}
}
} break; // 10
case RECT3: {
if (p_index.get_type() == Variant::STRING) {
//scalar name
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Rect3 *v = _data._rect3;
if (*str == "pos") {
valid = true;
return v->pos;
} else if (*str == "size") {
valid = true;
return v->size;
} else if (*str == "end") {
valid = true;
return v->size + v->pos;
}
}
} break;
case BASIS: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
int index = p_index;
if (index < 0)
index += 3;
if (index >= 0 && index < 3) {
const Basis *v = _data._basis;
valid = true;
return v->get_axis(index);
}
} else if (p_index.get_type() == Variant::STRING) {
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Basis *v = _data._basis;
if (*str == "x") {
valid = true;
return v->get_axis(0);
} else if (*str == "y") {
valid = true;
return v->get_axis(1);
} else if (*str == "z") {
valid = true;
return v->get_axis(2);
}
}
} break;
case TRANSFORM: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
int index = p_index;
if (index < 0)
index += 4;
if (index >= 0 && index < 4) {
const Transform *v = _data._transform;
valid = true;
return index == 3 ? v->origin : v->basis.get_axis(index);
}
} else if (p_index.get_type() == Variant::STRING) {
const Transform *v = _data._transform;
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
if (*str == "basis") {
valid = true;
return v->basis;
}
if (*str == "origin") {
valid = true;
return v->origin;
}
}
} break;
case COLOR: {
if (p_index.get_type() == Variant::STRING) {
const String *str = reinterpret_cast<const String *>(p_index._data._mem);
const Color *v = reinterpret_cast<const Color *>(_data._mem);
if (*str == "r") {
valid = true;
return v->r;
} else if (*str == "g") {
valid = true;
return v->g;
} else if (*str == "b") {
valid = true;
return v->b;
} else if (*str == "a") {
valid = true;
return v->a;
} else if (*str == "h") {
valid = true;
return v->get_h();
} else if (*str == "s") {
valid = true;
return v->get_s();
} else if (*str == "v") {
valid = true;
return v->get_v();
} else if (*str == "r8") {
valid = true;
return (int)Math::round(v->r * 255.0);
} else if (*str == "g8") {
valid = true;
return (int)Math::round(v->g * 255.0);
} else if (*str == "b8") {
valid = true;
return (int)Math::round(v->b * 255.0);
} else if (*str == "a8") {
valid = true;
return (int)Math::round(v->a * 255.0);
}
} else if (p_index.get_type() == Variant::INT) {
int idx = p_index;
if (idx < 0)
idx += 4;
if (idx >= 0 || idx < 4) {
const Color *v = reinterpret_cast<const Color *>(_data._mem);
valid = true;
return (*v)[idx];
}
}
} break;
case NODE_PATH: {
} break; // 15
case _RID: {
} break;
case OBJECT: {
Object *obj = _get_obj().obj;
if (obj) {
#ifdef DEBUG_ENABLED
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null()) {
//only if debugging!
if (!ObjectDB::instance_validate(obj)) {
valid = false;
return "Attempted get on stray pointer.";
}
}
#endif
if (p_index.get_type() != Variant::STRING) {
return obj->getvar(p_index, r_valid);
}
return obj->get(p_index, r_valid);
}
} break;
case DICTIONARY: {
const Dictionary *dic = reinterpret_cast<const Dictionary *>(_data._mem);
const Variant *res = dic->getptr(p_index);
if (res) {
valid = true;
return *res;
}
} break;
DEFAULT_OP_ARRAY_CMD(ARRAY, const Array, ;, return (*arr)[index]) // 20
DEFAULT_OP_DVECTOR_GET(POOL_BYTE_ARRAY, uint8_t)
DEFAULT_OP_DVECTOR_GET(POOL_INT_ARRAY, int)
DEFAULT_OP_DVECTOR_GET(POOL_REAL_ARRAY, real_t)
DEFAULT_OP_DVECTOR_GET(POOL_STRING_ARRAY, String)
DEFAULT_OP_DVECTOR_GET(POOL_VECTOR2_ARRAY, Vector2) // 25
DEFAULT_OP_DVECTOR_GET(POOL_VECTOR3_ARRAY, Vector3)
DEFAULT_OP_DVECTOR_GET(POOL_COLOR_ARRAY, Color)
default: return Variant();
}
return Variant();
}
bool Variant::in(const Variant &p_index, bool *r_valid) const {
if (r_valid)
*r_valid = true;
switch (type) {
case STRING: {
if (p_index.get_type() == Variant::STRING) {
//string index
String idx = p_index;
const String *str = reinterpret_cast<const String *>(_data._mem);
return str->find(idx) != -1;
}
} break;
case OBJECT: {
Object *obj = _get_obj().obj;
if (obj) {
bool valid = false;
#ifdef DEBUG_ENABLED
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null()) {
//only if debugging!
if (!ObjectDB::instance_validate(obj)) {
if (r_valid) {
*r_valid = false;
}
return "Attempted get on stray pointer.";
}
}
#endif
if (p_index.get_type() != Variant::STRING) {
obj->getvar(p_index, &valid);
} else {
obj->get(p_index, &valid);
}
return valid;
} else {
if (r_valid)
*r_valid = false;
}
return false;
} break;
case DICTIONARY: {
const Dictionary *dic = reinterpret_cast<const Dictionary *>(_data._mem);
return dic->has(p_index);
} break; // 20
case ARRAY: {
const Array *arr = reinterpret_cast<const Array *>(_data._mem);
int l = arr->size();
if (l) {
for (int i = 0; i < l; i++) {
if (evaluate(OP_EQUAL, (*arr)[i], p_index))
return true;
}
}
return false;
} break;
case POOL_BYTE_ARRAY: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
int index = p_index;
const PoolVector<uint8_t> *arr = reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem);
int l = arr->size();
if (l) {
PoolVector<uint8_t>::Read r = arr->read();
for (int i = 0; i < l; i++) {
if (r[i] == index)
return true;
}
}
return false;
}
} break;
case POOL_INT_ARRAY: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
int index = p_index;
const PoolVector<int> *arr = reinterpret_cast<const PoolVector<int> *>(_data._mem);
int l = arr->size();
if (l) {
PoolVector<int>::Read r = arr->read();
for (int i = 0; i < l; i++) {
if (r[i] == index)
return true;
}
}
return false;
}
} break;
case POOL_REAL_ARRAY: {
if (p_index.get_type() == Variant::INT || p_index.get_type() == Variant::REAL) {
real_t index = p_index;
const PoolVector<real_t> *arr = reinterpret_cast<const PoolVector<real_t> *>(_data._mem);
int l = arr->size();
if (l) {
PoolVector<real_t>::Read r = arr->read();
for (int i = 0; i < l; i++) {
if (r[i] == index)
return true;
}
}
return false;
}
} break;
case POOL_STRING_ARRAY: {
if (p_index.get_type() == Variant::STRING) {
String index = p_index;
const PoolVector<String> *arr = reinterpret_cast<const PoolVector<String> *>(_data._mem);
int l = arr->size();
if (l) {
PoolVector<String>::Read r = arr->read();
for (int i = 0; i < l; i++) {
if (r[i] == index)
return true;
}
}
return false;
}
} break; //25
case POOL_VECTOR2_ARRAY: {
if (p_index.get_type() == Variant::VECTOR2) {
Vector2 index = p_index;
const PoolVector<Vector2> *arr = reinterpret_cast<const PoolVector<Vector2> *>(_data._mem);
int l = arr->size();
if (l) {
PoolVector<Vector2>::Read r = arr->read();
for (int i = 0; i < l; i++) {
if (r[i] == index)
return true;
}
}
return false;
}
} break;
case POOL_VECTOR3_ARRAY: {
if (p_index.get_type() == Variant::VECTOR3) {
Vector3 index = p_index;
const PoolVector<Vector3> *arr = reinterpret_cast<const PoolVector<Vector3> *>(_data._mem);
int l = arr->size();
if (l) {
PoolVector<Vector3>::Read r = arr->read();
for (int i = 0; i < l; i++) {
if (r[i] == index)
return true;
}
}
return false;
}
} break;
case POOL_COLOR_ARRAY: {
if (p_index.get_type() == Variant::COLOR) {
Color index = p_index;
const PoolVector<Color> *arr = reinterpret_cast<const PoolVector<Color> *>(_data._mem);
int l = arr->size();
if (l) {
PoolVector<Color>::Read r = arr->read();
for (int i = 0; i < l; i++) {
if (r[i] == index)
return true;
}
}
return false;
}
} break;
default: {}
}
if (r_valid)
*r_valid = false;
return false;
}
void Variant::get_property_list(List<PropertyInfo> *p_list) const {
switch (type) {
case VECTOR2: {
p_list->push_back(PropertyInfo(Variant::REAL, "x"));
p_list->push_back(PropertyInfo(Variant::REAL, "y"));
p_list->push_back(PropertyInfo(Variant::REAL, "width"));
p_list->push_back(PropertyInfo(Variant::REAL, "height"));
} break; // 5
case RECT2: {
p_list->push_back(PropertyInfo(Variant::VECTOR2, "position"));
p_list->push_back(PropertyInfo(Variant::VECTOR2, "size"));
p_list->push_back(PropertyInfo(Variant::VECTOR2, "end"));
} break;
case VECTOR3: {
p_list->push_back(PropertyInfo(Variant::REAL, "x"));
p_list->push_back(PropertyInfo(Variant::REAL, "y"));
p_list->push_back(PropertyInfo(Variant::REAL, "z"));
} break;
case TRANSFORM2D: {
p_list->push_back(PropertyInfo(Variant::VECTOR2, "x"));
p_list->push_back(PropertyInfo(Variant::VECTOR2, "y"));
p_list->push_back(PropertyInfo(Variant::VECTOR2, "o"));
} break;
case PLANE: {
p_list->push_back(PropertyInfo(Variant::VECTOR3, "normal"));
p_list->push_back(PropertyInfo(Variant::REAL, "x"));
p_list->push_back(PropertyInfo(Variant::REAL, "y"));
p_list->push_back(PropertyInfo(Variant::REAL, "z"));
p_list->push_back(PropertyInfo(Variant::REAL, "d"));
} break;
case QUAT: {
p_list->push_back(PropertyInfo(Variant::REAL, "x"));
p_list->push_back(PropertyInfo(Variant::REAL, "y"));
p_list->push_back(PropertyInfo(Variant::REAL, "z"));
p_list->push_back(PropertyInfo(Variant::REAL, "w"));
} break; // 10
case RECT3: {
p_list->push_back(PropertyInfo(Variant::VECTOR3, "pos"));
p_list->push_back(PropertyInfo(Variant::VECTOR3, "size"));
p_list->push_back(PropertyInfo(Variant::VECTOR3, "end"));
} break;
case BASIS: {
p_list->push_back(PropertyInfo(Variant::VECTOR3, "x"));
p_list->push_back(PropertyInfo(Variant::VECTOR3, "y"));
p_list->push_back(PropertyInfo(Variant::VECTOR3, "z"));
} break;
case TRANSFORM: {
p_list->push_back(PropertyInfo(Variant::BASIS, "basis"));
p_list->push_back(PropertyInfo(Variant::VECTOR3, "origin"));
} break;
case COLOR: {
p_list->push_back(PropertyInfo(Variant::REAL, "r"));
p_list->push_back(PropertyInfo(Variant::REAL, "g"));
p_list->push_back(PropertyInfo(Variant::REAL, "b"));
p_list->push_back(PropertyInfo(Variant::REAL, "a"));
p_list->push_back(PropertyInfo(Variant::REAL, "h"));
p_list->push_back(PropertyInfo(Variant::REAL, "s"));
p_list->push_back(PropertyInfo(Variant::REAL, "v"));
p_list->push_back(PropertyInfo(Variant::INT, "r8"));
p_list->push_back(PropertyInfo(Variant::INT, "g8"));
p_list->push_back(PropertyInfo(Variant::INT, "b8"));
p_list->push_back(PropertyInfo(Variant::INT, "a8"));
} break;
case NODE_PATH: {
} break; // 15
case _RID: {
} break;
case OBJECT: {
Object *obj = _get_obj().obj;
if (obj) {
#ifdef DEBUG_ENABLED
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null()) {
//only if debugging!
if (!ObjectDB::instance_validate(obj)) {
WARN_PRINT("Attempted get_property list on stray pointer.");
return;
}
}
#endif
obj->get_property_list(p_list);
}
} break;
case DICTIONARY: {
const Dictionary *dic = reinterpret_cast<const Dictionary *>(_data._mem);
List<Variant> keys;
dic->get_key_list(&keys);
for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
if (E->get().get_type() == Variant::STRING) {
p_list->push_back(PropertyInfo(Variant::STRING, E->get()));
}
}
} break;
case ARRAY: // 20
case POOL_BYTE_ARRAY:
case POOL_INT_ARRAY:
case POOL_REAL_ARRAY:
case POOL_STRING_ARRAY:
case POOL_VECTOR2_ARRAY: // 25
case POOL_VECTOR3_ARRAY:
case POOL_COLOR_ARRAY: {
//nothing
} break;
default: {}
}
}
bool Variant::iter_init(Variant &r_iter, bool &valid) const {
valid = true;
switch (type) {
case INT: {
r_iter = 0;
return _data._int > 0;
} break;
case REAL: {
r_iter = 0.0;
return _data._real > 0.0;
} break;
case VECTOR2: {
real_t from = reinterpret_cast<const Vector2 *>(_data._mem)->x;
real_t to = reinterpret_cast<const Vector2 *>(_data._mem)->y;
r_iter = from;
return from < to;
} break;
case VECTOR3: {
real_t from = reinterpret_cast<const Vector3 *>(_data._mem)->x;
real_t to = reinterpret_cast<const Vector3 *>(_data._mem)->y;
real_t step = reinterpret_cast<const Vector3 *>(_data._mem)->z;
r_iter = from;
if (from == to) {
return false;
} else if (from < to) {
return step > 0.0;
} else {
return step < 0.0;
}
//return true;
} break;
case OBJECT: {
#ifdef DEBUG_ENABLED
if (!_get_obj().obj) {
valid = false;
return false;
}
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null() && !ObjectDB::instance_validate(_get_obj().obj)) {
valid = false;
return false;
}
#endif
Variant::CallError ce;
ce.error = Variant::CallError::CALL_OK;
Array ref;
ref.push_back(r_iter);
Variant vref = ref;
const Variant *refp[] = { &vref };
Variant ret = _get_obj().obj->call(CoreStringNames::get_singleton()->_iter_init, refp, 1, ce);
if (ref.size() != 1 || ce.error != Variant::CallError::CALL_OK) {
valid = false;
return false;
}
r_iter = ref[0];
return ret;
} break;
case STRING: {
const String *str = reinterpret_cast<const String *>(_data._mem);
if (str->empty())
return false;
r_iter = 0;
return true;
} break;
case DICTIONARY: {
const Dictionary *dic = reinterpret_cast<const Dictionary *>(_data._mem);
if (dic->empty())
return false;
const Variant *next = dic->next(NULL);
r_iter = *next;
return true;
} break;
case ARRAY: {
const Array *arr = reinterpret_cast<const Array *>(_data._mem);
if (arr->empty())
return false;
r_iter = 0;
return true;
} break;
case POOL_BYTE_ARRAY: {
const PoolVector<uint8_t> *arr = reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem);
if (arr->size() == 0)
return false;
r_iter = 0;
return true;
} break;
case POOL_INT_ARRAY: {
const PoolVector<int> *arr = reinterpret_cast<const PoolVector<int> *>(_data._mem);
if (arr->size() == 0)
return false;
r_iter = 0;
return true;
} break;
case POOL_REAL_ARRAY: {
const PoolVector<real_t> *arr = reinterpret_cast<const PoolVector<real_t> *>(_data._mem);
if (arr->size() == 0)
return false;
r_iter = 0;
return true;
} break;
case POOL_STRING_ARRAY: {
const PoolVector<String> *arr = reinterpret_cast<const PoolVector<String> *>(_data._mem);
if (arr->size() == 0)
return false;
r_iter = 0;
return true;
} break;
case POOL_VECTOR2_ARRAY: {
const PoolVector<Vector2> *arr = reinterpret_cast<const PoolVector<Vector2> *>(_data._mem);
if (arr->size() == 0)
return false;
r_iter = 0;
return true;
} break;
case POOL_VECTOR3_ARRAY: {
const PoolVector<Vector3> *arr = reinterpret_cast<const PoolVector<Vector3> *>(_data._mem);
if (arr->size() == 0)
return false;
r_iter = 0;
return true;
} break;
case POOL_COLOR_ARRAY: {
const PoolVector<Color> *arr = reinterpret_cast<const PoolVector<Color> *>(_data._mem);
if (arr->size() == 0)
return false;
r_iter = 0;
return true;
} break;
default: {}
}
valid = false;
return false;
}
bool Variant::iter_next(Variant &r_iter, bool &valid) const {
valid = true;
switch (type) {
case INT: {
int64_t idx = r_iter;
idx++;
if (idx >= _data._int)
return false;
r_iter = idx;
return true;
} break;
case REAL: {
double idx = r_iter;
idx += 1.0;
if (idx >= _data._real)
return false;
r_iter = idx;
return true;
} break;
case VECTOR2: {
real_t idx = r_iter;
idx += 1.0;
if (idx >= reinterpret_cast<const Vector2 *>(_data._mem)->y)
return false;
r_iter = idx;
return true;
} break;
case VECTOR3: {
real_t to = reinterpret_cast<const Vector3 *>(_data._mem)->y;
real_t step = reinterpret_cast<const Vector3 *>(_data._mem)->z;
real_t idx = r_iter;
idx += step;
if (step < 0.0 && idx <= to)
return false;
if (step > 0.0 && idx >= to)
return false;
r_iter = idx;
return true;
} break;
case OBJECT: {
#ifdef DEBUG_ENABLED
if (!_get_obj().obj) {
valid = false;
return false;
}
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null() && !ObjectDB::instance_validate(_get_obj().obj)) {
valid = false;
return false;
}
#endif
Variant::CallError ce;
ce.error = Variant::CallError::CALL_OK;
Array ref;
ref.push_back(r_iter);
Variant vref = ref;
const Variant *refp[] = { &vref };
Variant ret = _get_obj().obj->call(CoreStringNames::get_singleton()->_iter_next, refp, 1, ce);
if (ref.size() != 1 || ce.error != Variant::CallError::CALL_OK) {
valid = false;
return false;
}
r_iter = ref[0];
return ret;
} break;
case STRING: {
const String *str = reinterpret_cast<const String *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= str->length())
return false;
r_iter = idx;
return true;
} break;
case DICTIONARY: {
const Dictionary *dic = reinterpret_cast<const Dictionary *>(_data._mem);
const Variant *next = dic->next(&r_iter);
if (!next)
return false;
r_iter = *next;
return true;
} break;
case ARRAY: {
const Array *arr = reinterpret_cast<const Array *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
case POOL_BYTE_ARRAY: {
const PoolVector<uint8_t> *arr = reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
case POOL_INT_ARRAY: {
const PoolVector<int> *arr = reinterpret_cast<const PoolVector<int> *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
case POOL_REAL_ARRAY: {
const PoolVector<real_t> *arr = reinterpret_cast<const PoolVector<real_t> *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
case POOL_STRING_ARRAY: {
const PoolVector<String> *arr = reinterpret_cast<const PoolVector<String> *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
case POOL_VECTOR2_ARRAY: {
const PoolVector<Vector2> *arr = reinterpret_cast<const PoolVector<Vector2> *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
case POOL_VECTOR3_ARRAY: {
const PoolVector<Vector3> *arr = reinterpret_cast<const PoolVector<Vector3> *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
case POOL_COLOR_ARRAY: {
const PoolVector<Color> *arr = reinterpret_cast<const PoolVector<Color> *>(_data._mem);
int idx = r_iter;
idx++;
if (idx >= arr->size())
return false;
r_iter = idx;
return true;
} break;
default: {}
}
valid = false;
return false;
}
Variant Variant::iter_get(const Variant &r_iter, bool &r_valid) const {
r_valid = true;
switch (type) {
case INT: {
return r_iter;
} break;
case REAL: {
return r_iter;
} break;
case VECTOR2: {
return r_iter;
} break;
case VECTOR3: {
return r_iter;
} break;
case OBJECT: {
#ifdef DEBUG_ENABLED
if (!_get_obj().obj) {
r_valid = false;
return Variant();
}
if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null() && !ObjectDB::instance_validate(_get_obj().obj)) {
r_valid = false;
return Variant();
}
#endif
Variant::CallError ce;
ce.error = Variant::CallError::CALL_OK;
const Variant *refp[] = { &r_iter };
Variant ret = _get_obj().obj->call(CoreStringNames::get_singleton()->_iter_get, refp, 1, ce);
if (ce.error != Variant::CallError::CALL_OK) {
r_valid = false;
return Variant();
}
//r_iter=ref[0];
return ret;
} break;
case STRING: {
const String *str = reinterpret_cast<const String *>(_data._mem);
return str->substr(r_iter, 1);
} break;
case DICTIONARY: {
return r_iter; //iterator is the same as the key
} break;
case ARRAY: {
const Array *arr = reinterpret_cast<const Array *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
case POOL_BYTE_ARRAY: {
const PoolVector<uint8_t> *arr = reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
case POOL_INT_ARRAY: {
const PoolVector<int> *arr = reinterpret_cast<const PoolVector<int> *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
case POOL_REAL_ARRAY: {
const PoolVector<real_t> *arr = reinterpret_cast<const PoolVector<real_t> *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
case POOL_STRING_ARRAY: {
const PoolVector<String> *arr = reinterpret_cast<const PoolVector<String> *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
case POOL_VECTOR2_ARRAY: {
const PoolVector<Vector2> *arr = reinterpret_cast<const PoolVector<Vector2> *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
case POOL_VECTOR3_ARRAY: {
const PoolVector<Vector3> *arr = reinterpret_cast<const PoolVector<Vector3> *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
case POOL_COLOR_ARRAY: {
const PoolVector<Color> *arr = reinterpret_cast<const PoolVector<Color> *>(_data._mem);
int idx = r_iter;
#ifdef DEBUG_ENABLED
if (idx < 0 || idx >= arr->size()) {
r_valid = false;
return Variant();
}
#endif
return arr->get(idx);
} break;
default: {}
}
r_valid = false;
return Variant();
}
void Variant::blend(const Variant &a, const Variant &b, float c, Variant &r_dst) {
if (a.type != b.type) {
if (a.is_num() && b.is_num()) {
real_t va = a;
real_t vb = b;
r_dst = va + vb * c;
} else {
r_dst = a;
}
return;
}
switch (a.type) {
case NIL: {
r_dst = Variant();
}
return;
case INT: {
int64_t va = a._data._int;
int64_t vb = b._data._int;
r_dst = int(va + vb * c + 0.5);
}
return;
case REAL: {
double ra = a._data._real;
double rb = b._data._real;
r_dst = ra + rb * c;
}
return;
case VECTOR2: {
r_dst = *reinterpret_cast<const Vector2 *>(a._data._mem) + *reinterpret_cast<const Vector2 *>(b._data._mem) * c;
}
return;
case RECT2: {
const Rect2 *ra = reinterpret_cast<const Rect2 *>(a._data._mem);
const Rect2 *rb = reinterpret_cast<const Rect2 *>(b._data._mem);
r_dst = Rect2(ra->position + rb->position * c, ra->size + rb->size * c);
}
return;
case VECTOR3: {
r_dst = *reinterpret_cast<const Vector3 *>(a._data._mem) + *reinterpret_cast<const Vector3 *>(b._data._mem) * c;
}
return;
case RECT3: {
const Rect3 *ra = reinterpret_cast<const Rect3 *>(a._data._mem);
const Rect3 *rb = reinterpret_cast<const Rect3 *>(b._data._mem);
r_dst = Rect3(ra->pos + rb->pos * c, ra->size + rb->size * c);
}
return;
case QUAT: {
Quat empty_rot;
const Quat *qa = reinterpret_cast<const Quat *>(a._data._mem);
const Quat *qb = reinterpret_cast<const Quat *>(b._data._mem);
r_dst = *qa * empty_rot.slerp(*qb, c);
}
return;
case COLOR: {
const Color *ca = reinterpret_cast<const Color *>(a._data._mem);
const Color *cb = reinterpret_cast<const Color *>(b._data._mem);
float r = ca->r + cb->r * c;
float g = ca->g + cb->g * c;
float b = ca->b + cb->b * c;
float a = ca->a + cb->a * c;
r = r > 1.0 ? 1.0 : r;
g = g > 1.0 ? 1.0 : g;
b = b > 1.0 ? 1.0 : b;
a = a > 1.0 ? 1.0 : a;
r_dst = Color(r, g, b, a);
}
return;
default: { r_dst = c < 0.5 ? a : b; }
return;
}
}
void Variant::interpolate(const Variant &a, const Variant &b, float c, Variant &r_dst) {
if (a.type != b.type) {
if (a.is_num() && b.is_num()) {
//not as efficient but..
real_t va = a;
real_t vb = b;
r_dst = (1.0 - c) * va + vb * c;
} else {
r_dst = a;
}
return;
}
switch (a.type) {
case NIL: {
r_dst = Variant();
}
return;
case BOOL: {
r_dst = a;
}
return;
case INT: {
int64_t va = a._data._int;
int64_t vb = b._data._int;
r_dst = int((1.0 - c) * va + vb * c);
}
return;
case REAL: {
real_t va = a._data._real;
real_t vb = b._data._real;
r_dst = (1.0 - c) * va + vb * c;
}
return;
case STRING: {
//this is pretty funny and bizarre, but artists like to use it for typewritter effects
String sa = *reinterpret_cast<const String *>(a._data._mem);
String sb = *reinterpret_cast<const String *>(b._data._mem);
String dst;
int csize = sb.length() * c + sa.length() * (1.0 - c);
if (csize == 0) {
r_dst = "";
return;
}
dst.resize(csize + 1);
dst[csize] = 0;
int split = csize / 2;
for (int i = 0; i < csize; i++) {
CharType chr = ' ';
if (i < split) {
if (i < sa.length())
chr = sa[i];
else if (i < sb.length())
chr = sb[i];
} else {
if (i < sb.length())
chr = sb[i];
else if (i < sa.length())
chr = sa[i];
}
dst[i] = chr;
}
r_dst = dst;
}
return;
case VECTOR2: {
r_dst = reinterpret_cast<const Vector2 *>(a._data._mem)->linear_interpolate(*reinterpret_cast<const Vector2 *>(b._data._mem), c);
}
return;
case RECT2: {
r_dst = Rect2(reinterpret_cast<const Rect2 *>(a._data._mem)->position.linear_interpolate(reinterpret_cast<const Rect2 *>(b._data._mem)->position, c), reinterpret_cast<const Rect2 *>(a._data._mem)->size.linear_interpolate(reinterpret_cast<const Rect2 *>(b._data._mem)->size, c));
}
return;
case VECTOR3: {
r_dst = reinterpret_cast<const Vector3 *>(a._data._mem)->linear_interpolate(*reinterpret_cast<const Vector3 *>(b._data._mem), c);
}
return;
case TRANSFORM2D: {
r_dst = a._data._transform2d->interpolate_with(*b._data._transform2d, c);
}
return;
case PLANE: {
r_dst = a;
}
return;
case QUAT: {
r_dst = reinterpret_cast<const Quat *>(a._data._mem)->slerp(*reinterpret_cast<const Quat *>(b._data._mem), c);
}
return;
case RECT3: {
r_dst = Rect3(a._data._rect3->pos.linear_interpolate(b._data._rect3->pos, c), a._data._rect3->size.linear_interpolate(b._data._rect3->size, c));
}
return;
case BASIS: {
r_dst = Transform(*a._data._basis).interpolate_with(Transform(*b._data._basis), c).basis;
}
return;
case TRANSFORM: {
r_dst = a._data._transform->interpolate_with(*b._data._transform, c);
}
return;
case COLOR: {
r_dst = reinterpret_cast<const Color *>(a._data._mem)->linear_interpolate(*reinterpret_cast<const Color *>(b._data._mem), c);
}
return;
case NODE_PATH: {
r_dst = a;
}
return;
case _RID: {
r_dst = a;
}
return;
case OBJECT: {
r_dst = a;
}
return;
case DICTIONARY: {
}
return;
case ARRAY: {
r_dst = a;
}
return;
case POOL_BYTE_ARRAY: {
r_dst = a;
}
return;
case POOL_INT_ARRAY: {
r_dst = a;
}
return;
case POOL_REAL_ARRAY: {
r_dst = a;
}
return;
case POOL_STRING_ARRAY: {
r_dst = a;
}
return;
case POOL_VECTOR2_ARRAY: {
const PoolVector<Vector2> *arr_a = reinterpret_cast<const PoolVector<Vector2> *>(a._data._mem);
const PoolVector<Vector2> *arr_b = reinterpret_cast<const PoolVector<Vector2> *>(b._data._mem);
int sz = arr_a->size();
if (sz == 0 || arr_b->size() != sz) {
r_dst = a;
} else {
PoolVector<Vector2> v;
v.resize(sz);
{
PoolVector<Vector2>::Write vw = v.write();
PoolVector<Vector2>::Read ar = arr_a->read();
PoolVector<Vector2>::Read br = arr_b->read();
for (int i = 0; i < sz; i++) {
vw[i] = ar[i].linear_interpolate(br[i], c);
}
}
r_dst = v;
}
}
return;
case POOL_VECTOR3_ARRAY: {
const PoolVector<Vector3> *arr_a = reinterpret_cast<const PoolVector<Vector3> *>(a._data._mem);
const PoolVector<Vector3> *arr_b = reinterpret_cast<const PoolVector<Vector3> *>(b._data._mem);
int sz = arr_a->size();
if (sz == 0 || arr_b->size() != sz) {
r_dst = a;
} else {
PoolVector<Vector3> v;
v.resize(sz);
{
PoolVector<Vector3>::Write vw = v.write();
PoolVector<Vector3>::Read ar = arr_a->read();
PoolVector<Vector3>::Read br = arr_b->read();
for (int i = 0; i < sz; i++) {
vw[i] = ar[i].linear_interpolate(br[i], c);
}
}
r_dst = v;
}
}
return;
case POOL_COLOR_ARRAY: {
r_dst = a;
}
return;
default: {
r_dst = a;
}
}
}
static const char *_op_names[Variant::OP_MAX] = {
"==",
"!=",
"<",
"<=",
">",
">=",
"+",
"-",
"*",
"/",
"- (negation)",
"%",
"..",
"<<",
">>",
"&",
"|",
"^",
"~",
"and",
"or",
"xor",
"not",
"in"
};
String Variant::get_operator_name(Operator p_op) {
ERR_FAIL_INDEX_V(p_op, OP_MAX, "");
return _op_names[p_op];
}