virtualx-engine/thirdparty/embree/kernels/common/geometry.cpp
Jakub Mateusz Marcowski c43eab55a4
embree: Update to 4.3.1
2024-03-27 22:10:35 +01:00

265 lines
6.8 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "geometry.h"
#include "scene.h"
namespace embree
{
const char* Geometry::gtype_names[Geometry::GTY_END] =
{
"flat_linear_curve",
"round_linear_curve",
"oriented_linear_curve",
"",
"flat_bezier_curve",
"round_bezier_curve",
"oriented_bezier_curve",
"",
"flat_bspline_curve",
"round_bspline_curve",
"oriented_bspline_curve",
"",
"flat_hermite_curve",
"round_hermite_curve",
"oriented_hermite_curve",
"",
"flat_catmull_rom_curve",
"round_catmull_rom_curve",
"oriented_catmull_rom_curve",
"",
"triangles",
"quads",
"grid",
"subdivs",
"",
"sphere",
"disc",
"oriented_disc",
"",
"usergeom",
"instance_cheap",
"instance_expensive",
};
Geometry::Geometry (Device* device, GType gtype, unsigned int numPrimitives, unsigned int numTimeSteps)
: device(device), userPtr(nullptr),
numPrimitives(numPrimitives), numTimeSteps(unsigned(numTimeSteps)), fnumTimeSegments(float(numTimeSteps-1)), time_range(0.0f,1.0f),
mask(1),
gtype(gtype),
gsubtype(GTY_SUBTYPE_DEFAULT),
quality(RTC_BUILD_QUALITY_MEDIUM),
state((unsigned)State::MODIFIED),
enabled(true),
argumentFilterEnabled(false),
intersectionFilterN(nullptr), occlusionFilterN(nullptr), pointQueryFunc(nullptr)
{
device->refInc();
}
Geometry::~Geometry()
{
device->refDec();
}
void Geometry::setNumPrimitives(unsigned int numPrimitives_in)
{
if (numPrimitives_in == numPrimitives) return;
numPrimitives = numPrimitives_in;
Geometry::update();
}
void Geometry::setNumTimeSteps (unsigned int numTimeSteps_in)
{
if (numTimeSteps_in == numTimeSteps) {
return;
}
numTimeSteps = numTimeSteps_in;
fnumTimeSegments = float(numTimeSteps_in-1);
Geometry::update();
}
void Geometry::setTimeRange (const BBox1f range)
{
time_range = range;
Geometry::update();
}
BBox1f Geometry::getTimeRange () const
{
return time_range;
}
void Geometry::update()
{
++modCounter_; // FIXME: required?
state = (unsigned)State::MODIFIED;
}
void Geometry::commit()
{
++modCounter_;
state = (unsigned)State::COMMITTED;
}
void Geometry::preCommit()
{
if (State::MODIFIED == (State)state)
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"geometry not committed");
}
void Geometry::postCommit()
{
}
void Geometry::enable ()
{
if (isEnabled())
return;
enabled = true;
++modCounter_;
}
void Geometry::disable ()
{
if (isDisabled())
return;
enabled = false;
++modCounter_;
}
void Geometry::setUserData (void* ptr)
{
userPtr = ptr;
}
void Geometry::setIntersectionFilterFunctionN (RTCFilterFunctionN filter)
{
if (!(getTypeMask() & (MTY_TRIANGLE_MESH | MTY_QUAD_MESH | MTY_CURVES | MTY_SUBDIV_MESH | MTY_USER_GEOMETRY | MTY_GRID_MESH)))
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"filter functions not supported for this geometry");
intersectionFilterN = filter;
}
void Geometry::setOcclusionFilterFunctionN (RTCFilterFunctionN filter)
{
if (!(getTypeMask() & (MTY_TRIANGLE_MESH | MTY_QUAD_MESH | MTY_CURVES | MTY_SUBDIV_MESH | MTY_USER_GEOMETRY | MTY_GRID_MESH)))
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"filter functions not supported for this geometry");
occlusionFilterN = filter;
}
void Geometry::setPointQueryFunction (RTCPointQueryFunction func)
{
pointQueryFunc = func;
}
void Geometry::interpolateN(const RTCInterpolateNArguments* const args)
{
const void* valid_i = args->valid;
const unsigned* primIDs = args->primIDs;
const float* u = args->u;
const float* v = args->v;
unsigned int N = args->N;
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* dPdv = args->dPdv;
float* ddPdudu = args->ddPdudu;
float* ddPdvdv = args->ddPdvdv;
float* ddPdudv = args->ddPdudv;
unsigned int valueCount = args->valueCount;
if (valueCount > 256) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"maximally 256 floating point values can be interpolated per vertex");
const int* valid = (const int*) valid_i;
__aligned(64) float P_tmp[256];
__aligned(64) float dPdu_tmp[256];
__aligned(64) float dPdv_tmp[256];
__aligned(64) float ddPdudu_tmp[256];
__aligned(64) float ddPdvdv_tmp[256];
__aligned(64) float ddPdudv_tmp[256];
float* Pt = P ? P_tmp : nullptr;
float* dPdut = nullptr, *dPdvt = nullptr;
if (dPdu) { dPdut = dPdu_tmp; dPdvt = dPdv_tmp; }
float* ddPdudut = nullptr, *ddPdvdvt = nullptr, *ddPdudvt = nullptr;
if (ddPdudu) { ddPdudut = ddPdudu_tmp; ddPdvdvt = ddPdvdv_tmp; ddPdudvt = ddPdudv_tmp; }
for (unsigned int i=0; i<N; i++)
{
if (valid && !valid[i]) continue;
RTCInterpolateArguments iargs;
iargs.primID = primIDs[i];
iargs.u = u[i];
iargs.v = v[i];
iargs.bufferType = bufferType;
iargs.bufferSlot = bufferSlot;
iargs.P = Pt;
iargs.dPdu = dPdut;
iargs.dPdv = dPdvt;
iargs.ddPdudu = ddPdudut;
iargs.ddPdvdv = ddPdvdvt;
iargs.ddPdudv = ddPdudvt;
iargs.valueCount = valueCount;
interpolate(&iargs);
if (likely(P)) {
for (unsigned int j=0; j<valueCount; j++)
P[j*N+i] = Pt[j];
}
if (likely(dPdu))
{
for (unsigned int j=0; j<valueCount; j++) {
dPdu[j*N+i] = dPdut[j];
dPdv[j*N+i] = dPdvt[j];
}
}
if (likely(ddPdudu))
{
for (unsigned int j=0; j<valueCount; j++) {
ddPdudu[j*N+i] = ddPdudut[j];
ddPdvdv[j*N+i] = ddPdvdvt[j];
ddPdudv[j*N+i] = ddPdudvt[j];
}
}
}
}
bool Geometry::pointQuery(PointQuery* query, PointQueryContext* context)
{
assert(context->primID < size());
RTCPointQueryFunctionArguments args;
args.query = (RTCPointQuery*)context->query_ws;
args.userPtr = context->userPtr;
args.primID = context->primID;
args.geomID = context->geomID;
args.context = context->userContext;
args.similarityScale = context->similarityScale;
bool update = false;
if(context->func) update |= context->func(&args);
if(pointQueryFunc) update |= pointQueryFunc(&args);
if (update && context->userContext->instStackSize > 0)
{
// update point query
if (context->query_type == POINT_QUERY_TYPE_AABB) {
context->updateAABB();
} else {
assert(context->similarityScale > 0.f);
query->radius = context->query_ws->radius * context->similarityScale;
}
}
return update;
}
}