virtualx-engine/servers/physics/space_sw.cpp
Juan Linietsky e0ce701c8c More Bugfix...
-=-=-=-=-=-==

-Fix bug in camera follow script
-Fix negate operator not working in shader language
-Fix uninitialized pointer in raycast query API
2014-09-17 23:23:42 -03:00

738 lines
22 KiB
C++

/*************************************************************************/
/* space_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "globals.h"
#include "space_sw.h"
#include "collision_solver_sw.h"
#include "physics_server_sw.h"
_FORCE_INLINE_ static bool _match_object_type_query(CollisionObjectSW *p_object, uint32_t p_layer_mask, uint32_t p_type_mask) {
if ((p_object->get_layer_mask()&p_layer_mask)==0)
return false;
if (p_object->get_type()==CollisionObjectSW::TYPE_AREA && !(p_type_mask&PhysicsDirectSpaceState::TYPE_MASK_AREA))
return false;
BodySW *body = static_cast<BodySW*>(p_object);
return (1<<body->get_mode())&p_type_mask;
}
bool PhysicsDirectSpaceStateSW::intersect_ray(const Vector3& p_from, const Vector3& p_to,RayResult &r_result,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
ERR_FAIL_COND_V(space->locked,false);
Vector3 begin,end;
Vector3 normal;
begin=p_from;
end=p_to;
normal=(end-begin).normalized();
int amount = space->broadphase->cull_segment(begin,end,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
//todo, create another array tha references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
bool collided=false;
Vector3 res_point,res_normal;
int res_shape;
const CollisionObjectSW *res_obj;
real_t min_d=1e10;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (space->intersection_query_results[i]->get_type()==CollisionObjectSW::TYPE_AREA && !(static_cast<AreaSW*>(space->intersection_query_results[i])->is_ray_pickable()))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
Transform inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector3 local_from = inv_xform.xform(begin);
Vector3 local_to = inv_xform.xform(end);
const ShapeSW *shape = col_obj->get_shape(shape_idx);
Vector3 shape_point,shape_normal;
if (shape->intersect_segment(local_from,local_to,shape_point,shape_normal)) {
Transform xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point=xform.xform(shape_point);
real_t ld = normal.dot(shape_point);
if (ld<min_d) {
min_d=ld;
res_point=shape_point;
res_normal=inv_xform.basis.xform_inv(shape_normal).normalized();
res_shape=shape_idx;
res_obj=col_obj;
collided=true;
}
}
}
if (!collided)
return false;
r_result.collider_id=res_obj->get_instance_id();
if (r_result.collider_id!=0)
r_result.collider=ObjectDB::get_instance(r_result.collider_id);
else
r_result.collider=NULL;
r_result.normal=res_normal;
r_result.position=res_point;
r_result.rid=res_obj->get_self();
r_result.shape=res_shape;
return true;
}
int PhysicsDirectSpaceStateSW::intersect_shape(const RID& p_shape, const Transform& p_xform,float p_margin,ShapeResult *r_results,int p_result_max,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
if (p_result_max<=0)
return 0;
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
AABB aabb = p_xform.xform(shape->get_aabb());
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
int cc=0;
//Transform ai = p_xform.affine_inverse();
for(int i=0;i<amount;i++) {
if (cc>=p_result_max)
break;
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
//area cant be picked by ray (default)
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (!CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), NULL,NULL,NULL,p_margin,0))
continue;
r_results[cc].collider_id=col_obj->get_instance_id();
if (r_results[cc].collider_id!=0)
r_results[cc].collider=ObjectDB::get_instance(r_results[cc].collider_id);
else
r_results[cc].collider=NULL;
r_results[cc].rid=col_obj->get_self();
r_results[cc].shape=shape_idx;
cc++;
}
return cc;
}
bool PhysicsDirectSpaceStateSW::cast_motion(const RID& p_shape, const Transform& p_xform,const Vector3& p_motion,float p_margin,float &p_closest_safe,float &p_closest_unsafe, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask,ShapeRestInfo *r_info) {
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,false);
AABB aabb = p_xform.xform(shape->get_aabb());
aabb=aabb.merge(AABB(aabb.pos+p_motion,aabb.size)); //motion
aabb=aabb.grow(p_margin);
//if (p_motion!=Vector3())
// print_line(p_motion);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
float best_safe=1;
float best_unsafe=1;
Transform xform_inv = p_xform.affine_inverse();
MotionShapeSW mshape;
mshape.shape=shape;
mshape.motion=xform_inv.basis.xform(p_motion);
bool best_first=true;
Vector3 closest_A,closest_B;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue; //ignore excluded
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
Vector3 point_A,point_B;
Vector3 sep_axis=p_motion.normalized();
Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) {
//print_line("failed motion cast (no collision)");
continue;
}
//test initial overlap
#if 0
if (CollisionSolverSW::solve_static(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,NULL,NULL,&sep_axis)) {
print_line("failed initial cast (collision at begining)");
return false;
}
#else
sep_axis=p_motion.normalized();
if (!CollisionSolverSW::solve_distance(shape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,point_A,point_B,aabb,&sep_axis)) {
//print_line("failed motion cast (no collision)");
return false;
}
#endif
//just do kinematic solving
float low=0;
float hi=1;
Vector3 mnormal=p_motion.normalized();
for(int i=0;i<8;i++) { //steps should be customizable..
Transform xfa = p_xform;
float ofs = (low+hi)*0.5;
Vector3 sep=mnormal; //important optimization for this to work fast enough
mshape.motion=xform_inv.basis.xform(p_motion*ofs);
Vector3 lA,lB;
bool collided = !CollisionSolverSW::solve_distance(&mshape,p_xform,col_obj->get_shape(shape_idx),col_obj_xform,lA,lB,aabb,&sep);
if (collided) {
//print_line(itos(i)+": "+rtos(ofs));
hi=ofs;
} else {
point_A=lA;
point_B=lB;
low=ofs;
}
}
if (low<best_safe) {
best_first=true; //force reset
best_safe=low;
best_unsafe=hi;
}
if (r_info && (best_first || (point_A.distance_squared_to(point_B) < closest_A.distance_squared_to(closest_B) && low<=best_safe))) {
closest_A=point_A;
closest_B=point_B;
r_info->collider_id=col_obj->get_instance_id();
r_info->rid=col_obj->get_self();
r_info->shape=shape_idx;
r_info->point=closest_B;
r_info->normal=(closest_A-closest_B).normalized();
best_first=false;
if (col_obj->get_type()==CollisionObjectSW::TYPE_BODY) {
const BodySW *body=static_cast<const BodySW*>(col_obj);
r_info->linear_velocity= body->get_linear_velocity() + (body->get_angular_velocity()).cross(body->get_transform().origin - closest_B);
}
}
}
p_closest_safe=best_safe;
p_closest_unsafe=best_unsafe;
return true;
}
bool PhysicsDirectSpaceStateSW::collide_shape(RID p_shape, const Transform& p_shape_xform,float p_margin,Vector3 *r_results,int p_result_max,int &r_result_count, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask){
if (p_result_max<=0)
return 0;
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb=aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
int cc=0;
r_result_count=0;
PhysicsServerSW::CollCbkData cbk;
cbk.max=p_result_max;
cbk.amount=0;
cbk.ptr=r_results;
CollisionSolverSW::CallbackResult cbkres=NULL;
PhysicsServerSW::CollCbkData *cbkptr=NULL;
if (p_result_max>0) {
cbkptr=&cbk;
cbkres=PhysicsServerSW::_shape_col_cbk;
}
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (p_exclude.has( col_obj->get_self() )) {
continue;
}
//print_line("AGAINST: "+itos(col_obj->get_self().get_id())+":"+itos(shape_idx));
//print_line("THE ABBB: "+(col_obj->get_transform() * col_obj->get_shape_transform(shape_idx)).xform(col_obj->get_shape(shape_idx)->get_aabb()));
if (CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),cbkres,cbkptr,NULL,p_margin)) {
collided=true;
}
}
r_result_count=cbk.amount;
return collided;
}
struct _RestCallbackData {
const CollisionObjectSW *object;
const CollisionObjectSW *best_object;
int shape;
int best_shape;
Vector3 best_contact;
Vector3 best_normal;
float best_len;
};
static void _rest_cbk_result(const Vector3& p_point_A,const Vector3& p_point_B,void *p_userdata) {
_RestCallbackData *rd=(_RestCallbackData*)p_userdata;
Vector3 contact_rel = p_point_B - p_point_A;
float len = contact_rel.length();
if (len <= rd->best_len)
return;
rd->best_len=len;
rd->best_contact=p_point_B;
rd->best_normal=contact_rel/len;
rd->best_object=rd->object;
rd->best_shape=rd->shape;
}
bool PhysicsDirectSpaceStateSW::rest_info(RID p_shape, const Transform& p_shape_xform,float p_margin,ShapeRestInfo *r_info, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
ShapeSW *shape = static_cast<PhysicsServerSW*>(PhysicsServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
AABB aabb = p_shape_xform.xform(shape->get_aabb());
aabb=aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,SpaceSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
_RestCallbackData rcd;
rcd.best_len=0;
rcd.best_object=NULL;
rcd.best_shape=0;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
const CollisionObjectSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (p_exclude.has( col_obj->get_self() ))
continue;
rcd.object=col_obj;
rcd.shape=shape_idx;
bool sc = CollisionSolverSW::solve_static(shape,p_shape_xform,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),_rest_cbk_result,&rcd,NULL,p_margin);
if (!sc)
continue;
}
if (rcd.best_len==0)
return false;
r_info->collider_id=rcd.best_object->get_instance_id();
r_info->shape=rcd.best_shape;
r_info->normal=rcd.best_normal;
r_info->point=rcd.best_contact;
r_info->rid=rcd.best_object->get_self();
if (rcd.best_object->get_type()==CollisionObjectSW::TYPE_BODY) {
const BodySW *body = static_cast<const BodySW*>(rcd.best_object);
Vector3 rel_vec = r_info->point-body->get_transform().get_origin();
r_info->linear_velocity = body->get_linear_velocity() +
(body->get_angular_velocity()).cross(body->get_transform().origin-rcd.best_contact);// * mPos);
} else {
r_info->linear_velocity=Vector3();
}
return true;
}
PhysicsDirectSpaceStateSW::PhysicsDirectSpaceStateSW() {
space=NULL;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
void* SpaceSW::_broadphase_pair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_self) {
CollisionObjectSW::Type type_A=A->get_type();
CollisionObjectSW::Type type_B=B->get_type();
if (type_A>type_B) {
SWAP(A,B);
SWAP(p_subindex_A,p_subindex_B);
SWAP(type_A,type_B);
}
SpaceSW *self = (SpaceSW*)p_self;
self->collision_pairs++;
if (type_A==CollisionObjectSW::TYPE_AREA) {
ERR_FAIL_COND_V(type_B!=CollisionObjectSW::TYPE_BODY,NULL);
AreaSW *area=static_cast<AreaSW*>(A);
BodySW *body=static_cast<BodySW*>(B);
AreaPairSW *area_pair = memnew(AreaPairSW(body,p_subindex_B,area,p_subindex_A) );
return area_pair;
} else {
BodyPairSW *b = memnew( BodyPairSW((BodySW*)A,p_subindex_A,(BodySW*)B,p_subindex_B) );
return b;
}
return NULL;
}
void SpaceSW::_broadphase_unpair(CollisionObjectSW *A,int p_subindex_A,CollisionObjectSW *B,int p_subindex_B,void *p_data,void *p_self) {
SpaceSW *self = (SpaceSW*)p_self;
self->collision_pairs--;
ConstraintSW *c = (ConstraintSW*)p_data;
memdelete(c);
}
const SelfList<BodySW>::List& SpaceSW::get_active_body_list() const {
return active_list;
}
void SpaceSW::body_add_to_active_list(SelfList<BodySW>* p_body) {
active_list.add(p_body);
}
void SpaceSW::body_remove_from_active_list(SelfList<BodySW>* p_body) {
active_list.remove(p_body);
}
void SpaceSW::body_add_to_inertia_update_list(SelfList<BodySW>* p_body) {
inertia_update_list.add(p_body);
}
void SpaceSW::body_remove_from_inertia_update_list(SelfList<BodySW>* p_body) {
inertia_update_list.remove(p_body);
}
BroadPhaseSW *SpaceSW::get_broadphase() {
return broadphase;
}
void SpaceSW::add_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND( objects.has(p_object) );
objects.insert(p_object);
}
void SpaceSW::remove_object(CollisionObjectSW *p_object) {
ERR_FAIL_COND( !objects.has(p_object) );
objects.erase(p_object);
}
const Set<CollisionObjectSW*> &SpaceSW::get_objects() const {
return objects;
}
void SpaceSW::body_add_to_state_query_list(SelfList<BodySW>* p_body) {
state_query_list.add(p_body);
}
void SpaceSW::body_remove_from_state_query_list(SelfList<BodySW>* p_body) {
state_query_list.remove(p_body);
}
void SpaceSW::area_add_to_monitor_query_list(SelfList<AreaSW>* p_area) {
monitor_query_list.add(p_area);
}
void SpaceSW::area_remove_from_monitor_query_list(SelfList<AreaSW>* p_area) {
monitor_query_list.remove(p_area);
}
void SpaceSW::area_add_to_moved_list(SelfList<AreaSW>* p_area) {
area_moved_list.add(p_area);
}
void SpaceSW::area_remove_from_moved_list(SelfList<AreaSW>* p_area) {
area_moved_list.remove(p_area);
}
const SelfList<AreaSW>::List& SpaceSW::get_moved_area_list() const {
return area_moved_list;
}
void SpaceSW::call_queries() {
while(state_query_list.first()) {
BodySW * b = state_query_list.first()->self();
b->call_queries();
state_query_list.remove(state_query_list.first());
}
while(monitor_query_list.first()) {
AreaSW * a = monitor_query_list.first()->self();
a->call_queries();
monitor_query_list.remove(monitor_query_list.first());
}
}
void SpaceSW::setup() {
while(inertia_update_list.first()) {
inertia_update_list.first()->self()->update_inertias();
inertia_update_list.remove(inertia_update_list.first());
}
}
void SpaceSW::update() {
broadphase->update();
}
void SpaceSW::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {
switch(p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius=p_value; break;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: body_linear_velocity_sleep_threshold=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: body_angular_velocity_sleep_threshold=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep=p_value; break;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: body_angular_velocity_damp_ratio=p_value; break;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias=p_value; break;
}
}
real_t SpaceSW::get_param(PhysicsServer::SpaceParameter p_param) const {
switch(p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius;
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation;
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration;
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: return body_linear_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: return body_angular_velocity_sleep_threshold;
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep;
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: return body_angular_velocity_damp_ratio;
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias;
}
return 0;
}
void SpaceSW::lock() {
locked=true;
}
void SpaceSW::unlock() {
locked=false;
}
bool SpaceSW::is_locked() const {
return locked;
}
PhysicsDirectSpaceStateSW *SpaceSW::get_direct_state() {
return direct_access;
}
SpaceSW::SpaceSW() {
collision_pairs=0;
active_objects=0;
island_count=0;
locked=false;
contact_recycle_radius=0.01;
contact_max_separation=0.05;
contact_max_allowed_penetration= 0.01;
constraint_bias = 0.01;
body_linear_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_linear",0.1);
body_angular_velocity_sleep_threshold=GLOBAL_DEF("physics/sleep_threshold_angular", (8.0 / 180.0 * Math_PI) );
body_time_to_sleep=0.5;
body_angular_velocity_damp_ratio=10;
broadphase = BroadPhaseSW::create_func();
broadphase->set_pair_callback(_broadphase_pair,this);
broadphase->set_unpair_callback(_broadphase_unpair,this);
area=NULL;
direct_access = memnew( PhysicsDirectSpaceStateSW );
direct_access->space=this;
}
SpaceSW::~SpaceSW() {
memdelete(broadphase);
memdelete( direct_access );
}