virtualx-engine/core/templates/set.h
Rémi Verschelde f8ab79e68a Zero initialize all pointer class and struct members
This prevents the pitfall of UB when checking if they have been
assigned something valid by comparing to nullptr.
2022-04-04 19:49:50 +02:00

704 lines
16 KiB
C++

/*************************************************************************/
/* set.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef SET_H
#define SET_H
#include "core/os/memory.h"
#include "core/typedefs.h"
// based on the very nice implementation of rb-trees by:
// https://web.archive.org/web/20120507164830/https://web.mit.edu/~emin/www/source_code/red_black_tree/index.html
template <class T, class C = Comparator<T>, class A = DefaultAllocator>
class Set {
enum Color {
RED,
BLACK
};
struct _Data;
public:
class Element {
private:
friend class Set<T, C, A>;
int color = RED;
Element *right = nullptr;
Element *left = nullptr;
Element *parent = nullptr;
Element *_next = nullptr;
Element *_prev = nullptr;
T value;
//_Data *data;
public:
const Element *next() const {
return _next;
}
Element *next() {
return _next;
}
const Element *prev() const {
return _prev;
}
Element *prev() {
return _prev;
}
T &get() {
return value;
}
const T &get() const {
return value;
};
Element() {}
};
typedef T ValueType;
struct Iterator {
_FORCE_INLINE_ T &operator*() const {
return E->get();
}
_FORCE_INLINE_ T *operator->() const { return &E->get(); }
_FORCE_INLINE_ Iterator &operator++() {
E = E->next();
return *this;
}
_FORCE_INLINE_ Iterator &operator--() {
E = E->prev();
return *this;
}
_FORCE_INLINE_ bool operator==(const Iterator &b) const { return E == b.E; }
_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return E != b.E; }
Iterator(Element *p_E) { E = p_E; }
Iterator() {}
Iterator(const Iterator &p_it) { E = p_it.E; }
private:
Element *E = nullptr;
};
struct ConstIterator {
_FORCE_INLINE_ const T &operator*() const {
return E->get();
}
_FORCE_INLINE_ const T *operator->() const { return &E->get(); }
_FORCE_INLINE_ ConstIterator &operator++() {
E = E->next();
return *this;
}
_FORCE_INLINE_ ConstIterator &operator--() {
E = E->prev();
return *this;
}
_FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return E == b.E; }
_FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return E != b.E; }
_FORCE_INLINE_ ConstIterator(const Element *p_E) { E = p_E; }
_FORCE_INLINE_ ConstIterator() {}
_FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) { E = p_it.E; }
private:
const Element *E = nullptr;
};
_FORCE_INLINE_ Iterator begin() {
return Iterator(front());
}
_FORCE_INLINE_ Iterator end() {
return Iterator(nullptr);
}
#if 0
//to use when replacing find()
_FORCE_INLINE_ Iterator find(const K &p_key) {
return Iterator(find(p_key));
}
#endif
_FORCE_INLINE_ ConstIterator begin() const {
return ConstIterator(front());
}
_FORCE_INLINE_ ConstIterator end() const {
return ConstIterator(nullptr);
}
#if 0
//to use when replacing find()
_FORCE_INLINE_ ConstIterator find(const K &p_key) const {
return ConstIterator(find(p_key));
}
#endif
private:
struct _Data {
Element *_root = nullptr;
Element *_nil = nullptr;
int size_cache = 0;
_FORCE_INLINE_ _Data() {
#ifdef GLOBALNIL_DISABLED
_nil = memnew_allocator(Element, A);
_nil->parent = _nil->left = _nil->right = _nil;
_nil->color = BLACK;
#else
_nil = (Element *)&_GlobalNilClass::_nil;
#endif
}
void _create_root() {
_root = memnew_allocator(Element, A);
_root->parent = _root->left = _root->right = _nil;
_root->color = BLACK;
}
void _free_root() {
if (_root) {
memdelete_allocator<Element, A>(_root);
_root = nullptr;
}
}
~_Data() {
_free_root();
#ifdef GLOBALNIL_DISABLED
memdelete_allocator<Element, A>(_nil);
#endif
}
};
_Data _data;
inline void _set_color(Element *p_node, int p_color) {
ERR_FAIL_COND(p_node == _data._nil && p_color == RED);
p_node->color = p_color;
}
inline void _rotate_left(Element *p_node) {
Element *r = p_node->right;
p_node->right = r->left;
if (r->left != _data._nil) {
r->left->parent = p_node;
}
r->parent = p_node->parent;
if (p_node == p_node->parent->left) {
p_node->parent->left = r;
} else {
p_node->parent->right = r;
}
r->left = p_node;
p_node->parent = r;
}
inline void _rotate_right(Element *p_node) {
Element *l = p_node->left;
p_node->left = l->right;
if (l->right != _data._nil) {
l->right->parent = p_node;
}
l->parent = p_node->parent;
if (p_node == p_node->parent->right) {
p_node->parent->right = l;
} else {
p_node->parent->left = l;
}
l->right = p_node;
p_node->parent = l;
}
inline Element *_successor(Element *p_node) const {
Element *node = p_node;
if (node->right != _data._nil) {
node = node->right;
while (node->left != _data._nil) { /* returns the minimum of the right subtree of node */
node = node->left;
}
return node;
} else {
while (node == node->parent->right) {
node = node->parent;
}
if (node->parent == _data._root) {
return nullptr; // No successor, as p_node = last node
}
return node->parent;
}
}
inline Element *_predecessor(Element *p_node) const {
Element *node = p_node;
if (node->left != _data._nil) {
node = node->left;
while (node->right != _data._nil) { /* returns the minimum of the left subtree of node */
node = node->right;
}
return node;
} else {
while (node == node->parent->left) {
node = node->parent;
}
if (node == _data._root) {
return nullptr; // No predecessor, as p_node = first node.
}
return node->parent;
}
}
Element *_find(const T &p_value) const {
Element *node = _data._root->left;
C less;
while (node != _data._nil) {
if (less(p_value, node->value)) {
node = node->left;
} else if (less(node->value, p_value)) {
node = node->right;
} else {
return node; // found
}
}
return nullptr;
}
Element *_lower_bound(const T &p_value) const {
Element *node = _data._root->left;
Element *prev = nullptr;
C less;
while (node != _data._nil) {
prev = node;
if (less(p_value, node->value)) {
node = node->left;
} else if (less(node->value, p_value)) {
node = node->right;
} else {
return node; // found
}
}
if (prev == nullptr) {
return nullptr; // tree empty
}
if (less(prev->value, p_value)) {
prev = prev->_next;
}
return prev;
}
void _insert_rb_fix(Element *p_new_node) {
Element *node = p_new_node;
Element *nparent = node->parent;
Element *ngrand_parent = nullptr;
while (nparent->color == RED) {
ngrand_parent = nparent->parent;
if (nparent == ngrand_parent->left) {
if (ngrand_parent->right->color == RED) {
_set_color(nparent, BLACK);
_set_color(ngrand_parent->right, BLACK);
_set_color(ngrand_parent, RED);
node = ngrand_parent;
nparent = node->parent;
} else {
if (node == nparent->right) {
_rotate_left(nparent);
node = nparent;
nparent = node->parent;
}
_set_color(nparent, BLACK);
_set_color(ngrand_parent, RED);
_rotate_right(ngrand_parent);
}
} else {
if (ngrand_parent->left->color == RED) {
_set_color(nparent, BLACK);
_set_color(ngrand_parent->left, BLACK);
_set_color(ngrand_parent, RED);
node = ngrand_parent;
nparent = node->parent;
} else {
if (node == nparent->left) {
_rotate_right(nparent);
node = nparent;
nparent = node->parent;
}
_set_color(nparent, BLACK);
_set_color(ngrand_parent, RED);
_rotate_left(ngrand_parent);
}
}
}
_set_color(_data._root->left, BLACK);
}
Element *_insert(const T &p_value) {
Element *new_parent = _data._root;
Element *node = _data._root->left;
C less;
while (node != _data._nil) {
new_parent = node;
if (less(p_value, node->value)) {
node = node->left;
} else if (less(node->value, p_value)) {
node = node->right;
} else {
return node; // Return existing node
}
}
Element *new_node = memnew_allocator(Element, A);
new_node->parent = new_parent;
new_node->right = _data._nil;
new_node->left = _data._nil;
new_node->value = p_value;
//new_node->data=_data;
if (new_parent == _data._root || less(p_value, new_parent->value)) {
new_parent->left = new_node;
} else {
new_parent->right = new_node;
}
new_node->_next = _successor(new_node);
new_node->_prev = _predecessor(new_node);
if (new_node->_next) {
new_node->_next->_prev = new_node;
}
if (new_node->_prev) {
new_node->_prev->_next = new_node;
}
_data.size_cache++;
_insert_rb_fix(new_node);
return new_node;
}
void _erase_fix_rb(Element *p_node) {
Element *root = _data._root->left;
Element *node = _data._nil;
Element *sibling = p_node;
Element *parent = sibling->parent;
while (node != root) { // If red node found, will exit at a break
if (sibling->color == RED) {
_set_color(sibling, BLACK);
_set_color(parent, RED);
if (sibling == parent->right) {
sibling = sibling->left;
_rotate_left(parent);
} else {
sibling = sibling->right;
_rotate_right(parent);
}
}
if ((sibling->left->color == BLACK) && (sibling->right->color == BLACK)) {
_set_color(sibling, RED);
if (parent->color == RED) {
_set_color(parent, BLACK);
break;
} else { // loop: haven't found any red nodes yet
node = parent;
parent = node->parent;
sibling = (node == parent->left) ? parent->right : parent->left;
}
} else {
if (sibling == parent->right) {
if (sibling->right->color == BLACK) {
_set_color(sibling->left, BLACK);
_set_color(sibling, RED);
_rotate_right(sibling);
sibling = sibling->parent;
}
_set_color(sibling, parent->color);
_set_color(parent, BLACK);
_set_color(sibling->right, BLACK);
_rotate_left(parent);
break;
} else {
if (sibling->left->color == BLACK) {
_set_color(sibling->right, BLACK);
_set_color(sibling, RED);
_rotate_left(sibling);
sibling = sibling->parent;
}
_set_color(sibling, parent->color);
_set_color(parent, BLACK);
_set_color(sibling->left, BLACK);
_rotate_right(parent);
break;
}
}
}
ERR_FAIL_COND(_data._nil->color != BLACK);
}
void _erase(Element *p_node) {
Element *rp = ((p_node->left == _data._nil) || (p_node->right == _data._nil)) ? p_node : p_node->_next;
Element *node = (rp->left == _data._nil) ? rp->right : rp->left;
Element *sibling = nullptr;
if (rp == rp->parent->left) {
rp->parent->left = node;
sibling = rp->parent->right;
} else {
rp->parent->right = node;
sibling = rp->parent->left;
}
if (node->color == RED) {
node->parent = rp->parent;
_set_color(node, BLACK);
} else if (rp->color == BLACK && rp->parent != _data._root) {
_erase_fix_rb(sibling);
}
if (rp != p_node) {
ERR_FAIL_COND(rp == _data._nil);
rp->left = p_node->left;
rp->right = p_node->right;
rp->parent = p_node->parent;
rp->color = p_node->color;
if (p_node->left != _data._nil) {
p_node->left->parent = rp;
}
if (p_node->right != _data._nil) {
p_node->right->parent = rp;
}
if (p_node == p_node->parent->left) {
p_node->parent->left = rp;
} else {
p_node->parent->right = rp;
}
}
if (p_node->_next) {
p_node->_next->_prev = p_node->_prev;
}
if (p_node->_prev) {
p_node->_prev->_next = p_node->_next;
}
memdelete_allocator<Element, A>(p_node);
_data.size_cache--;
ERR_FAIL_COND(_data._nil->color == RED);
}
void _calculate_depth(Element *p_element, int &max_d, int d) const {
if (p_element == _data._nil) {
return;
}
_calculate_depth(p_element->left, max_d, d + 1);
_calculate_depth(p_element->right, max_d, d + 1);
if (d > max_d) {
max_d = d;
}
}
void _cleanup_tree(Element *p_element) {
if (p_element == _data._nil) {
return;
}
_cleanup_tree(p_element->left);
_cleanup_tree(p_element->right);
memdelete_allocator<Element, A>(p_element);
}
void _copy_from(const Set &p_set) {
clear();
// not the fastest way, but safeset to write.
for (Element *I = p_set.front(); I; I = I->next()) {
insert(I->get());
}
}
public:
const Element *find(const T &p_value) const {
if (!_data._root) {
return nullptr;
}
const Element *res = _find(p_value);
return res;
}
Element *find(const T &p_value) {
if (!_data._root) {
return nullptr;
}
Element *res = _find(p_value);
return res;
}
Element *lower_bound(const T &p_value) const {
if (!_data._root) {
return nullptr;
}
return _lower_bound(p_value);
}
bool has(const T &p_value) const {
return find(p_value) != nullptr;
}
Element *insert(const T &p_value) {
if (!_data._root) {
_data._create_root();
}
return _insert(p_value);
}
void erase(Element *p_element) {
if (!_data._root || !p_element) {
return;
}
_erase(p_element);
if (_data.size_cache == 0 && _data._root) {
_data._free_root();
}
}
bool erase(const T &p_value) {
if (!_data._root) {
return false;
}
Element *e = find(p_value);
if (!e) {
return false;
}
_erase(e);
if (_data.size_cache == 0 && _data._root) {
_data._free_root();
}
return true;
}
Element *front() const {
if (!_data._root) {
return nullptr;
}
Element *e = _data._root->left;
if (e == _data._nil) {
return nullptr;
}
while (e->left != _data._nil) {
e = e->left;
}
return e;
}
Element *back() const {
if (!_data._root) {
return nullptr;
}
Element *e = _data._root->left;
if (e == _data._nil) {
return nullptr;
}
while (e->right != _data._nil) {
e = e->right;
}
return e;
}
inline bool is_empty() const { return _data.size_cache == 0; }
inline int size() const { return _data.size_cache; }
int calculate_depth() const {
// used for debug mostly
if (!_data._root) {
return 0;
}
int max_d = 0;
_calculate_depth(_data._root->left, max_d, 0);
return max_d;
}
void clear() {
if (!_data._root) {
return;
}
_cleanup_tree(_data._root->left);
_data._root->left = _data._nil;
_data.size_cache = 0;
_data._free_root();
}
void operator=(const Set &p_set) {
_copy_from(p_set);
}
Set(const Set &p_set) {
_copy_from(p_set);
}
_FORCE_INLINE_ Set() {}
~Set() {
clear();
}
};
#endif // SET_H