188 lines
5.9 KiB
C++
188 lines
5.9 KiB
C++
/*
|
|
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
|
|
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2019 Google Inc. http://bulletphysics.org
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_CONJUGATE_RESIDUAL_H
|
|
#define BT_CONJUGATE_RESIDUAL_H
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <LinearMath/btAlignedObjectArray.h>
|
|
#include <LinearMath/btVector3.h>
|
|
#include <LinearMath/btScalar.h>
|
|
#include "LinearMath/btQuickprof.h"
|
|
template <class MatrixX>
|
|
class btConjugateResidual
|
|
{
|
|
typedef btAlignedObjectArray<btVector3> TVStack;
|
|
TVStack r,p,z,temp_p, temp_r, best_x;
|
|
// temp_r = A*r
|
|
// temp_p = A*p
|
|
// z = M^(-1) * temp_p = M^(-1) * A * p
|
|
int max_iterations;
|
|
btScalar tolerance_squared, best_r;
|
|
public:
|
|
btConjugateResidual(const int max_it_in)
|
|
: max_iterations(max_it_in)
|
|
{
|
|
tolerance_squared = 1e-2;
|
|
}
|
|
|
|
virtual ~btConjugateResidual(){}
|
|
|
|
// return the number of iterations taken
|
|
int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
|
|
{
|
|
BT_PROFILE("CRSolve");
|
|
btAssert(x.size() == b.size());
|
|
reinitialize(b);
|
|
// r = b - A * x --with assigned dof zeroed out
|
|
A.multiply(x, temp_r); // borrow temp_r here to store A*x
|
|
r = sub(b, temp_r);
|
|
// z = M^(-1) * r
|
|
A.precondition(r, z); // borrow z to store preconditioned r
|
|
r = z;
|
|
btScalar residual_norm = norm(r);
|
|
if (residual_norm <= tolerance_squared) {
|
|
if (verbose)
|
|
{
|
|
std::cout << "Iteration = 0" << std::endl;
|
|
std::cout << "Two norm of the residual = " << residual_norm << std::endl;
|
|
}
|
|
return 0;
|
|
}
|
|
p = r;
|
|
btScalar r_dot_Ar, r_dot_Ar_new;
|
|
// temp_p = A*p
|
|
A.multiply(p, temp_p);
|
|
// temp_r = A*r
|
|
temp_r = temp_p;
|
|
r_dot_Ar = dot(r, temp_r);
|
|
for (int k = 1; k <= max_iterations; k++) {
|
|
// z = M^(-1) * Ap
|
|
A.precondition(temp_p, z);
|
|
// alpha = r^T * A * r / (Ap)^T * M^-1 * Ap)
|
|
btScalar alpha = r_dot_Ar / dot(temp_p, z);
|
|
// x += alpha * p;
|
|
multAndAddTo(alpha, p, x);
|
|
// r -= alpha * z;
|
|
multAndAddTo(-alpha, z, r);
|
|
btScalar norm_r = norm(r);
|
|
if (norm_r < best_r)
|
|
{
|
|
best_x = x;
|
|
best_r = norm_r;
|
|
if (norm_r < tolerance_squared) {
|
|
if (verbose)
|
|
{
|
|
std::cout << "ConjugateResidual iterations " << k << std::endl;
|
|
}
|
|
return k;
|
|
}
|
|
else
|
|
{
|
|
if (verbose)
|
|
{
|
|
std::cout << "ConjugateResidual iterations " << k << " has residual "<< norm_r << std::endl;
|
|
}
|
|
}
|
|
}
|
|
// temp_r = A * r;
|
|
A.multiply(r, temp_r);
|
|
r_dot_Ar_new = dot(r, temp_r);
|
|
btScalar beta = r_dot_Ar_new/r_dot_Ar;
|
|
r_dot_Ar = r_dot_Ar_new;
|
|
// p = beta*p + r;
|
|
p = multAndAdd(beta, p, r);
|
|
// temp_p = beta*temp_p + temp_r;
|
|
temp_p = multAndAdd(beta, temp_p, temp_r);
|
|
}
|
|
if (verbose)
|
|
{
|
|
std::cout << "ConjugateResidual max iterations reached " << max_iterations << std::endl;
|
|
}
|
|
x = best_x;
|
|
return max_iterations;
|
|
}
|
|
|
|
void reinitialize(const TVStack& b)
|
|
{
|
|
r.resize(b.size());
|
|
p.resize(b.size());
|
|
z.resize(b.size());
|
|
temp_p.resize(b.size());
|
|
temp_r.resize(b.size());
|
|
best_x.resize(b.size());
|
|
best_r = SIMD_INFINITY;
|
|
}
|
|
|
|
TVStack sub(const TVStack& a, const TVStack& b)
|
|
{
|
|
// c = a-b
|
|
btAssert(a.size() == b.size());
|
|
TVStack c;
|
|
c.resize(a.size());
|
|
for (int i = 0; i < a.size(); ++i)
|
|
{
|
|
c[i] = a[i] - b[i];
|
|
}
|
|
return c;
|
|
}
|
|
|
|
btScalar squaredNorm(const TVStack& a)
|
|
{
|
|
return dot(a,a);
|
|
}
|
|
|
|
btScalar norm(const TVStack& a)
|
|
{
|
|
btScalar ret = 0;
|
|
for (int i = 0; i < a.size(); ++i)
|
|
{
|
|
for (int d = 0; d < 3; ++d)
|
|
{
|
|
ret = btMax(ret, btFabs(a[i][d]));
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
btScalar dot(const TVStack& a, const TVStack& b)
|
|
{
|
|
btScalar ans(0);
|
|
for (int i = 0; i < a.size(); ++i)
|
|
ans += a[i].dot(b[i]);
|
|
return ans;
|
|
}
|
|
|
|
void multAndAddTo(btScalar s, const TVStack& a, TVStack& result)
|
|
{
|
|
// result += s*a
|
|
btAssert(a.size() == result.size());
|
|
for (int i = 0; i < a.size(); ++i)
|
|
result[i] += s * a[i];
|
|
}
|
|
|
|
TVStack multAndAdd(btScalar s, const TVStack& a, const TVStack& b)
|
|
{
|
|
// result = a*s + b
|
|
TVStack result;
|
|
result.resize(a.size());
|
|
for (int i = 0; i < a.size(); ++i)
|
|
result[i] = s * a[i] + b[i];
|
|
return result;
|
|
}
|
|
};
|
|
#endif /* btConjugateResidual_h */
|
|
|