virtualx-engine/servers/rendering/renderer_rd/effects/debug_effects.cpp
Dario 057367bf4f Add FidelityFX Super Resolution 2.2 (FSR 2.2.1) support.
Introduces support for FSR2 as a new upscaler option available from the project settings. Also introduces an specific render list for surfaces that require motion and the ability to derive motion vectors from depth buffer and camera motion.
2023-09-25 10:37:47 -03:00

377 lines
17 KiB
C++

/**************************************************************************/
/* debug_effects.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "debug_effects.h"
#include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/light_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
#include "servers/rendering/renderer_rd/uniform_set_cache_rd.h"
using namespace RendererRD;
DebugEffects::DebugEffects() {
{
// Shadow Frustum debug shader
Vector<String> modes;
modes.push_back("");
shadow_frustum.shader.initialize(modes);
shadow_frustum.shader_version = shadow_frustum.shader.version_create();
RD::PipelineRasterizationState raster_state = RD::PipelineRasterizationState();
shadow_frustum.pipelines[SFP_TRANSPARENT].setup(shadow_frustum.shader.version_get_shader(shadow_frustum.shader_version, 0), RD::RENDER_PRIMITIVE_TRIANGLES, raster_state, RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_blend(), 0);
raster_state.wireframe = true;
shadow_frustum.pipelines[SFP_WIREFRAME].setup(shadow_frustum.shader.version_get_shader(shadow_frustum.shader_version, 0), RD::RENDER_PRIMITIVE_LINES, raster_state, RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0);
}
{
// Motion Vectors debug shader.
Vector<String> modes;
modes.push_back("");
motion_vectors.shader.initialize(modes);
motion_vectors.shader_version = motion_vectors.shader.version_create();
motion_vectors.pipeline.setup(motion_vectors.shader.version_get_shader(motion_vectors.shader_version, 0), RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_blend(), 0);
}
}
void DebugEffects::_create_frustum_arrays() {
if (frustum.vertex_buffer.is_null()) {
// Create vertex buffer, but don't put data in it yet
frustum.vertex_buffer = RD::get_singleton()->vertex_buffer_create(8 * sizeof(float) * 3, Vector<uint8_t>(), false);
Vector<RD::VertexAttribute> attributes;
Vector<RID> buffers;
RD::VertexAttribute vd;
vd.location = 0;
vd.stride = sizeof(float) * 3;
vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
attributes.push_back(vd);
buffers.push_back(frustum.vertex_buffer);
frustum.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
frustum.vertex_array = RD::get_singleton()->vertex_array_create(8, frustum.vertex_format, buffers);
}
if (frustum.index_buffer.is_null()) {
uint16_t indices[6 * 2 * 3] = {
// Far
0, 1, 2, // FLT, FLB, FRT
1, 3, 2, // FLB, FRB, FRT
// Near
4, 6, 5, // NLT, NRT, NLB
6, 7, 5, // NRT, NRB, NLB
// Left
0, 4, 1, // FLT, NLT, FLB
4, 5, 1, // NLT, NLB, FLB
// Right
6, 2, 7, // NRT, FRT, NRB
2, 3, 7, // FRT, FRB, NRB
// Top
0, 2, 4, // FLT, FRT, NLT
2, 6, 4, // FRT, NRT, NLT
// Bottom
5, 7, 1, // NLB, NRB, FLB,
7, 3, 1, // NRB, FRB, FLB
};
// Create our index_array
PackedByteArray data;
data.resize(6 * 2 * 3 * 4);
{
uint8_t *w = data.ptrw();
uint16_t *p16 = (uint16_t *)w;
for (int i = 0; i < 6 * 2 * 3; i++) {
*p16 = indices[i];
p16++;
}
}
frustum.index_buffer = RD::get_singleton()->index_buffer_create(6 * 2 * 3, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, data);
frustum.index_array = RD::get_singleton()->index_array_create(frustum.index_buffer, 0, 6 * 2 * 3);
}
if (frustum.lines_buffer.is_null()) {
uint16_t indices[12 * 2] = {
0, 1, // FLT - FLB
1, 3, // FLB - FRB
3, 2, // FRB - FRT
2, 0, // FRT - FLT
4, 6, // NLT - NRT
6, 7, // NRT - NRB
7, 5, // NRB - NLB
5, 4, // NLB - NLT
0, 4, // FLT - NLT
1, 5, // FLB - NLB
2, 6, // FRT - NRT
3, 7, // FRB - NRB
};
// Create our lines_array
PackedByteArray data;
data.resize(12 * 2 * 4);
{
uint8_t *w = data.ptrw();
uint16_t *p16 = (uint16_t *)w;
for (int i = 0; i < 12 * 2; i++) {
*p16 = indices[i];
p16++;
}
}
frustum.lines_buffer = RD::get_singleton()->index_buffer_create(12 * 2, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, data);
frustum.lines_array = RD::get_singleton()->index_array_create(frustum.lines_buffer, 0, 12 * 2);
}
}
DebugEffects::~DebugEffects() {
shadow_frustum.shader.version_free(shadow_frustum.shader_version);
// Destroy vertex buffer and array.
if (frustum.vertex_buffer.is_valid()) {
RD::get_singleton()->free(frustum.vertex_buffer); // Array gets freed as dependency.
}
// Destroy index buffer and array,
if (frustum.index_buffer.is_valid()) {
RD::get_singleton()->free(frustum.index_buffer); // Array gets freed as dependency.
}
// Destroy lines buffer and array.
if (frustum.lines_buffer.is_valid()) {
RD::get_singleton()->free(frustum.lines_buffer); // Array gets freed as dependency.
}
motion_vectors.shader.version_free(motion_vectors.shader_version);
}
void DebugEffects::draw_shadow_frustum(RID p_light, const Projection &p_cam_projection, const Transform3D &p_cam_transform, RID p_dest_fb, const Rect2 p_rect) {
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
RID base = light_storage->light_instance_get_base_light(p_light);
ERR_FAIL_COND(light_storage->light_get_type(base) != RS::LIGHT_DIRECTIONAL);
// Make sure our buffers and arrays exist.
_create_frustum_arrays();
// Setup a points buffer for our view frustum.
PackedByteArray points;
points.resize(8 * sizeof(float) * 3);
// Get info about our splits.
RS::LightDirectionalShadowMode shadow_mode = light_storage->light_directional_get_shadow_mode(base);
bool overlap = light_storage->light_directional_get_blend_splits(base);
int splits = 1;
if (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
splits = 4;
} else if (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
splits = 2;
}
// Setup our camera info (this is mostly a duplicate of the logic found in RendererSceneCull::_light_instance_setup_directional_shadow).
bool is_orthogonal = p_cam_projection.is_orthogonal();
real_t aspect = p_cam_projection.get_aspect();
real_t fov = 0.0;
Vector2 vp_he;
if (is_orthogonal) {
vp_he = p_cam_projection.get_viewport_half_extents();
} else {
fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it
}
real_t min_distance = p_cam_projection.get_z_near();
real_t max_distance = p_cam_projection.get_z_far();
real_t shadow_max = RSG::light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
if (shadow_max > 0 && !is_orthogonal) {
max_distance = MIN(shadow_max, max_distance);
}
// Make sure we've not got bad info coming in.
max_distance = MAX(max_distance, min_distance + 0.001);
min_distance = MIN(min_distance, max_distance);
real_t range = max_distance - min_distance;
real_t distances[5];
distances[0] = min_distance;
for (int i = 0; i < splits; i++) {
distances[i + 1] = min_distance + RSG::light_storage->light_get_param(base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
};
distances[splits] = max_distance;
Color colors[4] = {
Color(1.0, 0.0, 0.0, 0.1),
Color(0.0, 1.0, 0.0, 0.1),
Color(0.0, 0.0, 1.0, 0.1),
Color(1.0, 1.0, 0.0, 0.1),
};
for (int split = 0; split < splits; split++) {
// Load frustum points into vertex buffer.
uint8_t *w = points.ptrw();
Vector3 *vw = (Vector3 *)w;
Projection projection;
if (is_orthogonal) {
projection.set_orthogonal(vp_he.y * 2.0, aspect, distances[(split == 0 || !overlap) ? split : split - 1], distances[split + 1], false);
} else {
projection.set_perspective(fov, aspect, distances[(split == 0 || !overlap) ? split : split - 1], distances[split + 1], true);
}
bool res = projection.get_endpoints(p_cam_transform, vw);
ERR_CONTINUE(!res);
RD::get_singleton()->buffer_update(frustum.vertex_buffer, 0, 8 * sizeof(float) * 3, w);
// Get our light projection info.
Projection light_projection = light_storage->light_instance_get_shadow_camera(p_light, split);
Transform3D light_transform = light_storage->light_instance_get_shadow_transform(p_light, split);
Rect2 atlas_rect_norm = light_storage->light_instance_get_directional_shadow_atlas_rect(p_light, split);
if (!is_orthogonal) {
light_transform.orthogonalize();
}
// Setup our push constant.
ShadowFrustumPushConstant push_constant;
MaterialStorage::store_camera(light_projection * Projection(light_transform.inverse()), push_constant.mvp);
push_constant.color[0] = colors[split].r;
push_constant.color[1] = colors[split].g;
push_constant.color[2] = colors[split].b;
push_constant.color[3] = colors[split].a;
// Adjust our rect to our atlas position.
Rect2 rect = p_rect;
rect.position.x += atlas_rect_norm.position.x * rect.size.x;
rect.position.y += atlas_rect_norm.position.y * rect.size.y;
rect.size.x *= atlas_rect_norm.size.x;
rect.size.y *= atlas_rect_norm.size.y;
// And draw our frustum.
RD::FramebufferFormatID fb_format_id = RD::get_singleton()->framebuffer_get_format(p_dest_fb);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, Vector<Color>(), 1.0, 0, rect);
RID pipeline = shadow_frustum.pipelines[SFP_TRANSPARENT].get_render_pipeline(frustum.vertex_format, fb_format_id);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
pipeline = shadow_frustum.pipelines[SFP_WIREFRAME].get_render_pipeline(frustum.vertex_format, fb_format_id);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.lines_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
RD::get_singleton()->draw_list_end();
if (split < (splits - 1) && splits > 1) {
// Also draw it in the last split so we get a proper overview of the whole view frustum...
// Get our light projection info.
light_projection = light_storage->light_instance_get_shadow_camera(p_light, (splits - 1));
light_transform = light_storage->light_instance_get_shadow_transform(p_light, (splits - 1));
atlas_rect_norm = light_storage->light_instance_get_directional_shadow_atlas_rect(p_light, (splits - 1));
if (!is_orthogonal) {
light_transform.orthogonalize();
}
// Update our push constant.
MaterialStorage::store_camera(light_projection * Projection(light_transform.inverse()), push_constant.mvp);
push_constant.color[0] = colors[split].r;
push_constant.color[1] = colors[split].g;
push_constant.color[2] = colors[split].b;
push_constant.color[3] = colors[split].a;
// Adjust our rect to our atlas position.
rect = p_rect;
rect.position.x += atlas_rect_norm.position.x * rect.size.x;
rect.position.y += atlas_rect_norm.position.y * rect.size.y;
rect.size.x *= atlas_rect_norm.size.x;
rect.size.y *= atlas_rect_norm.size.y;
draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, Vector<Color>(), 1.0, 0, rect);
pipeline = shadow_frustum.pipelines[SFP_TRANSPARENT].get_render_pipeline(frustum.vertex_format, fb_format_id);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
RD::get_singleton()->draw_list_end();
}
}
}
void DebugEffects::draw_motion_vectors(RID p_velocity, RID p_depth, RID p_dest_fb, const Projection &p_current_projection, const Transform3D &p_current_transform, const Projection &p_previous_projection, const Transform3D &p_previous_transform, Size2i p_resolution) {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
ERR_FAIL_NULL(material_storage);
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RD::Uniform u_source_velocity(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_velocity }));
RD::Uniform u_source_depth(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 1, Vector<RID>({ default_sampler, p_depth }));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, motion_vectors.pipeline.get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_fb), false, RD::get_singleton()->draw_list_get_current_pass()));
Projection reprojection = p_previous_projection.flipped_y() * p_previous_transform.affine_inverse() * p_current_transform * p_current_projection.flipped_y().inverse();
RendererRD::MaterialStorage::store_camera(reprojection, motion_vectors.push_constant.reprojection_matrix);
motion_vectors.push_constant.resolution[0] = p_resolution.width;
motion_vectors.push_constant.resolution[1] = p_resolution.height;
motion_vectors.push_constant.force_derive_from_depth = false;
RID shader = motion_vectors.shader.version_get_shader(motion_vectors.shader_version, 0);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 0, u_source_velocity, u_source_depth), 0);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &motion_vectors.push_constant, sizeof(MotionVectorsPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u);
#ifdef DRAW_DERIVATION_FROM_DEPTH_ON_TOP
motion_vectors.push_constant.force_derive_from_depth = true;
RD::get_singleton()->draw_list_set_push_constant(draw_list, &motion_vectors.push_constant, sizeof(MotionVectorsPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u);
#endif
RD::get_singleton()->draw_list_end();
}