virtualx-engine/scene/resources/mesh.cpp

1638 lines
46 KiB
C++

/*************************************************************************/
/* mesh.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "mesh.h"
#include "core/pair.h"
#include "scene/resources/concave_polygon_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "surface_tool.h"
#include <stdlib.h>
Mesh::ConvexDecompositionFunc Mesh::convex_composition_function = NULL;
Ref<TriangleMesh> Mesh::generate_triangle_mesh() const {
if (triangle_mesh.is_valid())
return triangle_mesh;
int facecount = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES)
continue;
if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
facecount += surface_get_array_index_len(i);
} else {
facecount += surface_get_array_len(i);
}
}
if (facecount == 0 || (facecount % 3) != 0)
return triangle_mesh;
Vector<Vector3> faces;
faces.resize(facecount);
Vector3 *facesw = faces.ptrw();
int widx = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES)
continue;
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<TriangleMesh>());
int vc = surface_get_array_len(i);
Vector<Vector3> vertices = a[ARRAY_VERTEX];
const Vector3 *vr = vertices.ptr();
if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
int ic = surface_get_array_index_len(i);
Vector<int> indices = a[ARRAY_INDEX];
const int *ir = indices.ptr();
for (int j = 0; j < ic; j++) {
int index = ir[j];
facesw[widx++] = vr[index];
}
} else {
for (int j = 0; j < vc; j++)
facesw[widx++] = vr[j];
}
}
triangle_mesh = Ref<TriangleMesh>(memnew(TriangleMesh));
triangle_mesh->create(faces);
return triangle_mesh;
}
void Mesh::generate_debug_mesh_lines(Vector<Vector3> &r_lines) {
if (debug_lines.size() > 0) {
r_lines = debug_lines;
return;
}
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null())
return;
Vector<int> triangle_indices;
tm->get_indices(&triangle_indices);
const int triangles_num = tm->get_triangles().size();
Vector<Vector3> vertices = tm->get_vertices();
debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line
const int *ind_r = triangle_indices.ptr();
const Vector3 *ver_r = vertices.ptr();
for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) {
// Triangle line 1
debug_lines.write[j + 0] = ver_r[ind_r[x + 0]];
debug_lines.write[j + 1] = ver_r[ind_r[x + 1]];
// Triangle line 2
debug_lines.write[j + 2] = ver_r[ind_r[x + 1]];
debug_lines.write[j + 3] = ver_r[ind_r[x + 2]];
// Triangle line 3
debug_lines.write[j + 4] = ver_r[ind_r[x + 2]];
debug_lines.write[j + 5] = ver_r[ind_r[x + 0]];
}
r_lines = debug_lines;
}
void Mesh::generate_debug_mesh_indices(Vector<Vector3> &r_points) {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null())
return;
Vector<Vector3> vertices = tm->get_vertices();
int vertices_size = vertices.size();
r_points.resize(vertices_size);
for (int i = 0; i < vertices_size; ++i) {
r_points.write[i] = vertices[i];
}
}
bool Mesh::surface_is_softbody_friendly(int p_idx) const {
const uint32_t surface_format = surface_get_format(p_idx);
return (surface_format & Mesh::ARRAY_FLAG_USE_DYNAMIC_UPDATE && (!(surface_format & Mesh::ARRAY_COMPRESS_NORMAL)));
}
Vector<Face3> Mesh::get_faces() const {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_valid())
return tm->get_faces();
return Vector<Face3>();
/*
for (int i=0;i<surfaces.size();i++) {
if (VisualServer::get_singleton()->mesh_surface_get_primitive_type( mesh, i ) != VisualServer::PRIMITIVE_TRIANGLES )
continue;
Vector<int> indices;
Vector<Vector3> vertices;
vertices=VisualServer::get_singleton()->mesh_surface_get_array(mesh, i,VisualServer::ARRAY_VERTEX);
int len=VisualServer::get_singleton()->mesh_surface_get_array_index_len(mesh, i);
bool has_indices;
if (len>0) {
indices=VisualServer::get_singleton()->mesh_surface_get_array(mesh, i,VisualServer::ARRAY_INDEX);
has_indices=true;
} else {
len=vertices.size();
has_indices=false;
}
if (len<=0)
continue;
const int* indicesr = indices.ptr();
const int *indicesptr = indicesr.ptr();
const Vector3* verticesr = vertices.ptr();
const Vector3 *verticesptr = verticesr.ptr();
int old_faces=faces.size();
int new_faces=old_faces+(len/3);
faces.resize(new_faces);
Face3* facesw = faces.ptrw();
Face3 *facesptr=facesw.ptr();
for (int i=0;i<len/3;i++) {
Face3 face;
for (int j=0;j<3;j++) {
int idx=i*3+j;
face.vertex[j] = has_indices ? verticesptr[ indicesptr[ idx ] ] : verticesptr[idx];
}
facesptr[i+old_faces]=face;
}
}
*/
}
Ref<Shape> Mesh::create_convex_shape() const {
Vector<Vector3> vertices;
for (int i = 0; i < get_surface_count(); i++) {
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<ConvexPolygonShape>());
Vector<Vector3> v = a[ARRAY_VERTEX];
vertices.append_array(v);
}
Ref<ConvexPolygonShape> shape = memnew(ConvexPolygonShape);
shape->set_points(vertices);
return shape;
}
Ref<Shape> Mesh::create_trimesh_shape() const {
Vector<Face3> faces = get_faces();
if (faces.size() == 0)
return Ref<Shape>();
Vector<Vector3> face_points;
face_points.resize(faces.size() * 3);
for (int i = 0; i < face_points.size(); i++) {
Face3 f = faces.get(i / 3);
face_points.set(i, f.vertex[i % 3]);
}
Ref<ConcavePolygonShape> shape = memnew(ConcavePolygonShape);
shape->set_faces(face_points);
return shape;
}
Ref<Mesh> Mesh::create_outline(float p_margin) const {
Array arrays;
int index_accum = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES)
continue;
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<ArrayMesh>());
if (i == 0) {
arrays = a;
Vector<Vector3> v = a[ARRAY_VERTEX];
index_accum += v.size();
} else {
int vcount = 0;
for (int j = 0; j < arrays.size(); j++) {
if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) {
//mismatch, do not use
arrays[j] = Variant();
continue;
}
switch (j) {
case ARRAY_VERTEX:
case ARRAY_NORMAL: {
Vector<Vector3> dst = arrays[j];
Vector<Vector3> src = a[j];
if (j == ARRAY_VERTEX)
vcount = src.size();
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TANGENT:
case ARRAY_BONES:
case ARRAY_WEIGHTS: {
Vector<real_t> dst = arrays[j];
Vector<real_t> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_COLOR: {
Vector<Color> dst = arrays[j];
Vector<Color> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TEX_UV:
case ARRAY_TEX_UV2: {
Vector<Vector2> dst = arrays[j];
Vector<Vector2> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_INDEX: {
Vector<int> dst = arrays[j];
Vector<int> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
{
int ss = src.size();
int *w = src.ptrw();
for (int k = 0; k < ss; k++) {
w[k] += index_accum;
}
}
dst.append_array(src);
arrays[j] = dst;
index_accum += vcount;
} break;
}
}
}
}
ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref<ArrayMesh>());
{
int *ir;
Vector<int> indices = arrays[ARRAY_INDEX];
bool has_indices = false;
Vector<Vector3> vertices = arrays[ARRAY_VERTEX];
int vc = vertices.size();
ERR_FAIL_COND_V(!vc, Ref<ArrayMesh>());
Vector3 *r = vertices.ptrw();
if (indices.size()) {
ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref<ArrayMesh>());
vc = indices.size();
ir = indices.ptrw();
has_indices = true;
}
Map<Vector3, Vector3> normal_accum;
//fill normals with triangle normals
for (int i = 0; i < vc; i += 3) {
Vector3 t[3];
if (has_indices) {
t[0] = r[ir[i + 0]];
t[1] = r[ir[i + 1]];
t[2] = r[ir[i + 2]];
} else {
t[0] = r[i + 0];
t[1] = r[i + 1];
t[2] = r[i + 2];
}
Vector3 n = Plane(t[0], t[1], t[2]).normal;
for (int j = 0; j < 3; j++) {
Map<Vector3, Vector3>::Element *E = normal_accum.find(t[j]);
if (!E) {
normal_accum[t[j]] = n;
} else {
float d = n.dot(E->get());
if (d < 1.0)
E->get() += n * (1.0 - d);
//E->get()+=n;
}
}
}
//normalize
for (Map<Vector3, Vector3>::Element *E = normal_accum.front(); E; E = E->next()) {
E->get().normalize();
}
//displace normals
int vc2 = vertices.size();
for (int i = 0; i < vc2; i++) {
Vector3 t = r[i];
Map<Vector3, Vector3>::Element *E = normal_accum.find(t);
ERR_CONTINUE(!E);
t += E->get() * p_margin;
r[i] = t;
}
arrays[ARRAY_VERTEX] = vertices;
if (!has_indices) {
Vector<int> new_indices;
new_indices.resize(vertices.size());
int *iw = new_indices.ptrw();
for (int j = 0; j < vc2; j += 3) {
iw[j] = j;
iw[j + 1] = j + 2;
iw[j + 2] = j + 1;
}
arrays[ARRAY_INDEX] = new_indices;
} else {
for (int j = 0; j < vc; j += 3) {
SWAP(ir[j + 1], ir[j + 2]);
}
arrays[ARRAY_INDEX] = indices;
}
}
Ref<ArrayMesh> newmesh = memnew(ArrayMesh);
newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays);
return newmesh;
}
void Mesh::set_lightmap_size_hint(const Vector2 &p_size) {
lightmap_size_hint = p_size;
}
Size2 Mesh::get_lightmap_size_hint() const {
return lightmap_size_hint;
}
void Mesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint");
ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count);
ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays);
ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays);
ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material);
ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material);
BIND_ENUM_CONSTANT(PRIMITIVE_POINTS);
BIND_ENUM_CONSTANT(PRIMITIVE_LINES);
BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_COLOR);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_INDEX);
BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_2D_VERTICES);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_DEFAULT);
BIND_ENUM_CONSTANT(ARRAY_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COLOR);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_BONES);
BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_INDEX);
BIND_ENUM_CONSTANT(ARRAY_MAX);
}
void Mesh::clear_cache() const {
triangle_mesh.unref();
debug_lines.clear();
}
Vector<Ref<Shape> > Mesh::convex_decompose() const {
ERR_FAIL_COND_V(!convex_composition_function, Vector<Ref<Shape> >());
Vector<Face3> faces = get_faces();
Vector<Face3> f3;
f3.resize(faces.size());
const Face3 *f = faces.ptr();
for (int i = 0; i < f3.size(); i++) {
f3.write[i] = f[i];
}
Vector<Vector<Face3> > decomposed = convex_composition_function(f3);
Vector<Ref<Shape> > ret;
for (int i = 0; i < decomposed.size(); i++) {
Set<Vector3> points;
for (int j = 0; j < decomposed[i].size(); j++) {
points.insert(decomposed[i][j].vertex[0]);
points.insert(decomposed[i][j].vertex[1]);
points.insert(decomposed[i][j].vertex[2]);
}
Vector<Vector3> convex_points;
convex_points.resize(points.size());
{
Vector3 *w = convex_points.ptrw();
int idx = 0;
for (Set<Vector3>::Element *E = points.front(); E; E = E->next()) {
w[idx++] = E->get();
}
}
Ref<ConvexPolygonShape> shape;
shape.instance();
shape->set_points(convex_points);
ret.push_back(shape);
}
return ret;
}
Mesh::Mesh() {
}
static Vector<uint8_t> _fix_array_compatibility(const Vector<uint8_t> &p_src, uint32_t p_format, uint32_t p_elements) {
bool vertex_16bit = p_format & ((1 << (Mesh::ARRAY_VERTEX + Mesh::ARRAY_COMPRESS_BASE)));
bool has_bones = (p_format & Mesh::ARRAY_FORMAT_BONES);
bool bone_8 = has_bones && !(p_format & (Mesh::ARRAY_COMPRESS_INDEX << 2));
bool weight_32 = has_bones && !(p_format & (Mesh::ARRAY_COMPRESS_TEX_UV2 << 2));
print_line("convert vertex16: " + itos(vertex_16bit) + " convert bone 8 " + itos(bone_8) + " convert weight 32 " + itos(weight_32));
if (!vertex_16bit && !bone_8 && !weight_32) {
return p_src;
}
bool vertex_2d = (p_format & (Mesh::ARRAY_COMPRESS_INDEX << 1));
uint32_t src_stride = p_src.size() / p_elements;
uint32_t dst_stride = src_stride + (vertex_16bit ? 4 : 0) + (bone_8 ? 4 : 0) - (weight_32 ? 8 : 0);
Vector<uint8_t> ret = p_src;
ret.resize(dst_stride * p_elements);
{
uint8_t *w = ret.ptrw();
const uint8_t *r = p_src.ptr();
for (uint32_t i = 0; i < p_elements; i++) {
uint32_t remaining = src_stride;
const uint8_t *src = (const uint8_t *)(r + src_stride * i);
uint8_t *dst = (uint8_t *)(w + dst_stride * i);
if (!vertex_2d) { //3D
if (vertex_16bit) {
float *dstw = (float *)dst;
const uint16_t *srcr = (const uint16_t *)src;
dstw[0] = Math::half_to_float(srcr[0]);
dstw[1] = Math::half_to_float(srcr[1]);
dstw[2] = Math::half_to_float(srcr[2]);
remaining -= 8;
src += 8;
} else {
src += 12;
remaining -= 12;
}
dst += 12;
} else {
if (vertex_16bit) {
float *dstw = (float *)dst;
const uint16_t *srcr = (const uint16_t *)src;
dstw[0] = Math::half_to_float(srcr[0]);
dstw[1] = Math::half_to_float(srcr[1]);
remaining -= 4;
src += 4;
} else {
src += 8;
remaining -= 8;
}
dst += 8;
}
if (has_bones) {
remaining -= bone_8 ? 4 : 8;
remaining -= weight_32 ? 16 : 8;
}
for (uint32_t j = 0; j < remaining; j++) {
dst[j] = src[j];
}
if (has_bones) {
dst += remaining;
src += remaining;
if (bone_8) {
const uint8_t *src_bones = (const uint8_t *)src;
uint16_t *dst_bones = (uint16_t *)dst;
dst_bones[0] = src_bones[0];
dst_bones[1] = src_bones[1];
dst_bones[2] = src_bones[2];
dst_bones[3] = src_bones[3];
src += 4;
} else {
for (uint32_t j = 0; j < 8; j++) {
dst[j] = src[j];
}
src += 8;
}
dst += 8;
if (weight_32) {
const float *src_weights = (const float *)src;
uint16_t *dst_weights = (uint16_t *)dst;
dst_weights[0] = CLAMP(src_weights[0] * 65535, 0, 65535); //16bits unorm
dst_weights[1] = CLAMP(src_weights[1] * 65535, 0, 65535);
dst_weights[2] = CLAMP(src_weights[2] * 65535, 0, 65535);
dst_weights[3] = CLAMP(src_weights[3] * 65535, 0, 65535);
} else {
for (uint32_t j = 0; j < 8; j++) {
dst[j] = src[j];
}
}
}
}
}
return ret;
}
bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
String sname = p_name;
if (p_name == "blend_shape/names") {
Vector<String> sk = p_value;
int sz = sk.size();
const String *r = sk.ptr();
for (int i = 0; i < sz; i++)
add_blend_shape(r[i]);
return true;
}
if (p_name == "blend_shape/mode") {
set_blend_shape_mode(BlendShapeMode(int(p_value)));
return true;
}
if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1)
return false;
int idx = sname.substr(8, sl - 8).to_int() - 1;
String what = sname.get_slicec('/', 1);
if (what == "material")
surface_set_material(idx, p_value);
else if (what == "name")
surface_set_name(idx, p_value);
return true;
}
#ifndef DISABLE_DEPRECATED
// Kept for compatibility from 3.x to 4.0.
if (!sname.begins_with("surfaces"))
return false;
WARN_DEPRECATED_MSG("Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene.");
int idx = sname.get_slicec('/', 1).to_int();
String what = sname.get_slicec('/', 2);
if (idx == surfaces.size()) {
//create
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("primitive"), false);
if (d.has("arrays")) {
//oldest format (2.x)
ERR_FAIL_COND_V(!d.has("morph_arrays"), false);
add_surface_from_arrays(PrimitiveType(int(d["primitive"])), d["arrays"], d["morph_arrays"]);
} else if (d.has("array_data")) {
//print_line("array data (old style");
//older format (3.x)
Vector<uint8_t> array_data = d["array_data"];
Vector<uint8_t> array_index_data;
if (d.has("array_index_data"))
array_index_data = d["array_index_data"];
ERR_FAIL_COND_V(!d.has("format"), false);
uint32_t format = d["format"];
uint32_t primitive = d["primitive"];
uint32_t primitive_remap[7] = {
PRIMITIVE_POINTS,
PRIMITIVE_LINES,
PRIMITIVE_LINE_STRIP,
PRIMITIVE_LINES,
PRIMITIVE_TRIANGLES,
PRIMITIVE_TRIANGLE_STRIP,
PRIMITIVE_TRIANGLE_STRIP
};
primitive = primitive_remap[primitive]; //compatibility
ERR_FAIL_COND_V(!d.has("vertex_count"), false);
int vertex_count = d["vertex_count"];
array_data = _fix_array_compatibility(array_data, format, vertex_count);
int index_count = 0;
if (d.has("index_count"))
index_count = d["index_count"];
Vector<Vector<uint8_t> > blend_shapes;
if (d.has("blend_shape_data")) {
Array blend_shape_data = d["blend_shape_data"];
for (int i = 0; i < blend_shape_data.size(); i++) {
Vector<uint8_t> shape = blend_shape_data[i];
shape = _fix_array_compatibility(shape, format, vertex_count);
blend_shapes.push_back(shape);
}
}
//clear unused flags
print_line("format pre: " + itos(format));
format &= ~uint32_t((1 << (ARRAY_VERTEX + ARRAY_COMPRESS_BASE)) | (ARRAY_COMPRESS_INDEX << 2) | (ARRAY_COMPRESS_TEX_UV2 << 2));
print_line("format post: " + itos(format));
ERR_FAIL_COND_V(!d.has("aabb"), false);
AABB aabb = d["aabb"];
Vector<AABB> bone_aabb;
if (d.has("skeleton_aabb")) {
Array baabb = d["skeleton_aabb"];
bone_aabb.resize(baabb.size());
for (int i = 0; i < baabb.size(); i++) {
bone_aabb.write[i] = baabb[i];
}
}
add_surface(format, PrimitiveType(primitive), array_data, vertex_count, array_index_data, index_count, aabb, blend_shapes, bone_aabb);
} else {
ERR_FAIL_V(false);
}
if (d.has("material")) {
surface_set_material(idx, d["material"]);
}
if (d.has("name")) {
surface_set_name(idx, d["name"]);
}
return true;
}
#endif // DISABLE_DEPRECATED
return false;
}
Array ArrayMesh::_get_surfaces() const {
if (mesh.is_null()) {
return Array();
}
Array ret;
for (int i = 0; i < surfaces.size(); i++) {
VisualServer::SurfaceData surface = VS::get_singleton()->mesh_get_surface(mesh, i);
Dictionary data;
data["format"] = surface.format;
data["primitive"] = surface.primitive;
data["vertex_data"] = surface.vertex_data;
data["vertex_count"] = surface.vertex_count;
data["aabb"] = surface.aabb;
if (surface.index_count) {
data["index_data"] = surface.index_data;
data["index_count"] = surface.index_count;
};
Array lods;
for (int j = 0; j < surface.lods.size(); j++) {
lods.push_back(surface.lods[j].edge_length);
lods.push_back(surface.lods[j].index_data);
}
if (lods.size()) {
data["lods"] = lods;
}
Array bone_aabbs;
for (int j = 0; j < surface.bone_aabbs.size(); j++) {
bone_aabbs.push_back(surface.bone_aabbs[j]);
}
if (bone_aabbs.size()) {
data["bone_aabbs"] = bone_aabbs;
}
Array blend_shapes;
for (int j = 0; j < surface.blend_shapes.size(); j++) {
blend_shapes.push_back(surface.blend_shapes[j]);
}
if (surfaces[i].material.is_valid()) {
data["material"] = surfaces[i].material;
}
if (surfaces[i].name != String()) {
data["name"] = surfaces[i].name;
}
if (surfaces[i].is_2d) {
data["2d"] = true;
}
ret.push_back(data);
}
print_line("Saving surfaces: " + itos(ret.size()));
return ret;
}
void ArrayMesh::_create_if_empty() const {
if (!mesh.is_valid()) {
mesh = VS::get_singleton()->mesh_create();
VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)blend_shape_mode);
}
}
void ArrayMesh::_set_surfaces(const Array &p_surfaces) {
Vector<VS::SurfaceData> surface_data;
Vector<Ref<Material> > surface_materials;
Vector<String> surface_names;
Vector<bool> surface_2d;
for (int i = 0; i < p_surfaces.size(); i++) {
VS::SurfaceData surface;
Dictionary d = p_surfaces[i];
ERR_FAIL_COND(!d.has("format"));
ERR_FAIL_COND(!d.has("primitive"));
ERR_FAIL_COND(!d.has("vertex_data"));
ERR_FAIL_COND(!d.has("vertex_count"));
ERR_FAIL_COND(!d.has("aabb"));
surface.format = d["format"];
surface.primitive = VS::PrimitiveType(int(d["primitive"]));
surface.vertex_data = d["vertex_data"];
surface.vertex_count = d["vertex_count"];
surface.aabb = d["aabb"];
if (d.has("index_data")) {
ERR_FAIL_COND(!d.has("index_count"));
surface.index_data = d["index_data"];
surface.index_count = d["index_count"];
}
if (d.has("lods")) {
Array lods = d["lods"];
ERR_FAIL_COND(lods.size() & 1); //must be even
for (int j = 0; j < lods.size(); j += 2) {
VS::SurfaceData::LOD lod;
lod.edge_length = lods[j + 0];
lod.index_data = lods[j + 1];
surface.lods.push_back(lod);
}
}
if (d.has("bone_aabbs")) {
Array bone_aabbs = d["bone_aabbs"];
for (int j = 0; j < bone_aabbs.size(); j++) {
surface.bone_aabbs.push_back(bone_aabbs[j]);
}
}
if (d.has("blend_shapes")) {
Array blend_shapes;
for (int j = 0; j < blend_shapes.size(); j++) {
surface.blend_shapes.push_back(blend_shapes[j]);
}
}
Ref<Material> material;
if (d.has("material")) {
material = d["material"];
if (material.is_valid()) {
surface.material = material->get_rid();
}
}
String name;
if (d.has("name")) {
name = d["name"];
}
bool _2d = false;
if (d.has("2d")) {
_2d = d["2d"];
}
/*
print_line("format: " + itos(surface.format));
print_line("aabb: " + surface.aabb);
print_line("array size: " + itos(surface.vertex_data.size()));
print_line("vertex count: " + itos(surface.vertex_count));
print_line("index size: " + itos(surface.index_data.size()));
print_line("index count: " + itos(surface.index_count));
print_line("primitive: " + itos(surface.primitive));
*/
surface_data.push_back(surface);
surface_materials.push_back(material);
surface_names.push_back(name);
surface_2d.push_back(_2d);
}
if (mesh.is_valid()) {
//if mesh exists, it needs to be updated
VS::get_singleton()->mesh_clear(mesh);
for (int i = 0; i < surface_data.size(); i++) {
VS::get_singleton()->mesh_add_surface(mesh, surface_data[i]);
}
} else {
// if mesh does not exist (first time this is loaded, most likely),
// we can create it with a single call, which is a lot more efficient and thread friendly
mesh = VS::get_singleton()->mesh_create_from_surfaces(surface_data);
VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)blend_shape_mode);
}
surfaces.clear();
aabb = AABB();
for (int i = 0; i < surface_data.size(); i++) {
Surface s;
s.aabb = surface_data[i].aabb;
if (i == 0) {
aabb = s.aabb;
blend_shapes.resize(surface_data[i].blend_shapes.size());
} else {
aabb.merge_with(s.aabb);
}
s.material = surface_materials[i];
s.is_2d = surface_2d[i];
s.name = surface_names[i];
s.format = surface_data[i].format;
s.primitive = PrimitiveType(surface_data[i].primitive);
s.array_length = surface_data[i].vertex_count;
s.index_array_length = surface_data[i].index_count;
surfaces.push_back(s);
}
}
bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const {
if (_is_generated())
return false;
String sname = p_name;
if (p_name == "blend_shape/names") {
Vector<String> sk;
for (int i = 0; i < blend_shapes.size(); i++)
sk.push_back(blend_shapes[i]);
r_ret = sk;
return true;
} else if (p_name == "blend_shape/mode") {
r_ret = get_blend_shape_mode();
return true;
} else if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1)
return false;
int idx = sname.substr(8, sl - 8).to_int() - 1;
String what = sname.get_slicec('/', 1);
if (what == "material")
r_ret = surface_get_material(idx);
else if (what == "name")
r_ret = surface_get_name(idx);
return true;
}
return true;
}
void ArrayMesh::_get_property_list(List<PropertyInfo> *p_list) const {
if (_is_generated())
return;
if (blend_shapes.size()) {
p_list->push_back(PropertyInfo(Variant::PACKED_STRING_ARRAY, "blend_shape/names", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::INT, "blend_shape/mode", PROPERTY_HINT_ENUM, "Normalized,Relative"));
}
for (int i = 0; i < surfaces.size(); i++) {
p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i + 1) + "/name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR));
if (surfaces[i].is_2d) {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,CanvasItemMaterial", PROPERTY_USAGE_EDITOR));
} else {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,StandardMaterial3D", PROPERTY_USAGE_EDITOR));
}
}
}
void ArrayMesh::_recompute_aabb() {
// regenerate AABB
aabb = AABB();
for (int i = 0; i < surfaces.size(); i++) {
if (i == 0)
aabb = surfaces[i].aabb;
else
aabb.merge_with(surfaces[i].aabb);
}
}
#ifndef _MSC_VER
#warning need to add binding to add_surface using future MeshSurfaceData object
#endif
void ArrayMesh::add_surface(uint32_t p_format, PrimitiveType p_primitive, const Vector<uint8_t> &p_array, int p_vertex_count, const Vector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<Vector<uint8_t> > &p_blend_shapes, const Vector<AABB> &p_bone_aabb, const Vector<VS::SurfaceData::LOD> &p_lods) {
_create_if_empty();
Surface s;
s.aabb = p_aabb;
s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES;
s.primitive = p_primitive;
s.array_length = p_vertex_count;
s.index_array_length = p_index_count;
s.format = p_format;
surfaces.push_back(s);
_recompute_aabb();
VS::SurfaceData sd;
sd.format = p_format;
sd.primitive = VS::PrimitiveType(p_primitive);
sd.aabb = p_aabb;
sd.vertex_count = p_vertex_count;
sd.vertex_data = p_array;
sd.index_count = p_index_count;
sd.index_data = p_index_array;
sd.blend_shapes = p_blend_shapes;
sd.bone_aabbs = p_bone_aabb;
sd.lods = p_lods;
VisualServer::get_singleton()->mesh_add_surface(mesh, sd);
clear_cache();
_change_notify();
emit_changed();
}
void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, const Dictionary &p_lods, uint32_t p_flags) {
ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX);
VS::SurfaceData surface;
Error err = VS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (VisualServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags);
ERR_FAIL_COND(err != OK);
/* print_line("format: " + itos(surface.format));
print_line("aabb: " + surface.aabb);
print_line("array size: " + itos(surface.vertex_data.size()));
print_line("vertex count: " + itos(surface.vertex_count));
print_line("index size: " + itos(surface.index_data.size()));
print_line("index count: " + itos(surface.index_count));
print_line("primitive: " + itos(surface.primitive));
*/
add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shapes, surface.bone_aabbs, surface.lods);
}
Array ArrayMesh::surface_get_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return VisualServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
}
Array ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return VisualServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface);
}
Dictionary ArrayMesh::surface_get_lods(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Dictionary());
return VisualServer::get_singleton()->mesh_surface_get_lods(mesh, p_surface);
}
int ArrayMesh::get_surface_count() const {
return surfaces.size();
}
void ArrayMesh::add_blend_shape(const StringName &p_name) {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created.");
StringName name = p_name;
if (blend_shapes.find(name) != -1) {
int count = 2;
do {
name = String(p_name) + " " + itos(count);
count++;
} while (blend_shapes.find(name) != -1);
}
blend_shapes.push_back(name);
//VS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
}
int ArrayMesh::get_blend_shape_count() const {
return blend_shapes.size();
}
StringName ArrayMesh::get_blend_shape_name(int p_index) const {
ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName());
return blend_shapes[p_index];
}
void ArrayMesh::clear_blend_shapes() {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created.");
blend_shapes.clear();
}
void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) {
blend_shape_mode = p_mode;
if (mesh.is_valid()) {
VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)p_mode);
}
}
ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const {
return blend_shape_mode;
}
int ArrayMesh::surface_get_array_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return surfaces[p_idx].array_length;
}
int ArrayMesh::surface_get_array_index_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return surfaces[p_idx].index_array_length;
}
uint32_t ArrayMesh::surface_get_format(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0);
return surfaces[p_idx].format;
}
ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES);
return surfaces[p_idx].primitive;
}
void ArrayMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
if (surfaces[p_idx].material == p_material)
return;
surfaces.write[p_idx].material = p_material;
VisualServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid());
_change_notify("material");
emit_changed();
}
int ArrayMesh::surface_find_by_name(const String &p_name) const {
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].name == p_name) {
return i;
}
}
return -1;
}
void ArrayMesh::surface_set_name(int p_idx, const String &p_name) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].name = p_name;
emit_changed();
}
String ArrayMesh::surface_get_name(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String());
return surfaces[p_idx].name;
}
void ArrayMesh::surface_update_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
VS::get_singleton()->mesh_surface_update_region(mesh, p_surface, p_offset, p_data);
emit_changed();
}
void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].aabb = p_aabb;
// set custom aabb too?
emit_changed();
}
Ref<Material> ArrayMesh::surface_get_material(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref<Material>());
return surfaces[p_idx].material;
}
RID ArrayMesh::get_rid() const {
_create_if_empty();
return mesh;
}
AABB ArrayMesh::get_aabb() const {
return aabb;
}
void ArrayMesh::clear_surfaces() {
if (!mesh.is_valid()) {
return;
}
VS::get_singleton()->mesh_clear(mesh);
surfaces.clear();
aabb = AABB();
}
void ArrayMesh::set_custom_aabb(const AABB &p_custom) {
_create_if_empty();
custom_aabb = p_custom;
VS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb);
emit_changed();
}
AABB ArrayMesh::get_custom_aabb() const {
return custom_aabb;
}
void ArrayMesh::regen_normalmaps() {
if (surfaces.size() == 0) {
return;
}
Vector<Ref<SurfaceTool> > surfs;
for (int i = 0; i < get_surface_count(); i++) {
Ref<SurfaceTool> st = memnew(SurfaceTool);
st->create_from(Ref<ArrayMesh>(this), i);
surfs.push_back(st);
}
clear_surfaces();
for (int i = 0; i < surfs.size(); i++) {
surfs.write[i]->generate_tangents();
surfs.write[i]->commit(Ref<ArrayMesh>(this));
}
}
//dirty hack
bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, const int *p_face_materials, int p_index_count, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = NULL;
struct ArrayMeshLightmapSurface {
Ref<Material> material;
Vector<SurfaceTool::Vertex> vertices;
Mesh::PrimitiveType primitive;
uint32_t format;
};
Error ArrayMesh::lightmap_unwrap(const Transform &p_base_transform, float p_texel_size) {
ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
Vector<float> vertices;
Vector<float> normals;
Vector<int> indices;
Vector<int> face_materials;
Vector<float> uv;
Vector<Pair<int, int> > uv_index;
Vector<ArrayMeshLightmapSurface> surfaces;
for (int i = 0; i < get_surface_count(); i++) {
ArrayMeshLightmapSurface s;
s.primitive = surface_get_primitive_type(i);
ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
s.format = surface_get_format(i);
ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap.");
Array arrays = surface_get_arrays(i);
s.material = surface_get_material(i);
s.vertices = SurfaceTool::create_vertex_array_from_triangle_arrays(arrays);
Vector<Vector3> rvertices = arrays[Mesh::ARRAY_VERTEX];
int vc = rvertices.size();
const Vector3 *r = rvertices.ptr();
Vector<Vector3> rnormals = arrays[Mesh::ARRAY_NORMAL];
const Vector3 *rn = rnormals.ptr();
int vertex_ofs = vertices.size() / 3;
vertices.resize((vertex_ofs + vc) * 3);
normals.resize((vertex_ofs + vc) * 3);
uv_index.resize(vertex_ofs + vc);
for (int j = 0; j < vc; j++) {
Vector3 v = p_base_transform.xform(r[j]);
Vector3 n = p_base_transform.basis.xform(rn[j]).normalized();
vertices.write[(j + vertex_ofs) * 3 + 0] = v.x;
vertices.write[(j + vertex_ofs) * 3 + 1] = v.y;
vertices.write[(j + vertex_ofs) * 3 + 2] = v.z;
normals.write[(j + vertex_ofs) * 3 + 0] = n.x;
normals.write[(j + vertex_ofs) * 3 + 1] = n.y;
normals.write[(j + vertex_ofs) * 3 + 2] = n.z;
uv_index.write[j + vertex_ofs] = Pair<int, int>(i, j);
}
Vector<int> rindices = arrays[Mesh::ARRAY_INDEX];
int ic = rindices.size();
if (ic == 0) {
for (int j = 0; j < vc / 3; j++) {
if (Face3(r[j * 3 + 0], r[j * 3 + 1], r[j * 3 + 2]).is_degenerate())
continue;
indices.push_back(vertex_ofs + j * 3 + 0);
indices.push_back(vertex_ofs + j * 3 + 1);
indices.push_back(vertex_ofs + j * 3 + 2);
face_materials.push_back(i);
}
} else {
const int *ri = rindices.ptr();
for (int j = 0; j < ic / 3; j++) {
if (Face3(r[ri[j * 3 + 0]], r[ri[j * 3 + 1]], r[ri[j * 3 + 2]]).is_degenerate())
continue;
indices.push_back(vertex_ofs + ri[j * 3 + 0]);
indices.push_back(vertex_ofs + ri[j * 3 + 1]);
indices.push_back(vertex_ofs + ri[j * 3 + 2]);
face_materials.push_back(i);
}
}
surfaces.push_back(s);
}
//unwrap
float *gen_uvs;
int *gen_vertices;
int *gen_indices;
int gen_vertex_count;
int gen_index_count;
int size_x;
int size_y;
bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), face_materials.ptr(), indices.size(), &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
if (!ok) {
return ERR_CANT_CREATE;
}
//remove surfaces
clear_surfaces();
//create surfacetools for each surface..
Vector<Ref<SurfaceTool> > surfaces_tools;
for (int i = 0; i < surfaces.size(); i++) {
Ref<SurfaceTool> st;
st.instance();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
st->set_material(surfaces[i].material);
surfaces_tools.push_back(st); //stay there
}
print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
//go through all indices
for (int i = 0; i < gen_index_count; i += 3) {
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], uv_index.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], uv_index.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], uv_index.size(), ERR_BUG);
ERR_FAIL_COND_V(uv_index[gen_vertices[gen_indices[i + 0]]].first != uv_index[gen_vertices[gen_indices[i + 1]]].first || uv_index[gen_vertices[gen_indices[i + 0]]].first != uv_index[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
int surface = uv_index[gen_vertices[gen_indices[i + 0]]].first;
for (int j = 0; j < 3; j++) {
SurfaceTool::Vertex v = surfaces[surface].vertices[uv_index[gen_vertices[gen_indices[i + j]]].second];
if (surfaces[surface].format & ARRAY_FORMAT_COLOR) {
surfaces_tools.write[surface]->add_color(v.color);
}
if (surfaces[surface].format & ARRAY_FORMAT_TEX_UV) {
surfaces_tools.write[surface]->add_uv(v.uv);
}
if (surfaces[surface].format & ARRAY_FORMAT_NORMAL) {
surfaces_tools.write[surface]->add_normal(v.normal);
}
if (surfaces[surface].format & ARRAY_FORMAT_TANGENT) {
Plane t;
t.normal = v.tangent;
t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
surfaces_tools.write[surface]->add_tangent(t);
}
if (surfaces[surface].format & ARRAY_FORMAT_BONES) {
surfaces_tools.write[surface]->add_bones(v.bones);
}
if (surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) {
surfaces_tools.write[surface]->add_weights(v.weights);
}
Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
surfaces_tools.write[surface]->add_uv2(uv2);
surfaces_tools.write[surface]->add_vertex(v.vertex);
}
}
//free stuff
::free(gen_vertices);
::free(gen_indices);
::free(gen_uvs);
//generate surfaces
for (int i = 0; i < surfaces_tools.size(); i++) {
surfaces_tools.write[i]->index();
surfaces_tools.write[i]->commit(Ref<ArrayMesh>((ArrayMesh *)this), surfaces[i].format);
}
set_lightmap_size_hint(Size2(size_x, size_y));
return OK;
}
void ArrayMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape);
ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count);
ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name);
ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes);
ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode);
ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode);
ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "lods", "compress_flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(ARRAY_COMPRESS_DEFAULT));
ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces);
ClassDB::bind_method(D_METHOD("surface_update_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_region);
ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len);
ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len);
ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format);
ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type);
ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name);
ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name);
ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name);
ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape);
ClassDB::bind_method(D_METHOD("create_convex_shape"), &ArrayMesh::create_convex_shape);
ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline);
ClassDB::bind_method(D_METHOD("regen_normalmaps"), &ArrayMesh::regen_normalmaps);
ClassDB::set_method_flags(get_class_static(), _scs_create("regen_normalmaps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap);
ClassDB::set_method_flags(get_class_static(), _scs_create("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("get_faces"), &ArrayMesh::get_faces);
ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh);
ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb);
ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb);
ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces);
ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces);
ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces");
ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode");
ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb");
BIND_CONSTANT(NO_INDEX_ARRAY);
BIND_CONSTANT(ARRAY_WEIGHTS_SIZE);
BIND_ENUM_CONSTANT(ARRAY_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COLOR);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_BONES);
BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_INDEX);
BIND_ENUM_CONSTANT(ARRAY_MAX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX);
}
void ArrayMesh::reload_from_file() {
VisualServer::get_singleton()->mesh_clear(mesh);
surfaces.clear();
clear_blend_shapes();
clear_cache();
Resource::reload_from_file();
_change_notify();
}
ArrayMesh::ArrayMesh() {
//mesh is now created on demand
//mesh = VisualServer::get_singleton()->mesh_create();
blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE;
}
ArrayMesh::~ArrayMesh() {
if (mesh.is_valid()) {
VisualServer::get_singleton()->free(mesh);
}
}