virtualx-engine/drivers/gles3/shaders/copy.glsl
BastiaanOlij 02ea99129e Adding a new Camera Server implementation to Godot.
This is a new singleton where camera sources such as webcams or cameras on a mobile phone can register themselves with the Server.
Other parts of Godot can interact with this to obtain images from the camera as textures.
This work includes additions to the Visual Server to use this functionality to present the camera image in the background. This is specifically targetted at AR applications.
2019-06-15 21:30:32 +10:00

262 lines
6.4 KiB
GLSL

/* clang-format off */
[vertex]
layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
layout(location = 4) in vec3 cube_in;
#else
layout(location = 4) in vec2 uv_in;
#endif
layout(location = 5) in vec2 uv2_in;
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
out vec3 cube_interp;
#else
out vec2 uv_interp;
#endif
out vec2 uv2_interp;
// These definitions are here because the shader-wrapper builder does
// not understand `#elif defined()`
#ifdef USE_DISPLAY_TRANSFORM
#endif
#ifdef USE_COPY_SECTION
uniform vec4 copy_section;
#elif defined(USE_DISPLAY_TRANSFORM)
uniform highp mat4 display_transform;
#endif
void main() {
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
cube_interp = cube_in;
#elif defined(USE_ASYM_PANO)
uv_interp = vertex_attrib.xy;
#else
uv_interp = uv_in;
#ifdef V_FLIP
uv_interp.y = 1.0 - uv_interp.y;
#endif
#endif
uv2_interp = uv2_in;
gl_Position = vertex_attrib;
#ifdef USE_COPY_SECTION
uv_interp = copy_section.xy + uv_interp * copy_section.zw;
gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
#elif defined(USE_DISPLAY_TRANSFORM)
uv_interp = (display_transform * vec4(uv_in, 1.0, 1.0)).xy;
#endif
}
/* clang-format off */
[fragment]
#define M_PI 3.14159265359
#if !defined(USE_GLES_OVER_GL)
precision mediump float;
#endif
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
in vec3 cube_interp;
#else
in vec2 uv_interp;
#endif
#ifdef USE_ASYM_PANO
uniform highp mat4 pano_transform;
uniform highp vec4 asym_proj;
#endif
// These definitions are here because the shader-wrapper builder does
// not understand `#elif defined()`
#ifdef USE_TEXTURE3D
#endif
#ifdef USE_TEXTURE2DARRAY
#endif
#ifdef YCBCR_TO_SRGB
#endif
#ifdef USE_CUBEMAP
uniform samplerCube source_cube; //texunit:0
#elif defined(USE_TEXTURE3D)
uniform sampler3D source_3d; //texunit:0
#elif defined(USE_TEXTURE2DARRAY)
uniform sampler2DArray source_2d_array; //texunit:0
#else
uniform sampler2D source; //texunit:0
#endif
#ifdef SEP_CBCR_TEXTURE
uniform sampler2D CbCr; //texunit:1
#endif
/* clang-format on */
#if defined(USE_TEXTURE3D) || defined(USE_TEXTURE2DARRAY)
uniform float layer;
#endif
#ifdef USE_MULTIPLIER
uniform float multiplier;
#endif
#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
uniform highp mat4 sky_transform;
vec4 texturePanorama(vec3 normal, sampler2D pano) {
vec2 st = vec2(
atan(normal.x, normal.z),
acos(normal.y));
if (st.x < 0.0)
st.x += M_PI * 2.0;
st /= vec2(M_PI * 2.0, M_PI);
return textureLod(pano, st, 0.0);
}
#endif
uniform vec2 pixel_size;
in vec2 uv2_interp;
#ifdef USE_BCS
uniform vec3 bcs;
#endif
#ifdef USE_COLOR_CORRECTION
uniform sampler2D color_correction; //texunit:1
#endif
layout(location = 0) out vec4 frag_color;
void main() {
//vec4 color = color_interp;
#ifdef USE_PANORAMA
vec3 cube_normal = normalize(cube_interp);
cube_normal.z = -cube_normal.z;
cube_normal = mat3(sky_transform) * cube_normal;
cube_normal.z = -cube_normal.z;
vec4 color = texturePanorama(cube_normal, source);
#elif defined(USE_ASYM_PANO)
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
// Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
vec3 cube_normal;
cube_normal.z = -1000000.0;
cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
cube_normal.z = -cube_normal.z;
vec4 color = texturePanorama(normalize(cube_normal.xyz), source);
#elif defined(USE_CUBEMAP)
vec4 color = texture(source_cube, normalize(cube_interp));
#elif defined(USE_TEXTURE3D)
vec4 color = textureLod(source_3d, vec3(uv_interp, layer), 0.0);
#elif defined(USE_TEXTURE2DARRAY)
vec4 color = textureLod(source_2d_array, vec3(uv_interp, layer), 0.0);
#elif defined(SEP_CBCR_TEXTURE)
vec4 color;
color.r = textureLod(source, uv_interp, 0.0).r;
color.gb = textureLod(CbCr, uv_interp, 0.0).rg - vec2(0.5, 0.5);
color.a = 1.0;
#else
vec4 color = textureLod(source, uv_interp, 0.0);
#endif
#ifdef LINEAR_TO_SRGB
// regular Linear -> SRGB conversion
vec3 a = vec3(0.055);
color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
#elif defined(YCBCR_TO_SRGB)
// YCbCr -> SRGB conversion
// Using BT.709 which is the standard for HDTV
color.rgb = mat3(
vec3(1.00000, 1.00000, 1.00000),
vec3(0.00000, -0.18732, 1.85560),
vec3(1.57481, -0.46813, 0.00000)) *
color.rgb;
#endif
#ifdef SRGB_TO_LINEAR
color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
#endif
#ifdef DEBUG_GRADIENT
color.rg = uv_interp;
color.b = 0.0;
#endif
#ifdef DISABLE_ALPHA
color.a = 1.0;
#endif
#ifdef GAUSSIAN_HORIZONTAL
color *= 0.38774;
color += texture(source, uv_interp + vec2(1.0, 0.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(2.0, 0.0) * pixel_size) * 0.06136;
color += texture(source, uv_interp + vec2(-1.0, 0.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(-2.0, 0.0) * pixel_size) * 0.06136;
#endif
#ifdef GAUSSIAN_VERTICAL
color *= 0.38774;
color += texture(source, uv_interp + vec2(0.0, 1.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(0.0, 2.0) * pixel_size) * 0.06136;
color += texture(source, uv_interp + vec2(0.0, -1.0) * pixel_size) * 0.24477;
color += texture(source, uv_interp + vec2(0.0, -2.0) * pixel_size) * 0.06136;
#endif
#ifdef USE_BCS
color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
#endif
#ifdef USE_COLOR_CORRECTION
color.r = texture(color_correction, vec2(color.r, 0.0)).r;
color.g = texture(color_correction, vec2(color.g, 0.0)).g;
color.b = texture(color_correction, vec2(color.b, 0.0)).b;
#endif
#ifdef USE_MULTIPLIER
color.rgb *= multiplier;
#endif
frag_color = color;
}