virtualx-engine/scene/3d/gi_probe.cpp
Juan Linietsky a6f3bc7c69 Renaming of servers for coherency.
VisualServer -> RenderingServer
PhysicsServer -> PhysicsServer3D
Physics2DServer -> PhysicsServer2D
NavigationServer -> NavigationServer3D
Navigation2DServer -> NavigationServer2D

Also renamed corresponding files.
2020-03-27 15:21:27 -03:00

572 lines
19 KiB
C++

/*************************************************************************/
/* gi_probe.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "gi_probe.h"
#include "core/os/os.h"
#include "core/method_bind_ext.gen.inc"
#include "mesh_instance_3d.h"
#include "voxelizer.h"
void GIProbeData::_set_data(const Dictionary &p_data) {
ERR_FAIL_COND(!p_data.has("bounds"));
ERR_FAIL_COND(!p_data.has("octree_size"));
ERR_FAIL_COND(!p_data.has("octree_cells"));
ERR_FAIL_COND(!p_data.has("octree_data"));
ERR_FAIL_COND(!p_data.has("octree_df") && !p_data.has("octree_df_png"));
ERR_FAIL_COND(!p_data.has("level_counts"));
ERR_FAIL_COND(!p_data.has("to_cell_xform"));
AABB bounds = p_data["bounds"];
Vector3 octree_size = p_data["octree_size"];
Vector<uint8_t> octree_cells = p_data["octree_cells"];
Vector<uint8_t> octree_data = p_data["octree_data"];
Vector<uint8_t> octree_df;
if (p_data.has("octree_df")) {
octree_df = p_data["octree_df"];
} else if (p_data.has("octree_df_png")) {
Vector<uint8_t> octree_df_png = p_data["octree_df_png"];
Ref<Image> img;
img.instance();
Error err = img->load_png_from_buffer(octree_df_png);
ERR_FAIL_COND(err != OK);
ERR_FAIL_COND(img->get_format() != Image::FORMAT_L8);
octree_df = img->get_data();
}
Vector<int> octree_levels = p_data["level_counts"];
Transform to_cell_xform = p_data["to_cell_xform"];
allocate(to_cell_xform, bounds, octree_size, octree_cells, octree_data, octree_df, octree_levels);
}
Dictionary GIProbeData::_get_data() const {
Dictionary d;
d["bounds"] = get_bounds();
Vector3i otsize = get_octree_size();
d["octree_size"] = Vector3(otsize);
d["octree_cells"] = get_octree_cells();
d["octree_data"] = get_data_cells();
if (otsize != Vector3i()) {
Ref<Image> img;
img.instance();
img->create(otsize.x * otsize.y, otsize.z, false, Image::FORMAT_L8, get_distance_field());
Vector<uint8_t> df_png = img->save_png_to_buffer();
ERR_FAIL_COND_V(df_png.size() == 0, Dictionary());
d["octree_df_png"] = df_png;
} else {
d["octree_df"] = Vector<uint8_t>();
}
d["level_counts"] = get_level_counts();
d["to_cell_xform"] = get_to_cell_xform();
return d;
}
void GIProbeData::allocate(const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3 &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
RS::get_singleton()->gi_probe_allocate(probe, p_to_cell_xform, p_aabb, p_octree_size, p_octree_cells, p_data_cells, p_distance_field, p_level_counts);
bounds = p_aabb;
to_cell_xform = p_to_cell_xform;
octree_size = p_octree_size;
}
AABB GIProbeData::get_bounds() const {
return bounds;
}
Vector3 GIProbeData::get_octree_size() const {
return octree_size;
}
Vector<uint8_t> GIProbeData::get_octree_cells() const {
return RS::get_singleton()->gi_probe_get_octree_cells(probe);
}
Vector<uint8_t> GIProbeData::get_data_cells() const {
return RS::get_singleton()->gi_probe_get_data_cells(probe);
}
Vector<uint8_t> GIProbeData::get_distance_field() const {
return RS::get_singleton()->gi_probe_get_distance_field(probe);
}
Vector<int> GIProbeData::get_level_counts() const {
return RS::get_singleton()->gi_probe_get_level_counts(probe);
}
Transform GIProbeData::get_to_cell_xform() const {
return to_cell_xform;
}
void GIProbeData::set_dynamic_range(float p_range) {
RS::get_singleton()->gi_probe_set_dynamic_range(probe, p_range);
dynamic_range = p_range;
}
float GIProbeData::get_dynamic_range() const {
return dynamic_range;
}
void GIProbeData::set_propagation(float p_propagation) {
RS::get_singleton()->gi_probe_set_propagation(probe, p_propagation);
propagation = p_propagation;
}
float GIProbeData::get_propagation() const {
return propagation;
}
void GIProbeData::set_anisotropy_strength(float p_anisotropy_strength) {
RS::get_singleton()->gi_probe_set_anisotropy_strength(probe, p_anisotropy_strength);
anisotropy_strength = p_anisotropy_strength;
}
float GIProbeData::get_anisotropy_strength() const {
return anisotropy_strength;
}
void GIProbeData::set_energy(float p_energy) {
RS::get_singleton()->gi_probe_set_energy(probe, p_energy);
energy = p_energy;
}
float GIProbeData::get_energy() const {
return energy;
}
void GIProbeData::set_ao(float p_ao) {
RS::get_singleton()->gi_probe_set_ao(probe, p_ao);
ao = p_ao;
}
float GIProbeData::get_ao() const {
return ao;
}
void GIProbeData::set_ao_size(float p_ao_size) {
RS::get_singleton()->gi_probe_set_ao_size(probe, p_ao_size);
ao_size = p_ao_size;
}
float GIProbeData::get_ao_size() const {
return ao_size;
}
void GIProbeData::set_bias(float p_bias) {
RS::get_singleton()->gi_probe_set_bias(probe, p_bias);
bias = p_bias;
}
float GIProbeData::get_bias() const {
return bias;
}
void GIProbeData::set_normal_bias(float p_normal_bias) {
RS::get_singleton()->gi_probe_set_normal_bias(probe, p_normal_bias);
normal_bias = p_normal_bias;
}
float GIProbeData::get_normal_bias() const {
return normal_bias;
}
void GIProbeData::set_interior(bool p_enable) {
RS::get_singleton()->gi_probe_set_interior(probe, p_enable);
interior = p_enable;
}
bool GIProbeData::is_interior() const {
return interior;
}
void GIProbeData::set_use_two_bounces(bool p_enable) {
RS::get_singleton()->gi_probe_set_use_two_bounces(probe, p_enable);
use_two_bounces = p_enable;
}
bool GIProbeData::is_using_two_bounces() const {
return use_two_bounces;
}
RID GIProbeData::get_rid() const {
return probe;
}
void GIProbeData::_validate_property(PropertyInfo &property) const {
if (property.name == "anisotropy_strength") {
bool anisotropy_enabled = ProjectSettings::get_singleton()->get("rendering/quality/gi_probes/anisotropic");
if (!anisotropy_enabled) {
property.usage = PROPERTY_USAGE_NOEDITOR;
}
}
}
void GIProbeData::_bind_methods() {
ClassDB::bind_method(D_METHOD("allocate", "to_cell_xform", "aabb", "octree_size", "octree_cells", "data_cells", "distance_field", "level_counts"), &GIProbeData::allocate);
ClassDB::bind_method(D_METHOD("get_bounds"), &GIProbeData::get_bounds);
ClassDB::bind_method(D_METHOD("get_octree_size"), &GIProbeData::get_octree_size);
ClassDB::bind_method(D_METHOD("get_to_cell_xform"), &GIProbeData::get_to_cell_xform);
ClassDB::bind_method(D_METHOD("get_octree_cells"), &GIProbeData::get_octree_cells);
ClassDB::bind_method(D_METHOD("get_data_cells"), &GIProbeData::get_data_cells);
ClassDB::bind_method(D_METHOD("get_level_counts"), &GIProbeData::get_level_counts);
ClassDB::bind_method(D_METHOD("set_dynamic_range", "dynamic_range"), &GIProbeData::set_dynamic_range);
ClassDB::bind_method(D_METHOD("get_dynamic_range"), &GIProbeData::get_dynamic_range);
ClassDB::bind_method(D_METHOD("set_energy", "energy"), &GIProbeData::set_energy);
ClassDB::bind_method(D_METHOD("get_energy"), &GIProbeData::get_energy);
ClassDB::bind_method(D_METHOD("set_bias", "bias"), &GIProbeData::set_bias);
ClassDB::bind_method(D_METHOD("get_bias"), &GIProbeData::get_bias);
ClassDB::bind_method(D_METHOD("set_normal_bias", "bias"), &GIProbeData::set_normal_bias);
ClassDB::bind_method(D_METHOD("get_normal_bias"), &GIProbeData::get_normal_bias);
ClassDB::bind_method(D_METHOD("set_propagation", "propagation"), &GIProbeData::set_propagation);
ClassDB::bind_method(D_METHOD("get_propagation"), &GIProbeData::get_propagation);
ClassDB::bind_method(D_METHOD("set_anisotropy_strength", "strength"), &GIProbeData::set_anisotropy_strength);
ClassDB::bind_method(D_METHOD("get_anisotropy_strength"), &GIProbeData::get_anisotropy_strength);
ClassDB::bind_method(D_METHOD("set_ao", "ao"), &GIProbeData::set_ao);
ClassDB::bind_method(D_METHOD("get_ao"), &GIProbeData::get_ao);
ClassDB::bind_method(D_METHOD("set_ao_size", "strength"), &GIProbeData::set_ao_size);
ClassDB::bind_method(D_METHOD("get_ao_size"), &GIProbeData::get_ao_size);
ClassDB::bind_method(D_METHOD("set_interior", "interior"), &GIProbeData::set_interior);
ClassDB::bind_method(D_METHOD("is_interior"), &GIProbeData::is_interior);
ClassDB::bind_method(D_METHOD("set_use_two_bounces", "enable"), &GIProbeData::set_use_two_bounces);
ClassDB::bind_method(D_METHOD("is_using_two_bounces"), &GIProbeData::is_using_two_bounces);
ClassDB::bind_method(D_METHOD("_set_data", "data"), &GIProbeData::_set_data);
ClassDB::bind_method(D_METHOD("_get_data"), &GIProbeData::_get_data);
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data");
ADD_PROPERTY(PropertyInfo(Variant::INT, "dynamic_range", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_dynamic_range", "get_dynamic_range");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_energy", "get_energy");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_bias", "get_bias");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "normal_bias", PROPERTY_HINT_RANGE, "0,8,0.01"), "set_normal_bias", "get_normal_bias");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "propagation", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_propagation", "get_propagation");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "anisotropy_strength", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_anisotropy_strength", "get_anisotropy_strength");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "ao", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_ao", "get_ao");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "ao_size", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_ao_size", "get_ao_size");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_two_bounces"), "set_use_two_bounces", "is_using_two_bounces");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
}
GIProbeData::GIProbeData() {
ao = 0.0;
ao_size = 0.5;
dynamic_range = 4;
energy = 1.0;
bias = 1.5;
normal_bias = 0.0;
propagation = 0.7;
anisotropy_strength = 0.5;
interior = false;
probe = RS::get_singleton()->gi_probe_create();
}
GIProbeData::~GIProbeData() {
RS::get_singleton()->free(probe);
}
//////////////////////
//////////////////////
void GIProbe::set_probe_data(const Ref<GIProbeData> &p_data) {
if (p_data.is_valid()) {
RS::get_singleton()->instance_set_base(get_instance(), p_data->get_rid());
} else {
RS::get_singleton()->instance_set_base(get_instance(), RID());
}
probe_data = p_data;
}
Ref<GIProbeData> GIProbe::get_probe_data() const {
return probe_data;
}
void GIProbe::set_subdiv(Subdiv p_subdiv) {
ERR_FAIL_INDEX(p_subdiv, SUBDIV_MAX);
subdiv = p_subdiv;
update_gizmo();
}
GIProbe::Subdiv GIProbe::get_subdiv() const {
return subdiv;
}
void GIProbe::set_extents(const Vector3 &p_extents) {
extents = p_extents;
update_gizmo();
_change_notify("extents");
}
Vector3 GIProbe::get_extents() const {
return extents;
}
void GIProbe::_find_meshes(Node *p_at_node, List<PlotMesh> &plot_meshes) {
MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node);
if (mi && mi->get_flag(GeometryInstance3D::FLAG_USE_BAKED_LIGHT) && mi->is_visible_in_tree()) {
Ref<Mesh> mesh = mi->get_mesh();
if (mesh.is_valid()) {
AABB aabb = mesh->get_aabb();
Transform xf = get_global_transform().affine_inverse() * mi->get_global_transform();
if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) {
PlotMesh pm;
pm.local_xform = xf;
pm.mesh = mesh;
for (int i = 0; i < mesh->get_surface_count(); i++) {
pm.instance_materials.push_back(mi->get_surface_material(i));
}
pm.override_material = mi->get_material_override();
plot_meshes.push_back(pm);
}
}
}
Node3D *s = Object::cast_to<Node3D>(p_at_node);
if (s) {
if (s->is_visible_in_tree()) {
Array meshes = p_at_node->call("get_meshes");
for (int i = 0; i < meshes.size(); i += 2) {
Transform mxf = meshes[i];
Ref<Mesh> mesh = meshes[i + 1];
if (!mesh.is_valid())
continue;
AABB aabb = mesh->get_aabb();
Transform xf = get_global_transform().affine_inverse() * (s->get_global_transform() * mxf);
if (AABB(-extents, extents * 2).intersects(xf.xform(aabb))) {
PlotMesh pm;
pm.local_xform = xf;
pm.mesh = mesh;
plot_meshes.push_back(pm);
}
}
}
}
for (int i = 0; i < p_at_node->get_child_count(); i++) {
Node *child = p_at_node->get_child(i);
_find_meshes(child, plot_meshes);
}
}
GIProbe::BakeBeginFunc GIProbe::bake_begin_function = NULL;
GIProbe::BakeStepFunc GIProbe::bake_step_function = NULL;
GIProbe::BakeEndFunc GIProbe::bake_end_function = NULL;
Vector3i GIProbe::get_estimated_cell_size() const {
static const int subdiv_value[SUBDIV_MAX] = { 6, 7, 8, 9 };
int cell_subdiv = subdiv_value[subdiv];
int axis_cell_size[3];
AABB bounds = AABB(-extents, extents * 2.0);
int longest_axis = bounds.get_longest_axis_index();
axis_cell_size[longest_axis] = 1 << cell_subdiv;
for (int i = 0; i < 3; i++) {
if (i == longest_axis)
continue;
axis_cell_size[i] = axis_cell_size[longest_axis];
float axis_size = bounds.size[longest_axis];
//shrink until fit subdiv
while (axis_size / 2.0 >= bounds.size[i]) {
axis_size /= 2.0;
axis_cell_size[i] >>= 1;
}
}
return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]);
}
void GIProbe::bake(Node *p_from_node, bool p_create_visual_debug) {
static const int subdiv_value[SUBDIV_MAX] = { 6, 7, 8, 9 };
Voxelizer baker;
baker.begin_bake(subdiv_value[subdiv], AABB(-extents, extents * 2.0));
List<PlotMesh> mesh_list;
_find_meshes(p_from_node ? p_from_node : get_parent(), mesh_list);
if (bake_begin_function) {
bake_begin_function(mesh_list.size() + 1);
}
int pmc = 0;
for (List<PlotMesh>::Element *E = mesh_list.front(); E; E = E->next()) {
if (bake_step_function) {
bake_step_function(pmc, RTR("Plotting Meshes") + " " + itos(pmc) + "/" + itos(mesh_list.size()));
}
pmc++;
baker.plot_mesh(E->get().local_xform, E->get().mesh, E->get().instance_materials, E->get().override_material);
}
if (bake_step_function) {
bake_step_function(pmc++, RTR("Finishing Plot"));
}
baker.end_bake();
//create the data for visual server
if (p_create_visual_debug) {
MultiMeshInstance3D *mmi = memnew(MultiMeshInstance3D);
mmi->set_multimesh(baker.create_debug_multimesh());
add_child(mmi);
#ifdef TOOLS_ENABLED
if (get_tree()->get_edited_scene_root() == this) {
mmi->set_owner(this);
} else {
mmi->set_owner(get_owner());
}
#else
mmi->set_owner(get_owner());
#endif
} else {
Ref<GIProbeData> probe_data = get_probe_data();
if (probe_data.is_null())
probe_data.instance();
if (bake_step_function) {
bake_step_function(pmc++, RTR("Generating Distance Field"));
}
Vector<uint8_t> df = baker.get_sdf_3d_image();
probe_data->allocate(baker.get_to_cell_space_xform(), AABB(-extents, extents * 2.0), baker.get_giprobe_octree_size(), baker.get_giprobe_octree_cells(), baker.get_giprobe_data_cells(), df, baker.get_giprobe_level_cell_count());
set_probe_data(probe_data);
#ifdef TOOLS_ENABLED
probe_data->set_edited(true); //so it gets saved
#endif
}
if (bake_end_function) {
bake_end_function();
}
_change_notify(); //bake property may have changed
}
void GIProbe::_debug_bake() {
bake(NULL, true);
}
AABB GIProbe::get_aabb() const {
return AABB(-extents, extents * 2);
}
Vector<Face3> GIProbe::get_faces(uint32_t p_usage_flags) const {
return Vector<Face3>();
}
String GIProbe::get_configuration_warning() const {
if (RenderingServer::get_singleton()->is_low_end()) {
return TTR("GIProbes are not supported by the GLES2 video driver.\nUse a BakedLightmap instead.");
}
return String();
}
void GIProbe::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_probe_data", "data"), &GIProbe::set_probe_data);
ClassDB::bind_method(D_METHOD("get_probe_data"), &GIProbe::get_probe_data);
ClassDB::bind_method(D_METHOD("set_subdiv", "subdiv"), &GIProbe::set_subdiv);
ClassDB::bind_method(D_METHOD("get_subdiv"), &GIProbe::get_subdiv);
ClassDB::bind_method(D_METHOD("set_extents", "extents"), &GIProbe::set_extents);
ClassDB::bind_method(D_METHOD("get_extents"), &GIProbe::get_extents);
ClassDB::bind_method(D_METHOD("bake", "from_node", "create_visual_debug"), &GIProbe::bake, DEFVAL(Variant()), DEFVAL(false));
ClassDB::bind_method(D_METHOD("debug_bake"), &GIProbe::_debug_bake);
ClassDB::set_method_flags(get_class_static(), _scs_create("debug_bake"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ADD_PROPERTY(PropertyInfo(Variant::INT, "subdiv", PROPERTY_HINT_ENUM, "64,128,256,512"), "set_subdiv", "get_subdiv");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "extents"), "set_extents", "get_extents");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "data", PROPERTY_HINT_RESOURCE_TYPE, "GIProbeData", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_DO_NOT_SHARE_ON_DUPLICATE), "set_probe_data", "get_probe_data");
BIND_ENUM_CONSTANT(SUBDIV_64);
BIND_ENUM_CONSTANT(SUBDIV_128);
BIND_ENUM_CONSTANT(SUBDIV_256);
BIND_ENUM_CONSTANT(SUBDIV_512);
BIND_ENUM_CONSTANT(SUBDIV_MAX);
}
GIProbe::GIProbe() {
subdiv = SUBDIV_128;
extents = Vector3(10, 10, 10);
gi_probe = RS::get_singleton()->gi_probe_create();
set_disable_scale(true);
}
GIProbe::~GIProbe() {
RS::get_singleton()->free(gi_probe);
}