virtualx-engine/servers/visual/portals/portal_occlusion_culler.h
lawnjelly 3c2df49832 Fix Occluder to properly share resources
In order to properly support the resource sharing paradigm, Occluders are split into Instances and Resources in the VisualServer. Instances are owned by a Scenario, and Resources are global. OccluderShape resources can now correctly be shared by multiple OccluderInstances.
2022-02-16 09:55:11 +00:00

316 lines
9.8 KiB
C++

/*************************************************************************/
/* portal_occlusion_culler.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef PORTAL_OCCLUSION_CULLER_H
#define PORTAL_OCCLUSION_CULLER_H
class PortalRenderer;
#include "core/math/camera_matrix.h"
#include "core/math/geometry.h"
#include "portal_types.h"
class PortalOcclusionCuller {
enum {
MAX_SPHERES = 64,
MAX_POLYS = 64,
};
class Clipper {
public:
real_t clip_and_find_poly_area(const Plane *p_verts, int p_num_verts);
private:
enum Boundary {
B_LEFT,
B_RIGHT,
B_TOP,
B_BOTTOM,
B_NEAR,
B_FAR,
};
bool is_inside(const Plane &p_pt, Boundary p_boundary);
Plane intersect(const Plane &p_a, const Plane &p_b, Boundary p_boundary);
void debug_print_points(String p_string);
Plane interpolate(const Plane &p_a, const Plane &p_b, real_t p_t) const;
bool clip_to_plane(real_t a, real_t b, real_t c, real_t d);
LocalVectori<Plane> _pts_in;
LocalVectori<Plane> _pts_out;
// after perspective divide
LocalVectori<Vector3> _pts_final;
template <typename T>
int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
};
public:
PortalOcclusionCuller();
void prepare_camera(const CameraMatrix &p_cam_matrix, const Vector3 &p_cam_dir) {
_matrix_camera = p_cam_matrix;
_pt_cam_dir = p_cam_dir;
}
void prepare(PortalRenderer &p_portal_renderer, const VSRoom &p_room, const Vector3 &pt_camera, const LocalVector<Plane> &p_planes, const Plane *p_near_plane) {
if (p_near_plane) {
static LocalVector<Plane> local_planes;
int size_wanted = p_planes.size() + 1;
if ((int)local_planes.size() != size_wanted) {
local_planes.resize(size_wanted);
}
for (int n = 0; n < (int)p_planes.size(); n++) {
local_planes[n] = p_planes[n];
}
local_planes[size_wanted - 1] = *p_near_plane;
prepare_generic(p_portal_renderer, p_room._occluder_pool_ids, pt_camera, local_planes);
} else {
prepare_generic(p_portal_renderer, p_room._occluder_pool_ids, pt_camera, p_planes);
}
}
void prepare_generic(PortalRenderer &p_portal_renderer, const LocalVector<uint32_t, uint32_t> &p_occluder_pool_ids, const Vector3 &pt_camera, const LocalVector<Plane> &p_planes);
bool cull_aabb(const AABB &p_aabb) const {
if (!_occluders_present) {
return false;
}
if (cull_aabb_to_polys(p_aabb)) {
return true;
}
return cull_sphere(p_aabb.get_center(), p_aabb.size.length() * 0.5, -1, false);
}
bool cull_sphere(const Vector3 &p_occludee_center, real_t p_occludee_radius, int p_ignore_sphere = -1, bool p_cull_to_polys = true) const;
Geometry::MeshData debug_get_current_polys() const;
static bool _redraw_gizmo;
private:
bool cull_sphere_to_spheres(const Vector3 &p_occludee_center, real_t p_occludee_radius, const Vector3 &p_ray_dir, real_t p_dist_to_occludee, int p_ignore_sphere) const;
bool cull_sphere_to_polys(const Vector3 &p_occludee_center, real_t p_occludee_radius) const;
bool cull_aabb_to_polys(const AABB &p_aabb) const;
// experimental
bool cull_aabb_to_polys_ex(const AABB &p_aabb) const;
bool _is_poly_of_interest_to_split_plane(const Plane *p_poly_split_plane, int p_poly_id) const;
// if a sphere is entirely in front of any of the culling planes, it can't be seen so returns false
bool is_sphere_culled(const Vector3 &p_pos, real_t p_radius, const LocalVector<Plane> &p_planes) const {
for (unsigned int p = 0; p < p_planes.size(); p++) {
real_t dist = p_planes[p].distance_to(p_pos);
if (dist > p_radius) {
return true;
}
}
return false;
}
bool is_aabb_culled(const AABB &p_aabb, const LocalVector<Plane> &p_planes) const {
const Vector3 &size = p_aabb.size;
Vector3 half_extents = size * 0.5;
Vector3 ofs = p_aabb.position + half_extents;
for (unsigned int i = 0; i < p_planes.size(); i++) {
const Plane &p = p_planes[i];
Vector3 point(
(p.normal.x > 0) ? -half_extents.x : half_extents.x,
(p.normal.y > 0) ? -half_extents.y : half_extents.y,
(p.normal.z > 0) ? -half_extents.z : half_extents.z);
point += ofs;
if (p.is_point_over(point)) {
return true;
}
}
return false;
}
bool calculate_poly_goodness_of_fit(const VSOccluder_Poly &p_opoly, real_t &r_fit);
void whittle_polys();
void precalc_poly_edge_planes(const Vector3 &p_pt_camera);
// If all the points of the poly are beyond one of the planes (e.g. frustum), it is completely culled.
bool is_poly_culled(const Occlusion::PolyPlane &p_opoly, const LocalVector<Plane> &p_planes) const {
for (unsigned int p = 0; p < p_planes.size(); p++) {
const Plane &plane = p_planes[p];
int points_outside = 0;
for (int n = 0; n < p_opoly.num_verts; n++) {
const Vector3 &pt = p_opoly.verts[n];
if (!plane.is_point_over(pt)) {
break;
} else {
points_outside++;
}
}
if (points_outside == p_opoly.num_verts) {
return true;
}
}
return false;
}
// All the points of the poly must be within ALL the planes to return true.
struct PlaneSet;
bool is_poly_inside_occlusion_volume(const Occlusion::Poly &p_test_poly, const Plane &p_occluder_plane, const PlaneSet &p_planeset) const {
// first test against the occluder poly plane
for (int n = 0; n < p_test_poly.num_verts; n++) {
const Vector3 &pt = p_test_poly.verts[n];
if (p_occluder_plane.is_point_over(pt)) {
return false;
}
}
for (int p = 0; p < p_planeset.num_planes; p++) {
const Plane &plane = p_planeset.planes[p];
for (int n = 0; n < p_test_poly.num_verts; n++) {
const Vector3 &pt = p_test_poly.verts[n];
if (plane.is_point_over(pt)) {
return false;
}
}
}
return true;
}
bool is_poly_touching_hole(const Occlusion::Poly &p_opoly, const PlaneSet &p_planeset) const {
if (!p_opoly.num_verts) {
// should not happen?
return false;
}
// find aabb
AABB bb;
bb.position = p_opoly.verts[0];
for (int n = 1; n < p_opoly.num_verts; n++) {
bb.expand_to(p_opoly.verts[n]);
}
// if the AABB is totally outside any edge, it is safe for a hit
real_t omin, omax;
for (int e = 0; e < p_planeset.num_planes; e++) {
// edge plane to camera
const Plane &plane = p_planeset.planes[e];
bb.project_range_in_plane(plane, omin, omax);
// if inside the hole, no longer a hit on this poly
if (omin > 0.0) {
return false;
}
} // for e
return true;
}
void log(String p_string, int p_depth = 0) const;
// only a number of the spheres in the scene will be chosen to be
// active based on their distance to the camera, screen space etc.
Occlusion::Sphere _spheres[MAX_SPHERES];
real_t _sphere_distances[MAX_SPHERES];
real_t _sphere_closest_dist = 0.0;
int _num_spheres = 0;
int _max_spheres = 8;
struct SortPoly {
enum SortPolyFlags {
SPF_FACES_CAMERA = 1,
SPF_DONE = 2,
SPF_TESTED_AS_OCCLUDER = 4,
SPF_HAS_HOLES = 8,
};
Occlusion::PolyPlane poly;
uint32_t flags;
#ifdef TOOLS_ENABLED
uint32_t poly_source_id;
#endif
uint32_t mesh_source_id;
real_t goodness_of_fit;
};
struct PlaneSet {
void flip() {
for (int n = 0; n < num_planes; n++) {
planes[n] = -planes[n];
}
}
// pre-calculated edge planes to the camera
int num_planes = 0;
Plane planes[PortalDefines::OCCLUSION_POLY_MAX_VERTS];
};
struct PreCalcedPoly {
void flip() {
edge_planes.flip();
for (int n = 0; n < num_holes; n++) {
hole_edge_planes[n].flip();
}
}
int num_holes = 0;
PlaneSet edge_planes;
PlaneSet hole_edge_planes[PortalDefines::OCCLUSION_POLY_MAX_HOLES];
Occlusion::Poly hole_polys[PortalDefines::OCCLUSION_POLY_MAX_HOLES];
};
SortPoly _polys[MAX_POLYS];
PreCalcedPoly _precalced_poly[MAX_POLYS];
int _num_polys = 0;
int _max_polys = 8;
#ifdef TOOLS_ENABLED
uint32_t _poly_checksum = 0;
#endif
Vector3 _pt_camera;
Vector3 _pt_cam_dir;
CameraMatrix _matrix_camera;
PortalRenderer *_portal_renderer = nullptr;
Clipper _clipper;
bool _occluders_present = false;
static bool _debug_log;
};
#endif // PORTAL_OCCLUSION_CULLER_H