d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
536 lines
14 KiB
C++
536 lines
14 KiB
C++
/**************************************************************************/
|
|
/* test_dictionary.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_DICTIONARY_H
|
|
#define TEST_DICTIONARY_H
|
|
|
|
#include "core/variant/dictionary.h"
|
|
#include "tests/test_macros.h"
|
|
|
|
namespace TestDictionary {
|
|
|
|
static inline Array build_array() {
|
|
return Array();
|
|
}
|
|
template <typename... Targs>
|
|
static inline Array build_array(Variant item, Targs... Fargs) {
|
|
Array a = build_array(Fargs...);
|
|
a.push_front(item);
|
|
return a;
|
|
}
|
|
static inline Dictionary build_dictionary() {
|
|
return Dictionary();
|
|
}
|
|
template <typename... Targs>
|
|
static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) {
|
|
Dictionary d = build_dictionary(Fargs...);
|
|
d[key] = item;
|
|
return d;
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Assignment using bracket notation ([])") {
|
|
Dictionary map;
|
|
map["Hello"] = 0;
|
|
CHECK(int(map["Hello"]) == 0);
|
|
map["Hello"] = 3;
|
|
CHECK(int(map["Hello"]) == 3);
|
|
map["World!"] = 4;
|
|
CHECK(int(map["World!"]) == 4);
|
|
|
|
map[StringName("HelloName")] = 6;
|
|
CHECK(int(map[StringName("HelloName")]) == 6);
|
|
// Check that StringName key is converted to String.
|
|
CHECK(int(map.find_key(6).get_type()) == Variant::STRING);
|
|
map[StringName("HelloName")] = 7;
|
|
CHECK(int(map[StringName("HelloName")]) == 7);
|
|
|
|
// Test String and StringName are equivalent.
|
|
map[StringName("Hello")] = 8;
|
|
CHECK(int(map["Hello"]) == 8);
|
|
map["Hello"] = 9;
|
|
CHECK(int(map[StringName("Hello")]) == 9);
|
|
|
|
// Test non-string keys, since keys can be of any Variant type.
|
|
map[12345] = -5;
|
|
CHECK(int(map[12345]) == -5);
|
|
map[false] = 128;
|
|
CHECK(int(map[false]) == 128);
|
|
map[Vector2(10, 20)] = 30;
|
|
CHECK(int(map[Vector2(10, 20)]) == 30);
|
|
map[0] = 400;
|
|
CHECK(int(map[0]) == 400);
|
|
// Check that assigning 0 doesn't overwrite the value for `false`.
|
|
CHECK(int(map[false]) == 128);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] get_key_lists()") {
|
|
Dictionary map;
|
|
List<Variant> keys;
|
|
List<Variant> *ptr = &keys;
|
|
map.get_key_list(ptr);
|
|
CHECK(keys.is_empty());
|
|
map[1] = 3;
|
|
map.get_key_list(ptr);
|
|
CHECK(keys.size() == 1);
|
|
CHECK(int(keys[0]) == 1);
|
|
map[2] = 4;
|
|
map.get_key_list(ptr);
|
|
CHECK(keys.size() == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] get_key_at_index()") {
|
|
Dictionary map;
|
|
map[4] = 3;
|
|
Variant val = map.get_key_at_index(0);
|
|
CHECK(int(val) == 4);
|
|
map[3] = 1;
|
|
val = map.get_key_at_index(0);
|
|
CHECK(int(val) == 4);
|
|
val = map.get_key_at_index(1);
|
|
CHECK(int(val) == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] getptr()") {
|
|
Dictionary map;
|
|
map[1] = 3;
|
|
Variant *key = map.getptr(1);
|
|
CHECK(int(*key) == 3);
|
|
key = map.getptr(2);
|
|
CHECK(key == nullptr);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] get_valid()") {
|
|
Dictionary map;
|
|
map[1] = 3;
|
|
Variant val = map.get_valid(1);
|
|
CHECK(int(val) == 3);
|
|
}
|
|
TEST_CASE("[Dictionary] get()") {
|
|
Dictionary map;
|
|
map[1] = 3;
|
|
Variant val = map.get(1, -1);
|
|
CHECK(int(val) == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] size(), empty() and clear()") {
|
|
Dictionary map;
|
|
CHECK(map.size() == 0);
|
|
CHECK(map.is_empty());
|
|
map[1] = 3;
|
|
CHECK(map.size() == 1);
|
|
CHECK(!map.is_empty());
|
|
map.clear();
|
|
CHECK(map.size() == 0);
|
|
CHECK(map.is_empty());
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] has() and has_all()") {
|
|
Dictionary map;
|
|
CHECK(map.has(1) == false);
|
|
map[1] = 3;
|
|
CHECK(map.has(1));
|
|
Array keys;
|
|
keys.push_back(1);
|
|
CHECK(map.has_all(keys));
|
|
keys.push_back(2);
|
|
CHECK(map.has_all(keys) == false);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] keys() and values()") {
|
|
Dictionary map;
|
|
Array keys = map.keys();
|
|
Array values = map.values();
|
|
CHECK(keys.is_empty());
|
|
CHECK(values.is_empty());
|
|
map[1] = 3;
|
|
keys = map.keys();
|
|
values = map.values();
|
|
CHECK(int(keys[0]) == 1);
|
|
CHECK(int(values[0]) == 3);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Duplicate dictionary") {
|
|
// d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
|
|
Dictionary k2 = build_dictionary(2, 2);
|
|
Array k3 = build_array(3);
|
|
Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
|
|
|
|
// Deep copy
|
|
Dictionary deep_d = d.duplicate(true);
|
|
CHECK_MESSAGE(deep_d.id() != d.id(), "Should create a new dictionary");
|
|
CHECK_MESSAGE(Dictionary(deep_d[1]).id() != Dictionary(d[1]).id(), "Should clone nested dictionary");
|
|
CHECK_MESSAGE(Array(deep_d[k2]).id() != Array(d[k2]).id(), "Should clone nested array");
|
|
CHECK_EQ(deep_d, d);
|
|
deep_d[0] = 0;
|
|
CHECK_NE(deep_d, d);
|
|
deep_d.erase(0);
|
|
Dictionary(deep_d[1]).operator[](0) = 0;
|
|
CHECK_NE(deep_d, d);
|
|
Dictionary(deep_d[1]).erase(0);
|
|
CHECK_EQ(deep_d, d);
|
|
// Keys should also be copied
|
|
k2[0] = 0;
|
|
CHECK_NE(deep_d, d);
|
|
k2.erase(0);
|
|
CHECK_EQ(deep_d, d);
|
|
k3.push_back(0);
|
|
CHECK_NE(deep_d, d);
|
|
k3.pop_back();
|
|
CHECK_EQ(deep_d, d);
|
|
|
|
// Shallow copy
|
|
Dictionary shallow_d = d.duplicate(false);
|
|
CHECK_MESSAGE(shallow_d.id() != d.id(), "Should create a new array");
|
|
CHECK_MESSAGE(Dictionary(shallow_d[1]).id() == Dictionary(d[1]).id(), "Should keep nested dictionary");
|
|
CHECK_MESSAGE(Array(shallow_d[k2]).id() == Array(d[k2]).id(), "Should keep nested array");
|
|
CHECK_EQ(shallow_d, d);
|
|
shallow_d[0] = 0;
|
|
CHECK_NE(shallow_d, d);
|
|
shallow_d.erase(0);
|
|
#if 0 // TODO: recursion in dict key currently is buggy
|
|
// Keys should also be shallowed
|
|
k2[0] = 0;
|
|
CHECK_EQ(shallow_d, d);
|
|
k2.erase(0);
|
|
k3.push_back(0);
|
|
CHECK_EQ(shallow_d, d);
|
|
#endif
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Duplicate recursive dictionary") {
|
|
// Self recursive
|
|
Dictionary d;
|
|
d[1] = d;
|
|
|
|
Dictionary d_shallow = d.duplicate(false);
|
|
CHECK_EQ(d, d_shallow);
|
|
|
|
// Deep copy of recursive dictionary endup with recursion limit and return
|
|
// an invalid result (multiple nested dictionaries), the point is we should
|
|
// not end up with a segfault and an error log should be printed
|
|
ERR_PRINT_OFF;
|
|
d.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Nested recursive
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
d1[2] = d2;
|
|
d2[1] = d1;
|
|
|
|
Dictionary d1_shallow = d1.duplicate(false);
|
|
CHECK_EQ(d1, d1_shallow);
|
|
|
|
// Same deep copy issue as above
|
|
ERR_PRINT_OFF;
|
|
d1.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
|
|
#if 0 // TODO: duplicate recursion in dict key is currently buggy
|
|
TEST_CASE("[Dictionary] Duplicate recursive dictionary on keys") {
|
|
// Self recursive
|
|
Dictionary d;
|
|
d[d] = d;
|
|
|
|
Dictionary d_shallow = d.duplicate(false);
|
|
CHECK_EQ(d, d_shallow);
|
|
|
|
// Deep copy of recursive dictionary endup with recursion limit and return
|
|
// an invalid result (multiple nested dictionaries), the point is we should
|
|
// not end up with a segfault and an error log should be printed
|
|
ERR_PRINT_OFF;
|
|
d.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Nested recursive
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
d1[d2] = d2;
|
|
d2[d1] = d1;
|
|
|
|
Dictionary d1_shallow = d1.duplicate(false);
|
|
CHECK_EQ(d1, d1_shallow);
|
|
|
|
// Same deep copy issue as above
|
|
ERR_PRINT_OFF;
|
|
d1.duplicate(true);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
#endif
|
|
|
|
TEST_CASE("[Dictionary] Hash dictionary") {
|
|
// d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
|
|
Dictionary k2 = build_dictionary(2, 2);
|
|
Array k3 = build_array(3);
|
|
Dictionary d = build_dictionary(1, build_dictionary(1, 1), k2, build_array(2), k3, 3);
|
|
uint32_t original_hash = d.hash();
|
|
|
|
// Modify dict change the hash
|
|
d[0] = 0;
|
|
CHECK_NE(d.hash(), original_hash);
|
|
d.erase(0);
|
|
CHECK_EQ(d.hash(), original_hash);
|
|
|
|
// Modify nested item change the hash
|
|
Dictionary(d[1]).operator[](0) = 0;
|
|
CHECK_NE(d.hash(), original_hash);
|
|
Dictionary(d[1]).erase(0);
|
|
Array(d[k2]).push_back(0);
|
|
CHECK_NE(d.hash(), original_hash);
|
|
Array(d[k2]).pop_back();
|
|
|
|
// Modify a key change the hash
|
|
k2[0] = 0;
|
|
CHECK_NE(d.hash(), original_hash);
|
|
k2.erase(0);
|
|
CHECK_EQ(d.hash(), original_hash);
|
|
k3.push_back(0);
|
|
CHECK_NE(d.hash(), original_hash);
|
|
k3.pop_back();
|
|
CHECK_EQ(d.hash(), original_hash);
|
|
|
|
// Duplication doesn't change the hash
|
|
Dictionary d2 = d.duplicate(true);
|
|
CHECK_EQ(d2.hash(), original_hash);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Hash recursive dictionary") {
|
|
Dictionary d;
|
|
d[1] = d;
|
|
|
|
// Hash should reach recursion limit, we just make sure this doesn't blow up
|
|
ERR_PRINT_OFF;
|
|
d.hash();
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
}
|
|
|
|
#if 0 // TODO: recursion in dict key is currently buggy
|
|
TEST_CASE("[Dictionary] Hash recursive dictionary on keys") {
|
|
Dictionary d;
|
|
d[d] = 1;
|
|
|
|
// Hash should reach recursion limit, we just make sure this doesn't blow up
|
|
ERR_PRINT_OFF;
|
|
d.hash();
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d.clear();
|
|
}
|
|
#endif
|
|
|
|
TEST_CASE("[Dictionary] Empty comparison") {
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Flat comparison") {
|
|
Dictionary d1 = build_dictionary(1, 1);
|
|
Dictionary d2 = build_dictionary(1, 1);
|
|
Dictionary other_d = build_dictionary(2, 1);
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d1); // compare self
|
|
CHECK_FALSE(d1 != d1);
|
|
CHECK_EQ(d1, d2); // different equivalent arrays
|
|
CHECK_FALSE(d1 != d2);
|
|
CHECK_NE(d1, other_d); // different arrays with different content
|
|
CHECK_FALSE(d1 == other_d);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Nested dictionary comparison") {
|
|
// d1 = {1: {2: {3: 4}}}
|
|
Dictionary d1 = build_dictionary(1, build_dictionary(2, build_dictionary(3, 4)));
|
|
|
|
Dictionary d2 = d1.duplicate(true);
|
|
|
|
// other_d = {1: {2: {3: 0}}}
|
|
Dictionary other_d = build_dictionary(1, build_dictionary(2, build_dictionary(3, 0)));
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d1); // compare self
|
|
CHECK_FALSE(d1 != d1);
|
|
CHECK_EQ(d1, d2); // different equivalent arrays
|
|
CHECK_FALSE(d1 != d2);
|
|
CHECK_NE(d1, other_d); // different arrays with different content
|
|
CHECK_FALSE(d1 == other_d);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Nested array comparison") {
|
|
// d1 = {1: [2, 3]}
|
|
Dictionary d1 = build_dictionary(1, build_array(2, 3));
|
|
|
|
Dictionary d2 = d1.duplicate(true);
|
|
|
|
// other_d = {1: [2, 0]}
|
|
Dictionary other_d = build_dictionary(1, build_array(2, 0));
|
|
|
|
// test both operator== and operator!=
|
|
CHECK_EQ(d1, d1); // compare self
|
|
CHECK_FALSE(d1 != d1);
|
|
CHECK_EQ(d1, d2); // different equivalent arrays
|
|
CHECK_FALSE(d1 != d2);
|
|
CHECK_NE(d1, other_d); // different arrays with different content
|
|
CHECK_FALSE(d1 == other_d);
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Recursive comparison") {
|
|
Dictionary d1;
|
|
d1[1] = d1;
|
|
|
|
Dictionary d2;
|
|
d2[1] = d2;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[2] = 2;
|
|
d2[2] = 2;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[3] = 3;
|
|
d2[3] = 0;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_NE(d1, d2);
|
|
CHECK_FALSE(d1 == d2);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
|
|
#if 0 // TODO: recursion in dict key is currently buggy
|
|
TEST_CASE("[Dictionary] Recursive comparison on keys") {
|
|
Dictionary d1;
|
|
// Hash computation should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
d1[d1] = 1;
|
|
ERR_PRINT_ON;
|
|
|
|
Dictionary d2;
|
|
// Hash computation should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
d2[d2] = 1;
|
|
ERR_PRINT_ON;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[2] = 2;
|
|
d2[2] = 2;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_EQ(d1, d2);
|
|
CHECK_FALSE(d1 != d2);
|
|
ERR_PRINT_ON;
|
|
|
|
d1[3] = 3;
|
|
d2[3] = 0;
|
|
|
|
// Comparison should reach recursion limit
|
|
ERR_PRINT_OFF;
|
|
CHECK_NE(d1, d2);
|
|
CHECK_FALSE(d1 == d2);
|
|
ERR_PRINT_ON;
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
#endif
|
|
|
|
TEST_CASE("[Dictionary] Recursive self comparison") {
|
|
Dictionary d1;
|
|
Dictionary d2;
|
|
d1[1] = d2;
|
|
d2[1] = d1;
|
|
|
|
CHECK_EQ(d1, d1);
|
|
CHECK_FALSE(d1 != d1);
|
|
|
|
// Break the recursivity otherwise Dictionary teardown will leak memory
|
|
d1.clear();
|
|
d2.clear();
|
|
}
|
|
|
|
TEST_CASE("[Dictionary] Order and find") {
|
|
Dictionary d;
|
|
d[4] = "four";
|
|
d[8] = "eight";
|
|
d[12] = "twelve";
|
|
d["4"] = "four";
|
|
|
|
Array keys;
|
|
keys.append(4);
|
|
keys.append(8);
|
|
keys.append(12);
|
|
keys.append("4");
|
|
|
|
CHECK_EQ(d.keys(), keys);
|
|
CHECK_EQ(d.find_key("four"), Variant(4));
|
|
CHECK_EQ(d.find_key("does not exist"), Variant());
|
|
}
|
|
|
|
} // namespace TestDictionary
|
|
|
|
#endif // TEST_DICTIONARY_H
|