virtualx-engine/thirdparty/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3Internal.h

1020 lines
30 KiB
C++

//Bullet Continuous Collision Detection and Physics Library
//Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
//
// btAxisSweep3.h
//
// Copyright (c) 2006 Simon Hobbs
//
// This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
#ifndef BT_AXIS_SWEEP_3_INTERNAL_H
#define BT_AXIS_SWEEP_3_INTERNAL_H
#include "LinearMath/btVector3.h"
#include "btOverlappingPairCache.h"
#include "btBroadphaseInterface.h"
#include "btBroadphaseProxy.h"
#include "btOverlappingPairCallback.h"
#include "btDbvtBroadphase.h"
//#define DEBUG_BROADPHASE 1
#define USE_OVERLAP_TEST_ON_REMOVES 1
/// The internal templace class btAxisSweep3Internal implements the sweep and prune broadphase.
/// It uses quantized integers to represent the begin and end points for each of the 3 axis.
/// Dont use this class directly, use btAxisSweep3 or bt32BitAxisSweep3 instead.
template <typename BP_FP_INT_TYPE>
class btAxisSweep3Internal : public btBroadphaseInterface
{
protected:
BP_FP_INT_TYPE m_bpHandleMask;
BP_FP_INT_TYPE m_handleSentinel;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
class Edge
{
public:
BP_FP_INT_TYPE m_pos; // low bit is min/max
BP_FP_INT_TYPE m_handle;
BP_FP_INT_TYPE IsMax() const {return static_cast<BP_FP_INT_TYPE>(m_pos & 1);}
};
public:
class Handle : public btBroadphaseProxy
{
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
// indexes into the edge arrays
BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3]; // 6 * 2 = 12
// BP_FP_INT_TYPE m_uniqueId;
btBroadphaseProxy* m_dbvtProxy;//for faster raycast
//void* m_pOwner; this is now in btBroadphaseProxy.m_clientObject
SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) {m_minEdges[0] = next;}
SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const {return m_minEdges[0];}
}; // 24 bytes + 24 for Edge structures = 44 bytes total per entry
protected:
btVector3 m_worldAabbMin; // overall system bounds
btVector3 m_worldAabbMax; // overall system bounds
btVector3 m_quantize; // scaling factor for quantization
BP_FP_INT_TYPE m_numHandles; // number of active handles
BP_FP_INT_TYPE m_maxHandles; // max number of handles
Handle* m_pHandles; // handles pool
BP_FP_INT_TYPE m_firstFreeHandle; // free handles list
Edge* m_pEdges[3]; // edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries)
void* m_pEdgesRawPtr[3];
btOverlappingPairCache* m_pairCache;
///btOverlappingPairCallback is an additional optional user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache.
btOverlappingPairCallback* m_userPairCallback;
bool m_ownsPairCache;
int m_invalidPair;
///additional dynamic aabb structure, used to accelerate ray cast queries.
///can be disabled using a optional argument in the constructor
btDbvtBroadphase* m_raycastAccelerator;
btOverlappingPairCache* m_nullPairCache;
// allocation/deallocation
BP_FP_INT_TYPE allocHandle();
void freeHandle(BP_FP_INT_TYPE handle);
bool testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1);
#ifdef DEBUG_BROADPHASE
void debugPrintAxis(int axis,bool checkCardinality=true);
#endif //DEBUG_BROADPHASE
//Overlap* AddOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);
//void RemoveOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);
void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
public:
btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache=0,bool disableRaycastAccelerator = false);
virtual ~btAxisSweep3Internal();
BP_FP_INT_TYPE getNumHandles() const
{
return m_numHandles;
}
virtual void calculateOverlappingPairs(btDispatcher* dispatcher);
BP_FP_INT_TYPE addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher);
void removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher);
void updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;}
virtual void resetPool(btDispatcher* dispatcher);
void processAllOverlappingPairs(btOverlapCallback* callback);
//Broadphase Interface
virtual btBroadphaseProxy* createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr , int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher);
virtual void destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
virtual void setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
virtual void getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
virtual void rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin=btVector3(0,0,0), const btVector3& aabbMax = btVector3(0,0,0));
virtual void aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);
void quantize(BP_FP_INT_TYPE* out, const btVector3& point, int isMax) const;
///unQuantize should be conservative: aabbMin/aabbMax should be larger then 'getAabb' result
void unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
bool testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);
btOverlappingPairCache* getOverlappingPairCache()
{
return m_pairCache;
}
const btOverlappingPairCache* getOverlappingPairCache() const
{
return m_pairCache;
}
void setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback)
{
m_userPairCallback = pairCallback;
}
const btOverlappingPairCallback* getOverlappingPairUserCallback() const
{
return m_userPairCallback;
}
///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
///will add some transform later
virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
{
aabbMin = m_worldAabbMin;
aabbMax = m_worldAabbMax;
}
virtual void printStats()
{
/* printf("btAxisSweep3.h\n");
printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
printf("aabbMin=%f,%f,%f,aabbMax=%f,%f,%f\n",m_worldAabbMin.getX(),m_worldAabbMin.getY(),m_worldAabbMin.getZ(),
m_worldAabbMax.getX(),m_worldAabbMax.getY(),m_worldAabbMax.getZ());
*/
}
};
////////////////////////////////////////////////////////////////////
#ifdef DEBUG_BROADPHASE
#include <stdio.h>
template <typename BP_FP_INT_TYPE>
void btAxisSweep3<BP_FP_INT_TYPE>::debugPrintAxis(int axis, bool checkCardinality)
{
int numEdges = m_pHandles[0].m_maxEdges[axis];
printf("SAP Axis %d, numEdges=%d\n",axis,numEdges);
int i;
for (i=0;i<numEdges+1;i++)
{
Edge* pEdge = m_pEdges[axis] + i;
Handle* pHandlePrev = getHandle(pEdge->m_handle);
int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
char beginOrEnd;
beginOrEnd=pEdge->IsMax()?'E':'B';
printf(" [%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex);
}
if (checkCardinality)
btAssert(numEdges == m_numHandles*2+1);
}
#endif //DEBUG_BROADPHASE
template <typename BP_FP_INT_TYPE>
btBroadphaseProxy* btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy( const btVector3& aabbMin, const btVector3& aabbMax,int shapeType,void* userPtr, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher)
{
(void)shapeType;
BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask,dispatcher);
Handle* handle = getHandle(handleId);
if (m_raycastAccelerator)
{
btBroadphaseProxy* rayProxy = m_raycastAccelerator->createProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask,dispatcher);
handle->m_dbvtProxy = rayProxy;
}
return handle;
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
Handle* handle = static_cast<Handle*>(proxy);
if (m_raycastAccelerator)
m_raycastAccelerator->destroyProxy(handle->m_dbvtProxy,dispatcher);
removeHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), dispatcher);
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
{
Handle* handle = static_cast<Handle*>(proxy);
handle->m_aabbMin = aabbMin;
handle->m_aabbMax = aabbMax;
updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax,dispatcher);
if (m_raycastAccelerator)
m_raycastAccelerator->setAabb(handle->m_dbvtProxy,aabbMin,aabbMax,dispatcher);
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback,const btVector3& aabbMin,const btVector3& aabbMax)
{
if (m_raycastAccelerator)
{
m_raycastAccelerator->rayTest(rayFrom,rayTo,rayCallback,aabbMin,aabbMax);
} else
{
//choose axis?
BP_FP_INT_TYPE axis = 0;
//for each proxy
for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++)
{
if (m_pEdges[axis][i].IsMax())
{
rayCallback.process(getHandle(m_pEdges[axis][i].m_handle));
}
}
}
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
{
if (m_raycastAccelerator)
{
m_raycastAccelerator->aabbTest(aabbMin,aabbMax,callback);
} else
{
//choose axis?
BP_FP_INT_TYPE axis = 0;
//for each proxy
for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++)
{
if (m_pEdges[axis][i].IsMax())
{
Handle* handle = getHandle(m_pEdges[axis][i].m_handle);
if (TestAabbAgainstAabb2(aabbMin,aabbMax,handle->m_aabbMin,handle->m_aabbMax))
{
callback.process(handle);
}
}
}
}
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
{
Handle* pHandle = static_cast<Handle*>(proxy);
aabbMin = pHandle->m_aabbMin;
aabbMax = pHandle->m_aabbMax;
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
{
Handle* pHandle = static_cast<Handle*>(proxy);
unsigned short vecInMin[3];
unsigned short vecInMax[3];
vecInMin[0] = m_pEdges[0][pHandle->m_minEdges[0]].m_pos ;
vecInMax[0] = m_pEdges[0][pHandle->m_maxEdges[0]].m_pos +1 ;
vecInMin[1] = m_pEdges[1][pHandle->m_minEdges[1]].m_pos ;
vecInMax[1] = m_pEdges[1][pHandle->m_maxEdges[1]].m_pos +1 ;
vecInMin[2] = m_pEdges[2][pHandle->m_minEdges[2]].m_pos ;
vecInMax[2] = m_pEdges[2][pHandle->m_maxEdges[2]].m_pos +1 ;
aabbMin.setValue((btScalar)(vecInMin[0]) / (m_quantize.getX()),(btScalar)(vecInMin[1]) / (m_quantize.getY()),(btScalar)(vecInMin[2]) / (m_quantize.getZ()));
aabbMin += m_worldAabbMin;
aabbMax.setValue((btScalar)(vecInMax[0]) / (m_quantize.getX()),(btScalar)(vecInMax[1]) / (m_quantize.getY()),(btScalar)(vecInMax[2]) / (m_quantize.getZ()));
aabbMax += m_worldAabbMin;
}
template <typename BP_FP_INT_TYPE>
btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel,BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache , bool disableRaycastAccelerator)
:m_bpHandleMask(handleMask),
m_handleSentinel(handleSentinel),
m_pairCache(pairCache),
m_userPairCallback(0),
m_ownsPairCache(false),
m_invalidPair(0),
m_raycastAccelerator(0)
{
BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles+1);//need to add one sentinel handle
if (!m_pairCache)
{
void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16);
m_pairCache = new(ptr) btHashedOverlappingPairCache();
m_ownsPairCache = true;
}
if (!disableRaycastAccelerator)
{
m_nullPairCache = new (btAlignedAlloc(sizeof(btNullPairCache),16)) btNullPairCache();
m_raycastAccelerator = new (btAlignedAlloc(sizeof(btDbvtBroadphase),16)) btDbvtBroadphase(m_nullPairCache);//m_pairCache);
m_raycastAccelerator->m_deferedcollide = true;//don't add/remove pairs
}
//btAssert(bounds.HasVolume());
// init bounds
m_worldAabbMin = worldAabbMin;
m_worldAabbMax = worldAabbMax;
btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;
BP_FP_INT_TYPE maxInt = m_handleSentinel;
m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize;
// allocate handles buffer, using btAlignedAlloc, and put all handles on free list
m_pHandles = new Handle[maxHandles];
m_maxHandles = maxHandles;
m_numHandles = 0;
// handle 0 is reserved as the null index, and is also used as the sentinel
m_firstFreeHandle = 1;
{
for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < maxHandles; i++)
m_pHandles[i].SetNextFree(static_cast<BP_FP_INT_TYPE>(i + 1));
m_pHandles[maxHandles - 1].SetNextFree(0);
}
{
// allocate edge buffers
for (int i = 0; i < 3; i++)
{
m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge)*maxHandles*2,16);
m_pEdges[i] = new(m_pEdgesRawPtr[i]) Edge[maxHandles * 2];
}
}
//removed overlap management
// make boundary sentinels
m_pHandles[0].m_clientObject = 0;
for (int axis = 0; axis < 3; axis++)
{
m_pHandles[0].m_minEdges[axis] = 0;
m_pHandles[0].m_maxEdges[axis] = 1;
m_pEdges[axis][0].m_pos = 0;
m_pEdges[axis][0].m_handle = 0;
m_pEdges[axis][1].m_pos = m_handleSentinel;
m_pEdges[axis][1].m_handle = 0;
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
}
template <typename BP_FP_INT_TYPE>
btAxisSweep3Internal<BP_FP_INT_TYPE>::~btAxisSweep3Internal()
{
if (m_raycastAccelerator)
{
m_nullPairCache->~btOverlappingPairCache();
btAlignedFree(m_nullPairCache);
m_raycastAccelerator->~btDbvtBroadphase();
btAlignedFree (m_raycastAccelerator);
}
for (int i = 2; i >= 0; i--)
{
btAlignedFree(m_pEdgesRawPtr[i]);
}
delete [] m_pHandles;
if (m_ownsPairCache)
{
m_pairCache->~btOverlappingPairCache();
btAlignedFree(m_pairCache);
}
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::quantize(BP_FP_INT_TYPE* out, const btVector3& point, int isMax) const
{
#ifdef OLD_CLAMPING_METHOD
///problem with this clamping method is that the floating point during quantization might still go outside the range [(0|isMax) .. (m_handleSentinel&m_bpHandleMask]|isMax]
///see http://code.google.com/p/bullet/issues/detail?id=87
btVector3 clampedPoint(point);
clampedPoint.setMax(m_worldAabbMin);
clampedPoint.setMin(m_worldAabbMax);
btVector3 v = (clampedPoint - m_worldAabbMin) * m_quantize;
out[0] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getX() & m_bpHandleMask) | isMax);
out[1] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getY() & m_bpHandleMask) | isMax);
out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & m_bpHandleMask) | isMax);
#else
btVector3 v = (point - m_worldAabbMin) * m_quantize;
out[0]=(v[0]<=0)?(BP_FP_INT_TYPE)isMax:(v[0]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[0]&m_bpHandleMask)|isMax);
out[1]=(v[1]<=0)?(BP_FP_INT_TYPE)isMax:(v[1]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[1]&m_bpHandleMask)|isMax);
out[2]=(v[2]<=0)?(BP_FP_INT_TYPE)isMax:(v[2]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[2]&m_bpHandleMask)|isMax);
#endif //OLD_CLAMPING_METHOD
}
template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::allocHandle()
{
btAssert(m_firstFreeHandle);
BP_FP_INT_TYPE handle = m_firstFreeHandle;
m_firstFreeHandle = getHandle(handle)->GetNextFree();
m_numHandles++;
return handle;
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::freeHandle(BP_FP_INT_TYPE handle)
{
btAssert(handle > 0 && handle < m_maxHandles);
getHandle(handle)->SetNextFree(m_firstFreeHandle);
m_firstFreeHandle = handle;
m_numHandles--;
}
template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner, int collisionFilterGroup, int collisionFilterMask,btDispatcher* dispatcher)
{
// quantize the bounds
BP_FP_INT_TYPE min[3], max[3];
quantize(min, aabbMin, 0);
quantize(max, aabbMax, 1);
// allocate a handle
BP_FP_INT_TYPE handle = allocHandle();
Handle* pHandle = getHandle(handle);
pHandle->m_uniqueId = static_cast<int>(handle);
//pHandle->m_pOverlaps = 0;
pHandle->m_clientObject = pOwner;
pHandle->m_collisionFilterGroup = collisionFilterGroup;
pHandle->m_collisionFilterMask = collisionFilterMask;
// compute current limit of edge arrays
BP_FP_INT_TYPE limit = static_cast<BP_FP_INT_TYPE>(m_numHandles * 2);
// insert new edges just inside the max boundary edge
for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++)
{
m_pHandles[0].m_maxEdges[axis] += 2;
m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];
m_pEdges[axis][limit - 1].m_pos = min[axis];
m_pEdges[axis][limit - 1].m_handle = handle;
m_pEdges[axis][limit].m_pos = max[axis];
m_pEdges[axis][limit].m_handle = handle;
pHandle->m_minEdges[axis] = static_cast<BP_FP_INT_TYPE>(limit - 1);
pHandle->m_maxEdges[axis] = limit;
}
// now sort the new edges to their correct position
sortMinDown(0, pHandle->m_minEdges[0], dispatcher,false);
sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher,false);
sortMinDown(1, pHandle->m_minEdges[1], dispatcher,false);
sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher,false);
sortMinDown(2, pHandle->m_minEdges[2], dispatcher,true);
sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher,true);
return handle;
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher)
{
Handle* pHandle = getHandle(handle);
//explicitly remove the pairs containing the proxy
//we could do it also in the sortMinUp (passing true)
///@todo: compare performance
if (!m_pairCache->hasDeferredRemoval())
{
m_pairCache->removeOverlappingPairsContainingProxy(pHandle,dispatcher);
}
// compute current limit of edge arrays
int limit = static_cast<int>(m_numHandles * 2);
int axis;
for (axis = 0;axis<3;axis++)
{
m_pHandles[0].m_maxEdges[axis] -= 2;
}
// remove the edges by sorting them up to the end of the list
for ( axis = 0; axis < 3; axis++)
{
Edge* pEdges = m_pEdges[axis];
BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
pEdges[max].m_pos = m_handleSentinel;
sortMaxUp(axis,max,dispatcher,false);
BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
pEdges[i].m_pos = m_handleSentinel;
sortMinUp(axis,i,dispatcher,false);
pEdges[limit-1].m_handle = 0;
pEdges[limit-1].m_pos = m_handleSentinel;
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis,false);
#endif //DEBUG_BROADPHASE
}
// free the handle
freeHandle(handle);
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::resetPool(btDispatcher* /*dispatcher*/)
{
if (m_numHandles == 0)
{
m_firstFreeHandle = 1;
{
for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < m_maxHandles; i++)
m_pHandles[i].SetNextFree(static_cast<BP_FP_INT_TYPE>(i + 1));
m_pHandles[m_maxHandles - 1].SetNextFree(0);
}
}
}
//#include <stdio.h>
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher)
{
if (m_pairCache->hasDeferredRemoval())
{
btBroadphasePairArray& overlappingPairArray = m_pairCache->getOverlappingPairArray();
//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
int i;
btBroadphasePair previousPair;
previousPair.m_pProxy0 = 0;
previousPair.m_pProxy1 = 0;
previousPair.m_algorithm = 0;
for (i=0;i<overlappingPairArray.size();i++)
{
btBroadphasePair& pair = overlappingPairArray[i];
bool isDuplicate = (pair == previousPair);
previousPair = pair;
bool needsRemoval = false;
if (!isDuplicate)
{
///important to use an AABB test that is consistent with the broadphase
bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);
if (hasOverlap)
{
needsRemoval = false;//callback->processOverlap(pair);
} else
{
needsRemoval = true;
}
} else
{
//remove duplicate
needsRemoval = true;
//should have no algorithm
btAssert(!pair.m_algorithm);
}
if (needsRemoval)
{
m_pairCache->cleanOverlappingPair(pair,dispatcher);
// m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
// m_overlappingPairArray.pop_back();
pair.m_pProxy0 = 0;
pair.m_pProxy1 = 0;
m_invalidPair++;
}
}
///if you don't like to skip the invalid pairs in the array, execute following code:
#define CLEAN_INVALID_PAIRS 1
#ifdef CLEAN_INVALID_PAIRS
//perform a sort, to sort 'invalid' pairs to the end
overlappingPairArray.quickSort(btBroadphasePairSortPredicate());
overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
m_invalidPair = 0;
#endif//CLEAN_INVALID_PAIRS
//printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
}
}
template <typename BP_FP_INT_TYPE>
bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
const Handle* pHandleA = static_cast<Handle*>(proxy0);
const Handle* pHandleB = static_cast<Handle*>(proxy1);
//optimization 1: check the array index (memory address), instead of the m_pos
for (int axis = 0; axis < 3; axis++)
{
if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] ||
pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis])
{
return false;
}
}
return true;
}
template <typename BP_FP_INT_TYPE>
bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1)
{
//optimization 1: check the array index (memory address), instead of the m_pos
if (pHandleA->m_maxEdges[axis0] < pHandleB->m_minEdges[axis0] ||
pHandleB->m_maxEdges[axis0] < pHandleA->m_minEdges[axis0] ||
pHandleA->m_maxEdges[axis1] < pHandleB->m_minEdges[axis1] ||
pHandleB->m_maxEdges[axis1] < pHandleA->m_minEdges[axis1])
{
return false;
}
return true;
}
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
{
// btAssert(bounds.IsFinite());
//btAssert(bounds.HasVolume());
Handle* pHandle = getHandle(handle);
// quantize the new bounds
BP_FP_INT_TYPE min[3], max[3];
quantize(min, aabbMin, 0);
quantize(max, aabbMax, 1);
// update changed edges
for (int axis = 0; axis < 3; axis++)
{
BP_FP_INT_TYPE emin = pHandle->m_minEdges[axis];
BP_FP_INT_TYPE emax = pHandle->m_maxEdges[axis];
int dmin = (int)min[axis] - (int)m_pEdges[axis][emin].m_pos;
int dmax = (int)max[axis] - (int)m_pEdges[axis][emax].m_pos;
m_pEdges[axis][emin].m_pos = min[axis];
m_pEdges[axis][emax].m_pos = max[axis];
// expand (only adds overlaps)
if (dmin < 0)
sortMinDown(axis, emin,dispatcher,true);
if (dmax > 0)
sortMaxUp(axis, emax,dispatcher,true);
// shrink (only removes overlaps)
if (dmin > 0)
sortMinUp(axis, emin,dispatcher,true);
if (dmax < 0)
sortMaxDown(axis, emax,dispatcher,true);
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
}
// sorting a min edge downwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pEdge->m_pos < pPrev->m_pos)
{
Handle* pHandlePrev = getHandle(pPrev->m_handle);
if (pPrev->IsMax())
{
// if previous edge is a maximum check the bounds and add an overlap if necessary
const int axis1 = (1 << axis) & 3;
const int axis2 = (1 << axis1) & 3;
if (updateOverlaps && testOverlap2D(pHandleEdge, pHandlePrev,axis1,axis2))
{
m_pairCache->addOverlappingPair(pHandleEdge,pHandlePrev);
if (m_userPairCallback)
m_userPairCallback->addOverlappingPair(pHandleEdge,pHandlePrev);
//AddOverlap(pEdge->m_handle, pPrev->m_handle);
}
// update edge reference in other handle
pHandlePrev->m_maxEdges[axis]++;
}
else
pHandlePrev->m_minEdges[axis]++;
pHandleEdge->m_minEdges[axis]--;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pPrev;
*pPrev = swap;
// decrement
pEdge--;
pPrev--;
}
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
// sorting a min edge upwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
{
Handle* pHandleNext = getHandle(pNext->m_handle);
if (pNext->IsMax())
{
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pNext->m_handle);
const int axis1 = (1 << axis) & 3;
const int axis2 = (1 << axis1) & 3;
// if next edge is maximum remove any overlap between the two handles
if (updateOverlaps
#ifdef USE_OVERLAP_TEST_ON_REMOVES
&& testOverlap2D(handle0,handle1,axis1,axis2)
#endif //USE_OVERLAP_TEST_ON_REMOVES
)
{
m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
if (m_userPairCallback)
m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
}
// update edge reference in other handle
pHandleNext->m_maxEdges[axis]--;
}
else
pHandleNext->m_minEdges[axis]--;
pHandleEdge->m_minEdges[axis]++;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pNext;
*pNext = swap;
// increment
pEdge++;
pNext++;
}
}
// sorting a max edge downwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pPrev = pEdge - 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pEdge->m_pos < pPrev->m_pos)
{
Handle* pHandlePrev = getHandle(pPrev->m_handle);
if (!pPrev->IsMax())
{
// if previous edge was a minimum remove any overlap between the two handles
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pPrev->m_handle);
const int axis1 = (1 << axis) & 3;
const int axis2 = (1 << axis1) & 3;
if (updateOverlaps
#ifdef USE_OVERLAP_TEST_ON_REMOVES
&& testOverlap2D(handle0,handle1,axis1,axis2)
#endif //USE_OVERLAP_TEST_ON_REMOVES
)
{
//this is done during the overlappingpairarray iteration/narrowphase collision
m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
if (m_userPairCallback)
m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
}
// update edge reference in other handle
pHandlePrev->m_minEdges[axis]++;;
}
else
pHandlePrev->m_maxEdges[axis]++;
pHandleEdge->m_maxEdges[axis]--;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pPrev;
*pPrev = swap;
// decrement
pEdge--;
pPrev--;
}
#ifdef DEBUG_BROADPHASE
debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
}
// sorting a max edge upwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
{
Edge* pEdge = m_pEdges[axis] + edge;
Edge* pNext = pEdge + 1;
Handle* pHandleEdge = getHandle(pEdge->m_handle);
while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
{
Handle* pHandleNext = getHandle(pNext->m_handle);
const int axis1 = (1 << axis) & 3;
const int axis2 = (1 << axis1) & 3;
if (!pNext->IsMax())
{
// if next edge is a minimum check the bounds and add an overlap if necessary
if (updateOverlaps && testOverlap2D(pHandleEdge, pHandleNext,axis1,axis2))
{
Handle* handle0 = getHandle(pEdge->m_handle);
Handle* handle1 = getHandle(pNext->m_handle);
m_pairCache->addOverlappingPair(handle0,handle1);
if (m_userPairCallback)
m_userPairCallback->addOverlappingPair(handle0,handle1);
}
// update edge reference in other handle
pHandleNext->m_minEdges[axis]--;
}
else
pHandleNext->m_maxEdges[axis]--;
pHandleEdge->m_maxEdges[axis]++;
// swap the edges
Edge swap = *pEdge;
*pEdge = *pNext;
*pNext = swap;
// increment
pEdge++;
pNext++;
}
}
#endif