virtualx-engine/servers/physics_2d/space_2d_sw.cpp
2015-10-09 21:54:16 +02:00

1339 lines
36 KiB
C++

/*************************************************************************/
/* space_2d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2015 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "space_2d_sw.h"
#include "collision_solver_2d_sw.h"
#include "physics_2d_server_sw.h"
_FORCE_INLINE_ static bool _match_object_type_query(CollisionObject2DSW *p_object, uint32_t p_layer_mask, uint32_t p_type_mask) {
if ((p_object->get_layer_mask()&p_layer_mask)==0)
return false;
if (p_object->get_type()==CollisionObject2DSW::TYPE_AREA)
return p_type_mask&Physics2DDirectSpaceState::TYPE_MASK_AREA;
Body2DSW *body = static_cast<Body2DSW*>(p_object);
return (1<<body->get_mode())&p_type_mask;
}
int Physics2DDirectSpaceStateSW::intersect_point(const Vector2& p_point,ShapeResult *r_results,int p_result_max,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
if (p_result_max<=0)
return 0;
Rect2 aabb;
aabb.pos=p_point-Vector2(0.00001,0.00001);
aabb.size=Vector2(0.00002,0.00002);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
int cc=0;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
if (!col_obj->is_pickable())
continue;
int shape_idx=space->intersection_query_subindex_results[i];
Shape2DSW * shape = col_obj->get_shape(shape_idx);
Vector2 local_point = (col_obj->get_transform() * col_obj->get_shape_transform(shape_idx)).affine_inverse().xform(p_point);
if (!shape->contains_point(local_point))
continue;
r_results[cc].collider_id=col_obj->get_instance_id();
if (r_results[cc].collider_id!=0)
r_results[cc].collider=ObjectDB::get_instance(r_results[cc].collider_id);
r_results[cc].rid=col_obj->get_self();
r_results[cc].shape=shape_idx;
r_results[cc].metadata=col_obj->get_shape_metadata(shape_idx);
cc++;
}
return cc;
}
bool Physics2DDirectSpaceStateSW::intersect_ray(const Vector2& p_from, const Vector2& p_to,RayResult &r_result,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
ERR_FAIL_COND_V(space->locked,false);
Vector2 begin,end;
Vector2 normal;
begin=p_from;
end=p_to;
normal=(end-begin).normalized();
int amount = space->broadphase->cull_segment(begin,end,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
//todo, create another array tha references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision
bool collided=false;
Vector2 res_point,res_normal;
int res_shape;
const CollisionObject2DSW *res_obj;
real_t min_d=1e10;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
Matrix32 inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform();
Vector2 local_from = inv_xform.xform(begin);
Vector2 local_to = inv_xform.xform(end);
/*local_from = col_obj->get_inv_transform().xform(begin);
local_from = col_obj->get_shape_inv_transform(shape_idx).xform(local_from);
local_to = col_obj->get_inv_transform().xform(end);
local_to = col_obj->get_shape_inv_transform(shape_idx).xform(local_to);*/
const Shape2DSW *shape = col_obj->get_shape(shape_idx);
Vector2 shape_point,shape_normal;
if (shape->intersect_segment(local_from,local_to,shape_point,shape_normal)) {
Matrix32 xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
shape_point=xform.xform(shape_point);
real_t ld = normal.dot(shape_point);
if (ld<min_d) {
min_d=ld;
res_point=shape_point;
res_normal=inv_xform.basis_xform_inv(shape_normal).normalized();
res_shape=shape_idx;
res_obj=col_obj;
collided=true;
}
}
}
if (!collided)
return false;
r_result.collider_id=res_obj->get_instance_id();
if (r_result.collider_id!=0)
r_result.collider=ObjectDB::get_instance(r_result.collider_id);
r_result.normal=res_normal;
r_result.metadata=res_obj->get_shape_metadata(res_shape);
r_result.position=res_point;
r_result.rid=res_obj->get_self();
r_result.shape=res_shape;
return true;
}
int Physics2DDirectSpaceStateSW::intersect_shape(const RID& p_shape, const Matrix32& p_xform,const Vector2& p_motion,float p_margin,ShapeResult *r_results,int p_result_max,const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
if (p_result_max<=0)
return 0;
Shape2DSW *shape = static_cast<Physics2DServerSW*>(Physics2DServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
Rect2 aabb = p_xform.xform(shape->get_aabb());
aabb=aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
int cc=0;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue;
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (!CollisionSolver2DSW::solve(shape,p_xform,p_motion,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2(),NULL,NULL,NULL,p_margin))
continue;
r_results[cc].collider_id=col_obj->get_instance_id();
if (r_results[cc].collider_id!=0)
r_results[cc].collider=ObjectDB::get_instance(r_results[cc].collider_id);
r_results[cc].rid=col_obj->get_self();
r_results[cc].shape=shape_idx;
r_results[cc].metadata=col_obj->get_shape_metadata(shape_idx);
cc++;
}
return cc;
}
bool Physics2DDirectSpaceStateSW::cast_motion(const RID& p_shape, const Matrix32& p_xform,const Vector2& p_motion,float p_margin,float &p_closest_safe,float &p_closest_unsafe, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
Shape2DSW *shape = static_cast<Physics2DServerSW*>(Physics2DServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,false);
Rect2 aabb = p_xform.xform(shape->get_aabb());
aabb=aabb.merge(Rect2(aabb.pos+p_motion,aabb.size)); //motion
aabb=aabb.grow(p_margin);
//if (p_motion!=Vector2())
// print_line(p_motion);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
float best_safe=1;
float best_unsafe=1;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
if (p_exclude.has( space->intersection_query_results[i]->get_self()))
continue; //ignore excluded
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
/*if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
if (body->get_one_way_collision_direction()!=Vector2() && p_motion.dot(body->get_one_way_collision_direction())<=CMP_EPSILON) {
print_line("failed in motion dir");
continue;
}
}*/
Matrix32 col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (!CollisionSolver2DSW::solve(shape,p_xform,p_motion,col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL,p_margin)) {
continue;
}
//test initial overlap
if (CollisionSolver2DSW::solve(shape,p_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL,p_margin)) {
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
//if one way collision direction ignore initial overlap
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
if (body->get_one_way_collision_direction()!=Vector2()) {
continue;
}
}
return false;
}
//just do kinematic solving
float low=0;
float hi=1;
Vector2 mnormal=p_motion.normalized();
for(int i=0;i<8;i++) { //steps should be customizable..
Matrix32 xfa = p_xform;
float ofs = (low+hi)*0.5;
Vector2 sep=mnormal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(shape,p_xform,p_motion*ofs,col_obj->get_shape(shape_idx),col_obj_xform,Vector2(),NULL,NULL,&sep,p_margin);
if (collided) {
hi=ofs;
} else {
low=ofs;
}
}
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
if (body->get_one_way_collision_direction()!=Vector2()) {
Vector2 cd[2];
Physics2DServerSW::CollCbkData cbk;
cbk.max=1;
cbk.amount=0;
cbk.ptr=cd;
cbk.valid_dir=body->get_one_way_collision_direction();
cbk.valid_depth=body->get_one_way_collision_max_depth();
Vector2 sep=mnormal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(shape,p_xform,p_motion*(hi+space->contact_max_allowed_penetration),col_obj->get_shape(shape_idx),col_obj_xform,Vector2(),Physics2DServerSW::_shape_col_cbk,&cbk,&sep,p_margin);
if (!collided || cbk.amount==0) {
continue;
}
}
}
if (low<best_safe) {
best_safe=low;
best_unsafe=hi;
}
}
p_closest_safe=best_safe;
p_closest_unsafe=best_unsafe;
return true;
}
bool Physics2DDirectSpaceStateSW::collide_shape(RID p_shape, const Matrix32& p_shape_xform,const Vector2& p_motion,float p_margin,Vector2 *r_results,int p_result_max,int &r_result_count, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
if (p_result_max<=0)
return 0;
Shape2DSW *shape = static_cast<Physics2DServerSW*>(Physics2DServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
Rect2 aabb = p_shape_xform.xform(shape->get_aabb());
aabb=aabb.merge(Rect2(aabb.pos+p_motion,aabb.size)); //motion
aabb=aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
bool collided=false;
int cc=0;
r_result_count=0;
Physics2DServerSW::CollCbkData cbk;
cbk.max=p_result_max;
cbk.amount=0;
cbk.ptr=r_results;
CollisionSolver2DSW::CallbackResult cbkres=NULL;
Physics2DServerSW::CollCbkData *cbkptr=NULL;
if (p_result_max>0) {
cbkptr=&cbk;
cbkres=Physics2DServerSW::_shape_col_cbk;
}
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (p_exclude.has( col_obj->get_self() ))
continue;
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
cbk.valid_dir=body->get_one_way_collision_direction();
cbk.valid_depth=body->get_one_way_collision_max_depth();
} else {
cbk.valid_dir=Vector2();
cbk.valid_depth=0;
}
if (CollisionSolver2DSW::solve(shape,p_shape_xform,p_motion,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2(),cbkres,cbkptr,NULL,p_margin)) {
collided=p_result_max==0 || cbk.amount>0;
}
}
r_result_count=cbk.amount;
return collided;
}
struct _RestCallbackData2D {
const CollisionObject2DSW *object;
const CollisionObject2DSW *best_object;
int shape;
int best_shape;
Vector2 best_contact;
Vector2 best_normal;
float best_len;
Vector2 valid_dir;
float valid_depth;
};
static void _rest_cbk_result(const Vector2& p_point_A,const Vector2& p_point_B,void *p_userdata) {
_RestCallbackData2D *rd=(_RestCallbackData2D*)p_userdata;
if (rd->valid_dir!=Vector2()) {
if (rd->valid_dir!=Vector2()) {
if (p_point_A.distance_squared_to(p_point_B)>rd->valid_depth*rd->valid_depth)
return;
if (rd->valid_dir.dot((p_point_A-p_point_B).normalized())<Math_PI*0.25)
return;
}
}
Vector2 contact_rel = p_point_B - p_point_A;
float len = contact_rel.length();
if (len <= rd->best_len)
return;
rd->best_len=len;
rd->best_contact=p_point_B;
rd->best_normal=contact_rel/len;
rd->best_object=rd->object;
rd->best_shape=rd->shape;
}
bool Physics2DDirectSpaceStateSW::rest_info(RID p_shape, const Matrix32& p_shape_xform,const Vector2& p_motion,float p_margin,ShapeRestInfo *r_info, const Set<RID>& p_exclude,uint32_t p_layer_mask,uint32_t p_object_type_mask) {
Shape2DSW *shape = static_cast<Physics2DServerSW*>(Physics2DServer::get_singleton())->shape_owner.get(p_shape);
ERR_FAIL_COND_V(!shape,0);
Rect2 aabb = p_shape_xform.xform(shape->get_aabb());
aabb=aabb.merge(Rect2(aabb.pos+p_motion,aabb.size)); //motion
aabb=aabb.grow(p_margin);
int amount = space->broadphase->cull_aabb(aabb,space->intersection_query_results,Space2DSW::INTERSECTION_QUERY_MAX,space->intersection_query_subindex_results);
_RestCallbackData2D rcd;
rcd.best_len=0;
rcd.best_object=NULL;
rcd.best_shape=0;
for(int i=0;i<amount;i++) {
if (!_match_object_type_query(space->intersection_query_results[i],p_layer_mask,p_object_type_mask))
continue;
const CollisionObject2DSW *col_obj=space->intersection_query_results[i];
int shape_idx=space->intersection_query_subindex_results[i];
if (p_exclude.has( col_obj->get_self() ))
continue;
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
rcd.valid_dir=body->get_one_way_collision_direction();
rcd.valid_depth=body->get_one_way_collision_max_depth();
} else {
rcd.valid_dir=Vector2();
rcd.valid_depth=0;
}
rcd.object=col_obj;
rcd.shape=shape_idx;
bool sc = CollisionSolver2DSW::solve(shape,p_shape_xform,p_motion,col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2() ,_rest_cbk_result,&rcd,NULL,p_margin);
if (!sc)
continue;
}
if (rcd.best_len==0)
return false;
r_info->collider_id=rcd.best_object->get_instance_id();
r_info->shape=rcd.best_shape;
r_info->normal=rcd.best_normal;
r_info->point=rcd.best_contact;
r_info->rid=rcd.best_object->get_self();
r_info->metadata=rcd.best_object->get_shape_metadata(rcd.best_shape);
if (rcd.best_object->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body = static_cast<const Body2DSW*>(rcd.best_object);
Vector2 rel_vec = r_info->point-body->get_transform().get_origin();
r_info->linear_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity();
} else {
r_info->linear_velocity=Vector2();
}
return true;
}
Physics2DDirectSpaceStateSW::Physics2DDirectSpaceStateSW() {
space=NULL;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
int Space2DSW::_cull_aabb_for_body(Body2DSW *p_body,const Rect2& p_aabb) {
int amount = broadphase->cull_aabb(p_aabb,intersection_query_results,INTERSECTION_QUERY_MAX,intersection_query_subindex_results);
for(int i=0;i<amount;i++) {
bool keep=true;
if (intersection_query_results[i]==p_body)
keep=false;
else if (intersection_query_results[i]->get_type()==CollisionObject2DSW::TYPE_AREA)
keep=false;
else if ((static_cast<Body2DSW*>(intersection_query_results[i])->test_collision_mask(p_body))==0)
keep=false;
else if (static_cast<Body2DSW*>(intersection_query_results[i])->has_exception(p_body->get_self()) || p_body->has_exception(intersection_query_results[i]->get_self()))
keep=false;
else if (static_cast<Body2DSW*>(intersection_query_results[i])->is_shape_set_as_trigger(intersection_query_subindex_results[i]))
keep=false;
if (!keep) {
if (i<amount-1) {
SWAP(intersection_query_results[i],intersection_query_results[amount-1]);
SWAP(intersection_query_subindex_results[i],intersection_query_subindex_results[amount-1]);
}
amount--;
i--;
}
}
return amount;
}
bool Space2DSW::test_body_motion(Body2DSW *p_body,const Vector2&p_motion,float p_margin,Physics2DServer::MotionResult *r_result) {
//give me back regular physics engine logic
//this is madness
//and most people using this function will think
//what it does is simpler than using physics
//this took about a week to get right..
//but is it right? who knows at this point..
Rect2 body_aabb;
for(int i=0;i<p_body->get_shape_count();i++) {
if (i==0)
body_aabb=p_body->get_shape_aabb(i);
else
body_aabb=body_aabb.merge(p_body->get_shape_aabb(i));
}
body_aabb=body_aabb.grow(p_margin);
Matrix32 body_transform = p_body->get_transform();
{
//STEP 1, FREE BODY IF STUCK
const int max_results = 32;
int recover_attempts=4;
Vector2 sr[max_results*2];
do {
Physics2DServerSW::CollCbkData cbk;
cbk.max=max_results;
cbk.amount=0;
cbk.ptr=sr;
CollisionSolver2DSW::CallbackResult cbkres=NULL;
Physics2DServerSW::CollCbkData *cbkptr=NULL;
cbkptr=&cbk;
cbkres=Physics2DServerSW::_shape_col_cbk;
bool collided=false;
int amount = _cull_aabb_for_body(p_body,body_aabb);
for(int j=0;j<p_body->get_shape_count();j++) {
if (p_body->is_shape_set_as_trigger(j))
continue;
Matrix32 body_shape_xform = body_transform * p_body->get_shape_transform(j);
Shape2DSW *body_shape = p_body->get_shape(j);
for(int i=0;i<amount;i++) {
const CollisionObject2DSW *col_obj=intersection_query_results[i];
int shape_idx=intersection_query_subindex_results[i];
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
Vector2 cdir = body->get_one_way_collision_direction();
//if (cdir!=Vector2() && p_motion.dot(cdir)<0)
// continue;
cbk.valid_dir=cdir;
cbk.valid_depth=body->get_one_way_collision_max_depth();
} else {
cbk.valid_dir=Vector2();
cbk.valid_depth=0;
}
if (CollisionSolver2DSW::solve(body_shape,body_shape_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2(),cbkres,cbkptr,NULL,p_margin)) {
collided=cbk.amount>0;
}
}
}
if (!collided)
break;
Vector2 recover_motion;
for(int i=0;i<cbk.amount;i++) {
Vector2 a = sr[i*2+0];
Vector2 b = sr[i*2+1];
// float d = a.distance_to(b);
//if (d<margin)
/// continue;
recover_motion+=(b-a)*0.4;
}
if (recover_motion==Vector2()) {
collided=false;
break;
}
body_transform.elements[2]+=recover_motion;
body_aabb.pos+=recover_motion;
recover_attempts--;
} while (recover_attempts);
}
float safe = 1.0;
float unsafe = 1.0;
int best_shape=-1;
{
// STEP 2 ATTEMPT MOTION
Rect2 motion_aabb=body_aabb;
motion_aabb.pos+=p_motion;
motion_aabb=motion_aabb.merge(body_aabb);
int amount = _cull_aabb_for_body(p_body,motion_aabb);
for(int j=0;j<p_body->get_shape_count();j++) {
if (p_body->is_shape_set_as_trigger(j))
continue;
Matrix32 body_shape_xform = body_transform * p_body->get_shape_transform(j);
Shape2DSW *body_shape = p_body->get_shape(j);
bool stuck=false;
float best_safe=1;
float best_unsafe=1;
for(int i=0;i<amount;i++) {
const CollisionObject2DSW *col_obj=intersection_query_results[i];
int shape_idx=intersection_query_subindex_results[i];
Matrix32 col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
if (!CollisionSolver2DSW::solve(body_shape,body_shape_xform,p_motion,col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL,0)) {
continue;
}
//test initial overlap
if (CollisionSolver2DSW::solve(body_shape,body_shape_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj_xform,Vector2() ,NULL,NULL,NULL,0)) {
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
//if one way collision direction ignore initial overlap
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
if (body->get_one_way_collision_direction()!=Vector2()) {
continue;
}
}
stuck=true;
break;
}
//just do kinematic solving
float low=0;
float hi=1;
Vector2 mnormal=p_motion.normalized();
for(int i=0;i<8;i++) { //steps should be customizable..
//Matrix32 xfa = p_xform;
float ofs = (low+hi)*0.5;
Vector2 sep=mnormal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(body_shape,body_shape_xform,p_motion*ofs,col_obj->get_shape(shape_idx),col_obj_xform,Vector2(),NULL,NULL,&sep,0);
if (collided) {
hi=ofs;
} else {
low=ofs;
}
}
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
if (body->get_one_way_collision_direction()!=Vector2()) {
Vector2 cd[2];
Physics2DServerSW::CollCbkData cbk;
cbk.max=1;
cbk.amount=0;
cbk.ptr=cd;
cbk.valid_dir=body->get_one_way_collision_direction();
cbk.valid_depth=body->get_one_way_collision_max_depth();
Vector2 sep=mnormal; //important optimization for this to work fast enough
bool collided = CollisionSolver2DSW::solve(body_shape,body_shape_xform,p_motion*(hi+contact_max_allowed_penetration),col_obj->get_shape(shape_idx),col_obj_xform,Vector2(),Physics2DServerSW::_shape_col_cbk,&cbk,&sep,0);
if (!collided || cbk.amount==0) {
continue;
}
}
}
if (low<best_safe) {
best_safe=low;
best_unsafe=hi;
}
}
if (stuck) {
safe=0;
unsafe=0;
best_shape=j; //sadly it's the best
break;
}
if (best_safe==1.0) {
continue;
}
if (best_safe < safe) {
safe=best_safe;
unsafe=best_unsafe;
best_shape=j;
}
}
}
bool collided=false;
if (safe>=1) {
//not collided
collided=false;
if (r_result) {
r_result->motion=p_motion+(body_transform.elements[2]-p_body->get_transform().elements[2]);
r_result->remainder=Vector2();
}
} else {
//it collided, let's get the rest info in unsafe advance
Matrix32 ugt = body_transform;
ugt.elements[2]+=p_motion*unsafe;
_RestCallbackData2D rcd;
rcd.best_len=0;
rcd.best_object=NULL;
rcd.best_shape=0;
Matrix32 body_shape_xform = ugt * p_body->get_shape_transform(best_shape);
Shape2DSW *body_shape = p_body->get_shape(best_shape);
body_aabb.pos+=p_motion*unsafe;
int amount = _cull_aabb_for_body(p_body,body_aabb);
for(int i=0;i<amount;i++) {
const CollisionObject2DSW *col_obj=intersection_query_results[i];
int shape_idx=intersection_query_subindex_results[i];
if (col_obj->get_type()==CollisionObject2DSW::TYPE_BODY) {
const Body2DSW *body=static_cast<const Body2DSW*>(col_obj);
rcd.valid_dir=body->get_one_way_collision_direction();
rcd.valid_depth=body->get_one_way_collision_max_depth();
} else {
rcd.valid_dir=Vector2();
rcd.valid_depth=0;
}
rcd.object=col_obj;
rcd.shape=shape_idx;
bool sc = CollisionSolver2DSW::solve(body_shape,body_shape_xform,Vector2(),col_obj->get_shape(shape_idx),col_obj->get_transform() * col_obj->get_shape_transform(shape_idx),Vector2() ,_rest_cbk_result,&rcd,NULL,p_margin);
if (!sc)
continue;
}
if (rcd.best_len!=0) {
if (r_result) {
r_result->collider=rcd.best_object->get_self();
r_result->collider_id=rcd.best_object->get_instance_id();
r_result->collider_shape=rcd.best_shape;
r_result->collision_normal=rcd.best_normal;
r_result->collision_point=rcd.best_contact;
r_result->collider_metadata=rcd.best_object->get_shape_metadata(rcd.best_shape);
const Body2DSW *body = static_cast<const Body2DSW*>(rcd.best_object);
Vector2 rel_vec = r_result->collision_point-body->get_transform().get_origin();
r_result->collider_velocity = Vector2(-body->get_angular_velocity() * rel_vec.y, body->get_angular_velocity() * rel_vec.x) + body->get_linear_velocity();
r_result->motion=safe*p_motion+(body_transform.elements[2]-p_body->get_transform().elements[2]);
r_result->remainder=p_motion - safe * p_motion;
}
collided=true;
} else {
if (r_result) {
r_result->motion=p_motion+(body_transform.elements[2]-p_body->get_transform().elements[2]);
r_result->remainder=Vector2();
}
collided=false;
}
}
return collided;
#if 0
//give me back regular physics engine logic
//this is madness
//and most people using this function will think
//what it does is simpler than using physics
//this took about a week to get right..
//but is it right? who knows at this point..
colliding=false;
ERR_FAIL_COND_V(!is_inside_tree(),Vector2());
Physics2DDirectSpaceState *dss = Physics2DServer::get_singleton()->space_get_direct_state(get_world_2d()->get_space());
ERR_FAIL_COND_V(!dss,Vector2());
const int max_shapes=32;
Vector2 sr[max_shapes*2];
int res_shapes;
Set<RID> exclude;
exclude.insert(get_rid());
//recover first
int recover_attempts=4;
bool collided=false;
uint32_t mask=0;
if (collide_static)
mask|=Physics2DDirectSpaceState::TYPE_MASK_STATIC_BODY;
if (collide_kinematic)
mask|=Physics2DDirectSpaceState::TYPE_MASK_KINEMATIC_BODY;
if (collide_rigid)
mask|=Physics2DDirectSpaceState::TYPE_MASK_RIGID_BODY;
if (collide_character)
mask|=Physics2DDirectSpaceState::TYPE_MASK_CHARACTER_BODY;
// print_line("motion: "+p_motion+" margin: "+rtos(margin));
//print_line("margin: "+rtos(margin));
do {
//motion recover
for(int i=0;i<get_shape_count();i++) {
if (is_shape_set_as_trigger(i))
continue;
if (dss->collide_shape(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i),Vector2(),margin,sr,max_shapes,res_shapes,exclude,get_layer_mask(),mask))
collided=true;
}
if (!collided)
break;
Vector2 recover_motion;
for(int i=0;i<res_shapes;i++) {
Vector2 a = sr[i*2+0];
Vector2 b = sr[i*2+1];
float d = a.distance_to(b);
//if (d<margin)
/// continue;
recover_motion+=(b-a)*0.4;
}
if (recover_motion==Vector2()) {
collided=false;
break;
}
Matrix32 gt = get_global_transform();
gt.elements[2]+=recover_motion;
set_global_transform(gt);
recover_attempts--;
} while (recover_attempts);
//move second
float safe = 1.0;
float unsafe = 1.0;
int best_shape=-1;
for(int i=0;i<get_shape_count();i++) {
if (is_shape_set_as_trigger(i))
continue;
float lsafe,lunsafe;
bool valid = dss->cast_motion(get_shape(i)->get_rid(), get_global_transform() * get_shape_transform(i), p_motion, 0,lsafe,lunsafe,exclude,get_layer_mask(),mask);
//print_line("shape: "+itos(i)+" travel:"+rtos(ltravel));
if (!valid) {
safe=0;
unsafe=0;
best_shape=i; //sadly it's the best
break;
}
if (lsafe==1.0) {
continue;
}
if (lsafe < safe) {
safe=lsafe;
unsafe=lunsafe;
best_shape=i;
}
}
//print_line("best shape: "+itos(best_shape)+" motion "+p_motion);
if (safe>=1) {
//not collided
colliding=false;
} else {
//it collided, let's get the rest info in unsafe advance
Matrix32 ugt = get_global_transform();
ugt.elements[2]+=p_motion*unsafe;
Physics2DDirectSpaceState::ShapeRestInfo rest_info;
bool c2 = dss->rest_info(get_shape(best_shape)->get_rid(), ugt*get_shape_transform(best_shape), Vector2(), margin,&rest_info,exclude,get_layer_mask(),mask);
if (!c2) {
//should not happen, but floating point precision is so weird..
colliding=false;
} else {
//print_line("Travel: "+rtos(travel));
colliding=true;
collision=rest_info.point;
normal=rest_info.normal;
collider=rest_info.collider_id;
collider_vel=rest_info.linear_velocity;
collider_shape=rest_info.shape;
collider_metadata=rest_info.metadata;
}
}
Vector2 motion=p_motion*safe;
Matrix32 gt = get_global_transform();
gt.elements[2]+=motion;
set_global_transform(gt);
return p_motion-motion;
#endif
return false;
}
void* Space2DSW::_broadphase_pair(CollisionObject2DSW *A,int p_subindex_A,CollisionObject2DSW *B,int p_subindex_B,void *p_self) {
CollisionObject2DSW::Type type_A=A->get_type();
CollisionObject2DSW::Type type_B=B->get_type();
if (type_A>type_B) {
SWAP(A,B);
SWAP(p_subindex_A,p_subindex_B);
SWAP(type_A,type_B);
}
Space2DSW *self = (Space2DSW*)p_self;
self->collision_pairs++;
if (type_A==CollisionObject2DSW::TYPE_AREA) {
Area2DSW *area=static_cast<Area2DSW*>(A);
if (type_B==CollisionObject2DSW::TYPE_AREA) {
Area2DSW *area_b=static_cast<Area2DSW*>(B);
Area2Pair2DSW *area2_pair = memnew(Area2Pair2DSW(area_b,p_subindex_B,area,p_subindex_A) );
return area2_pair;
} else {
Body2DSW *body=static_cast<Body2DSW*>(B);
AreaPair2DSW *area_pair = memnew(AreaPair2DSW(body,p_subindex_B,area,p_subindex_A) );
return area_pair;
}
} else {
BodyPair2DSW *b = memnew( BodyPair2DSW((Body2DSW*)A,p_subindex_A,(Body2DSW*)B,p_subindex_B) );
return b;
}
return NULL;
}
void Space2DSW::_broadphase_unpair(CollisionObject2DSW *A,int p_subindex_A,CollisionObject2DSW *B,int p_subindex_B,void *p_data,void *p_self) {
Space2DSW *self = (Space2DSW*)p_self;
self->collision_pairs--;
Constraint2DSW *c = (Constraint2DSW*)p_data;
memdelete(c);
}
const SelfList<Body2DSW>::List& Space2DSW::get_active_body_list() const {
return active_list;
}
void Space2DSW::body_add_to_active_list(SelfList<Body2DSW>* p_body) {
active_list.add(p_body);
}
void Space2DSW::body_remove_from_active_list(SelfList<Body2DSW>* p_body) {
active_list.remove(p_body);
}
void Space2DSW::body_add_to_inertia_update_list(SelfList<Body2DSW>* p_body) {
inertia_update_list.add(p_body);
}
void Space2DSW::body_remove_from_inertia_update_list(SelfList<Body2DSW>* p_body) {
inertia_update_list.remove(p_body);
}
BroadPhase2DSW *Space2DSW::get_broadphase() {
return broadphase;
}
void Space2DSW::add_object(CollisionObject2DSW *p_object) {
ERR_FAIL_COND( objects.has(p_object) );
objects.insert(p_object);
}
void Space2DSW::remove_object(CollisionObject2DSW *p_object) {
ERR_FAIL_COND( !objects.has(p_object) );
objects.erase(p_object);
}
const Set<CollisionObject2DSW*> &Space2DSW::get_objects() const {
return objects;
}
void Space2DSW::body_add_to_state_query_list(SelfList<Body2DSW>* p_body) {
state_query_list.add(p_body);
}
void Space2DSW::body_remove_from_state_query_list(SelfList<Body2DSW>* p_body) {
state_query_list.remove(p_body);
}
void Space2DSW::area_add_to_monitor_query_list(SelfList<Area2DSW>* p_area) {
monitor_query_list.add(p_area);
}
void Space2DSW::area_remove_from_monitor_query_list(SelfList<Area2DSW>* p_area) {
monitor_query_list.remove(p_area);
}
void Space2DSW::area_add_to_moved_list(SelfList<Area2DSW>* p_area) {
area_moved_list.add(p_area);
}
void Space2DSW::area_remove_from_moved_list(SelfList<Area2DSW>* p_area) {
area_moved_list.remove(p_area);
}
const SelfList<Area2DSW>::List& Space2DSW::get_moved_area_list() const {
return area_moved_list;
}
void Space2DSW::call_queries() {
while(state_query_list.first()) {
Body2DSW * b = state_query_list.first()->self();
b->call_queries();
state_query_list.remove(state_query_list.first());
}
while(monitor_query_list.first()) {
Area2DSW * a = monitor_query_list.first()->self();
a->call_queries();
monitor_query_list.remove(monitor_query_list.first());
}
}
void Space2DSW::setup() {
contact_debug_count=0;
while(inertia_update_list.first()) {
inertia_update_list.first()->self()->update_inertias();
inertia_update_list.remove(inertia_update_list.first());
}
}
void Space2DSW::update() {
broadphase->update();
}
void Space2DSW::set_param(Physics2DServer::SpaceParameter p_param, real_t p_value) {
switch(p_param) {
case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius=p_value; break;
case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: body_linear_velocity_sleep_treshold=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: body_angular_velocity_sleep_treshold=p_value; break;
case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep=p_value; break;
case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias=p_value; break;
}
}
real_t Space2DSW::get_param(Physics2DServer::SpaceParameter p_param) const {
switch(p_param) {
case Physics2DServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius;
case Physics2DServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation;
case Physics2DServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration;
case Physics2DServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_TRESHOLD: return body_linear_velocity_sleep_treshold;
case Physics2DServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_TRESHOLD: return body_angular_velocity_sleep_treshold;
case Physics2DServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep;
case Physics2DServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias;
}
return 0;
}
void Space2DSW::lock() {
locked=true;
}
void Space2DSW::unlock() {
locked=false;
}
bool Space2DSW::is_locked() const {
return locked;
}
Physics2DDirectSpaceStateSW *Space2DSW::get_direct_state() {
return direct_access;
}
Space2DSW::Space2DSW() {
collision_pairs=0;
active_objects=0;
island_count=0;
contact_debug_count=0;
locked=false;
contact_recycle_radius=0.01;
contact_max_separation=0.05;
contact_max_allowed_penetration= 0.01;
constraint_bias = 0.01;
body_linear_velocity_sleep_treshold=0.01;
body_angular_velocity_sleep_treshold=(8.0 / 180.0 * Math_PI);
body_time_to_sleep=0.5;
broadphase = BroadPhase2DSW::create_func();
broadphase->set_pair_callback(_broadphase_pair,this);
broadphase->set_unpair_callback(_broadphase_unpair,this);
area=NULL;
direct_access = memnew( Physics2DDirectSpaceStateSW );
direct_access->space=this;
}
Space2DSW::~Space2DSW() {
memdelete(broadphase);
memdelete( direct_access );
}