virtualx-engine/thirdparty/zstd/compress/zstd_compress.c
2018-05-16 02:45:22 +09:00

3449 lines
150 KiB
C

/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Tuning parameters
***************************************/
#ifndef ZSTD_CLEVEL_DEFAULT
# define ZSTD_CLEVEL_DEFAULT 3
#endif
/*-*************************************
* Dependencies
***************************************/
#include <string.h> /* memset */
#include "cpu.h"
#include "mem.h"
#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#include "zstd_compress_internal.h"
#include "zstd_fast.h"
#include "zstd_double_fast.h"
#include "zstd_lazy.h"
#include "zstd_opt.h"
#include "zstd_ldm.h"
/*-*************************************
* Helper functions
***************************************/
size_t ZSTD_compressBound(size_t srcSize) {
return ZSTD_COMPRESSBOUND(srcSize);
}
/*-*************************************
* Context memory management
***************************************/
struct ZSTD_CDict_s {
void* dictBuffer;
const void* dictContent;
size_t dictContentSize;
void* workspace;
size_t workspaceSize;
ZSTD_matchState_t matchState;
ZSTD_compressedBlockState_t cBlockState;
ZSTD_compressionParameters cParams;
ZSTD_customMem customMem;
U32 dictID;
}; /* typedef'd to ZSTD_CDict within "zstd.h" */
ZSTD_CCtx* ZSTD_createCCtx(void)
{
return ZSTD_createCCtx_advanced(ZSTD_defaultCMem);
}
ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem)
{
ZSTD_STATIC_ASSERT(zcss_init==0);
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1));
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
{ ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_calloc(sizeof(ZSTD_CCtx), customMem);
if (!cctx) return NULL;
cctx->customMem = customMem;
cctx->requestedParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
cctx->requestedParams.fParams.contentSizeFlag = 1;
cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
return cctx;
}
}
ZSTD_CCtx* ZSTD_initStaticCCtx(void *workspace, size_t workspaceSize)
{
ZSTD_CCtx* const cctx = (ZSTD_CCtx*) workspace;
if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */
if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */
memset(workspace, 0, workspaceSize); /* may be a bit generous, could memset be smaller ? */
cctx->staticSize = workspaceSize;
cctx->workSpace = (void*)(cctx+1);
cctx->workSpaceSize = workspaceSize - sizeof(ZSTD_CCtx);
/* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */
if (cctx->workSpaceSize < HUF_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t)) return NULL;
assert(((size_t)cctx->workSpace & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)cctx->workSpace;
cctx->blockState.nextCBlock = cctx->blockState.prevCBlock + 1;
{
void* const ptr = cctx->blockState.nextCBlock + 1;
cctx->entropyWorkspace = (U32*)ptr;
}
cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
return cctx;
}
size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support free on NULL */
if (cctx->staticSize) return ERROR(memory_allocation); /* not compatible with static CCtx */
ZSTD_free(cctx->workSpace, cctx->customMem); cctx->workSpace = NULL;
ZSTD_freeCDict(cctx->cdictLocal); cctx->cdictLocal = NULL;
#ifdef ZSTD_MULTITHREAD
ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL;
#endif
ZSTD_free(cctx, cctx->customMem);
return 0; /* reserved as a potential error code in the future */
}
static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx)
{
#ifdef ZSTD_MULTITHREAD
return ZSTDMT_sizeof_CCtx(cctx->mtctx);
#else
(void) cctx;
return 0;
#endif
}
size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx)
{
if (cctx==NULL) return 0; /* support sizeof on NULL */
return sizeof(*cctx) + cctx->workSpaceSize
+ ZSTD_sizeof_CDict(cctx->cdictLocal)
+ ZSTD_sizeof_mtctx(cctx);
}
size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs)
{
return ZSTD_sizeof_CCtx(zcs); /* same object */
}
/* private API call, for dictBuilder only */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); }
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams(CCtxParams->compressionLevel, srcSizeHint, dictSize);
if (CCtxParams->ldmParams.enableLdm) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG;
if (CCtxParams->cParams.windowLog) cParams.windowLog = CCtxParams->cParams.windowLog;
if (CCtxParams->cParams.hashLog) cParams.hashLog = CCtxParams->cParams.hashLog;
if (CCtxParams->cParams.chainLog) cParams.chainLog = CCtxParams->cParams.chainLog;
if (CCtxParams->cParams.searchLog) cParams.searchLog = CCtxParams->cParams.searchLog;
if (CCtxParams->cParams.searchLength) cParams.searchLength = CCtxParams->cParams.searchLength;
if (CCtxParams->cParams.targetLength) cParams.targetLength = CCtxParams->cParams.targetLength;
if (CCtxParams->cParams.strategy) cParams.strategy = CCtxParams->cParams.strategy;
return cParams;
}
static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams(
ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params cctxParams;
memset(&cctxParams, 0, sizeof(cctxParams));
cctxParams.cParams = cParams;
cctxParams.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
assert(!ZSTD_checkCParams(cParams));
cctxParams.fParams.contentSizeFlag = 1;
return cctxParams;
}
static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced(
ZSTD_customMem customMem)
{
ZSTD_CCtx_params* params;
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
params = (ZSTD_CCtx_params*)ZSTD_calloc(
sizeof(ZSTD_CCtx_params), customMem);
if (!params) { return NULL; }
params->customMem = customMem;
params->compressionLevel = ZSTD_CLEVEL_DEFAULT;
params->fParams.contentSizeFlag = 1;
return params;
}
ZSTD_CCtx_params* ZSTD_createCCtxParams(void)
{
return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem);
}
size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params)
{
if (params == NULL) { return 0; }
ZSTD_free(params, params->customMem);
return 0;
}
size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params)
{
return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT);
}
size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) {
if (!cctxParams) { return ERROR(GENERIC); }
memset(cctxParams, 0, sizeof(*cctxParams));
cctxParams->compressionLevel = compressionLevel;
cctxParams->fParams.contentSizeFlag = 1;
return 0;
}
size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params)
{
if (!cctxParams) { return ERROR(GENERIC); }
CHECK_F( ZSTD_checkCParams(params.cParams) );
memset(cctxParams, 0, sizeof(*cctxParams));
cctxParams->cParams = params.cParams;
cctxParams->fParams = params.fParams;
cctxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
assert(!ZSTD_checkCParams(params.cParams));
return 0;
}
/* ZSTD_assignParamsToCCtxParams() :
* params is presumed valid at this stage */
static ZSTD_CCtx_params ZSTD_assignParamsToCCtxParams(
ZSTD_CCtx_params cctxParams, ZSTD_parameters params)
{
ZSTD_CCtx_params ret = cctxParams;
ret.cParams = params.cParams;
ret.fParams = params.fParams;
ret.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */
assert(!ZSTD_checkCParams(params.cParams));
return ret;
}
#define CLAMPCHECK(val,min,max) { \
if (((val)<(min)) | ((val)>(max))) { \
return ERROR(parameter_outOfBound); \
} }
static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param)
{
switch(param)
{
case ZSTD_p_compressionLevel:
case ZSTD_p_hashLog:
case ZSTD_p_chainLog:
case ZSTD_p_searchLog:
case ZSTD_p_minMatch:
case ZSTD_p_targetLength:
case ZSTD_p_compressionStrategy:
case ZSTD_p_compressLiterals:
return 1;
case ZSTD_p_format:
case ZSTD_p_windowLog:
case ZSTD_p_contentSizeFlag:
case ZSTD_p_checksumFlag:
case ZSTD_p_dictIDFlag:
case ZSTD_p_forceMaxWindow :
case ZSTD_p_nbWorkers:
case ZSTD_p_jobSize:
case ZSTD_p_overlapSizeLog:
case ZSTD_p_enableLongDistanceMatching:
case ZSTD_p_ldmHashLog:
case ZSTD_p_ldmMinMatch:
case ZSTD_p_ldmBucketSizeLog:
case ZSTD_p_ldmHashEveryLog:
default:
return 0;
}
}
size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, unsigned value)
{
DEBUGLOG(4, "ZSTD_CCtx_setParameter (%u, %u)", (U32)param, value);
if (cctx->streamStage != zcss_init) {
if (ZSTD_isUpdateAuthorized(param)) {
cctx->cParamsChanged = 1;
} else {
return ERROR(stage_wrong);
} }
switch(param)
{
case ZSTD_p_format :
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_compressionLevel:
if (cctx->cdict) return ERROR(stage_wrong);
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_windowLog:
case ZSTD_p_hashLog:
case ZSTD_p_chainLog:
case ZSTD_p_searchLog:
case ZSTD_p_minMatch:
case ZSTD_p_targetLength:
case ZSTD_p_compressionStrategy:
if (cctx->cdict) return ERROR(stage_wrong);
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_compressLiterals:
case ZSTD_p_contentSizeFlag:
case ZSTD_p_checksumFlag:
case ZSTD_p_dictIDFlag:
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_forceMaxWindow : /* Force back-references to remain < windowSize,
* even when referencing into Dictionary content.
* default : 0 when using a CDict, 1 when using a Prefix */
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_nbWorkers:
if ((value>0) && cctx->staticSize) {
return ERROR(parameter_unsupported); /* MT not compatible with static alloc */
}
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_jobSize:
case ZSTD_p_overlapSizeLog:
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
case ZSTD_p_enableLongDistanceMatching:
case ZSTD_p_ldmHashLog:
case ZSTD_p_ldmMinMatch:
case ZSTD_p_ldmBucketSizeLog:
case ZSTD_p_ldmHashEveryLog:
if (cctx->cdict) return ERROR(stage_wrong);
return ZSTD_CCtxParam_setParameter(&cctx->requestedParams, param, value);
default: return ERROR(parameter_unsupported);
}
}
size_t ZSTD_CCtxParam_setParameter(
ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, unsigned value)
{
DEBUGLOG(4, "ZSTD_CCtxParam_setParameter (%u, %u)", (U32)param, value);
switch(param)
{
case ZSTD_p_format :
if (value > (unsigned)ZSTD_f_zstd1_magicless)
return ERROR(parameter_unsupported);
CCtxParams->format = (ZSTD_format_e)value;
return (size_t)CCtxParams->format;
case ZSTD_p_compressionLevel : {
int cLevel = (int)value; /* cast expected to restore negative sign */
if (cLevel > ZSTD_maxCLevel()) cLevel = ZSTD_maxCLevel();
if (cLevel) { /* 0 : does not change current level */
CCtxParams->disableLiteralCompression = (cLevel<0); /* negative levels disable huffman */
CCtxParams->compressionLevel = cLevel;
}
if (CCtxParams->compressionLevel >= 0) return CCtxParams->compressionLevel;
return 0; /* return type (size_t) cannot represent negative values */
}
case ZSTD_p_windowLog :
if (value>0) /* 0 => use default */
CLAMPCHECK(value, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
CCtxParams->cParams.windowLog = value;
return CCtxParams->cParams.windowLog;
case ZSTD_p_hashLog :
if (value>0) /* 0 => use default */
CLAMPCHECK(value, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CCtxParams->cParams.hashLog = value;
return CCtxParams->cParams.hashLog;
case ZSTD_p_chainLog :
if (value>0) /* 0 => use default */
CLAMPCHECK(value, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
CCtxParams->cParams.chainLog = value;
return CCtxParams->cParams.chainLog;
case ZSTD_p_searchLog :
if (value>0) /* 0 => use default */
CLAMPCHECK(value, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
CCtxParams->cParams.searchLog = value;
return value;
case ZSTD_p_minMatch :
if (value>0) /* 0 => use default */
CLAMPCHECK(value, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
CCtxParams->cParams.searchLength = value;
return CCtxParams->cParams.searchLength;
case ZSTD_p_targetLength :
/* all values are valid. 0 => use default */
CCtxParams->cParams.targetLength = value;
return CCtxParams->cParams.targetLength;
case ZSTD_p_compressionStrategy :
if (value>0) /* 0 => use default */
CLAMPCHECK(value, (unsigned)ZSTD_fast, (unsigned)ZSTD_btultra);
CCtxParams->cParams.strategy = (ZSTD_strategy)value;
return (size_t)CCtxParams->cParams.strategy;
case ZSTD_p_compressLiterals:
CCtxParams->disableLiteralCompression = !value;
return !CCtxParams->disableLiteralCompression;
case ZSTD_p_contentSizeFlag :
/* Content size written in frame header _when known_ (default:1) */
DEBUGLOG(4, "set content size flag = %u", (value>0));
CCtxParams->fParams.contentSizeFlag = value > 0;
return CCtxParams->fParams.contentSizeFlag;
case ZSTD_p_checksumFlag :
/* A 32-bits content checksum will be calculated and written at end of frame (default:0) */
CCtxParams->fParams.checksumFlag = value > 0;
return CCtxParams->fParams.checksumFlag;
case ZSTD_p_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */
DEBUGLOG(4, "set dictIDFlag = %u", (value>0));
CCtxParams->fParams.noDictIDFlag = !value;
return !CCtxParams->fParams.noDictIDFlag;
case ZSTD_p_forceMaxWindow :
CCtxParams->forceWindow = (value > 0);
return CCtxParams->forceWindow;
case ZSTD_p_nbWorkers :
#ifndef ZSTD_MULTITHREAD
if (value>0) return ERROR(parameter_unsupported);
return 0;
#else
return ZSTDMT_CCtxParam_setNbWorkers(CCtxParams, value);
#endif
case ZSTD_p_jobSize :
#ifndef ZSTD_MULTITHREAD
return ERROR(parameter_unsupported);
#else
return ZSTDMT_CCtxParam_setMTCtxParameter(CCtxParams, ZSTDMT_p_jobSize, value);
#endif
case ZSTD_p_overlapSizeLog :
#ifndef ZSTD_MULTITHREAD
return ERROR(parameter_unsupported);
#else
return ZSTDMT_CCtxParam_setMTCtxParameter(CCtxParams, ZSTDMT_p_overlapSectionLog, value);
#endif
case ZSTD_p_enableLongDistanceMatching :
CCtxParams->ldmParams.enableLdm = (value>0);
return CCtxParams->ldmParams.enableLdm;
case ZSTD_p_ldmHashLog :
if (value>0) /* 0 ==> auto */
CLAMPCHECK(value, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CCtxParams->ldmParams.hashLog = value;
return CCtxParams->ldmParams.hashLog;
case ZSTD_p_ldmMinMatch :
if (value>0) /* 0 ==> default */
CLAMPCHECK(value, ZSTD_LDM_MINMATCH_MIN, ZSTD_LDM_MINMATCH_MAX);
CCtxParams->ldmParams.minMatchLength = value;
return CCtxParams->ldmParams.minMatchLength;
case ZSTD_p_ldmBucketSizeLog :
if (value > ZSTD_LDM_BUCKETSIZELOG_MAX)
return ERROR(parameter_outOfBound);
CCtxParams->ldmParams.bucketSizeLog = value;
return CCtxParams->ldmParams.bucketSizeLog;
case ZSTD_p_ldmHashEveryLog :
if (value > ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN)
return ERROR(parameter_outOfBound);
CCtxParams->ldmParams.hashEveryLog = value;
return CCtxParams->ldmParams.hashEveryLog;
default: return ERROR(parameter_unsupported);
}
}
/** ZSTD_CCtx_setParametersUsingCCtxParams() :
* just applies `params` into `cctx`
* no action is performed, parameters are merely stored.
* If ZSTDMT is enabled, parameters are pushed to cctx->mtctx.
* This is possible even if a compression is ongoing.
* In which case, new parameters will be applied on the fly, starting with next compression job.
*/
size_t ZSTD_CCtx_setParametersUsingCCtxParams(
ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
if (cctx->cdict) return ERROR(stage_wrong);
cctx->requestedParams = *params;
return 0;
}
ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize);
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
return 0;
}
size_t ZSTD_CCtx_loadDictionary_advanced(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
if (cctx->staticSize) return ERROR(memory_allocation); /* no malloc for static CCtx */
DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize);
ZSTD_freeCDict(cctx->cdictLocal); /* in case one already exists */
if (dict==NULL || dictSize==0) { /* no dictionary mode */
cctx->cdictLocal = NULL;
cctx->cdict = NULL;
} else {
ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(&cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, dictSize);
cctx->cdictLocal = ZSTD_createCDict_advanced(
dict, dictSize,
dictLoadMethod, dictContentType,
cParams, cctx->customMem);
cctx->cdict = cctx->cdictLocal;
if (cctx->cdictLocal == NULL)
return ERROR(memory_allocation);
}
return 0;
}
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(
ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
}
ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize)
{
return ZSTD_CCtx_loadDictionary_advanced(
cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
}
size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
cctx->cdict = cdict;
memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* exclusive */
return 0;
}
size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize)
{
return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent);
}
size_t ZSTD_CCtx_refPrefix_advanced(
ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
{
if (cctx->streamStage != zcss_init) return ERROR(stage_wrong);
cctx->cdict = NULL; /* prefix discards any prior cdict */
cctx->prefixDict.dict = prefix;
cctx->prefixDict.dictSize = prefixSize;
cctx->prefixDict.dictContentType = dictContentType;
return 0;
}
static void ZSTD_startNewCompression(ZSTD_CCtx* cctx)
{
cctx->streamStage = zcss_init;
cctx->pledgedSrcSizePlusOne = 0;
}
/*! ZSTD_CCtx_reset() :
* Also dumps dictionary */
void ZSTD_CCtx_reset(ZSTD_CCtx* cctx)
{
ZSTD_startNewCompression(cctx);
cctx->cdict = NULL;
}
/** ZSTD_checkCParams() :
control CParam values remain within authorized range.
@return : 0, or an error code if one value is beyond authorized range */
size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams)
{
CLAMPCHECK(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
CLAMPCHECK(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
CLAMPCHECK(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CLAMPCHECK(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
CLAMPCHECK(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
if ((U32)(cParams.targetLength) < ZSTD_TARGETLENGTH_MIN)
return ERROR(parameter_unsupported);
if ((U32)(cParams.strategy) > (U32)ZSTD_btultra)
return ERROR(parameter_unsupported);
return 0;
}
/** ZSTD_clampCParams() :
* make CParam values within valid range.
* @return : valid CParams */
static ZSTD_compressionParameters ZSTD_clampCParams(ZSTD_compressionParameters cParams)
{
# define CLAMP(val,min,max) { \
if (val<min) val=min; \
else if (val>max) val=max; \
}
CLAMP(cParams.windowLog, ZSTD_WINDOWLOG_MIN, ZSTD_WINDOWLOG_MAX);
CLAMP(cParams.chainLog, ZSTD_CHAINLOG_MIN, ZSTD_CHAINLOG_MAX);
CLAMP(cParams.hashLog, ZSTD_HASHLOG_MIN, ZSTD_HASHLOG_MAX);
CLAMP(cParams.searchLog, ZSTD_SEARCHLOG_MIN, ZSTD_SEARCHLOG_MAX);
CLAMP(cParams.searchLength, ZSTD_SEARCHLENGTH_MIN, ZSTD_SEARCHLENGTH_MAX);
if ((U32)(cParams.targetLength) < ZSTD_TARGETLENGTH_MIN) cParams.targetLength = ZSTD_TARGETLENGTH_MIN;
if ((U32)(cParams.strategy) > (U32)ZSTD_btultra) cParams.strategy = ZSTD_btultra;
return cParams;
}
/** ZSTD_cycleLog() :
* condition for correct operation : hashLog > 1 */
static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat)
{
U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2);
return hashLog - btScale;
}
/** ZSTD_adjustCParams_internal() :
optimize `cPar` for a given input (`srcSize` and `dictSize`).
mostly downsizing to reduce memory consumption and initialization latency.
Both `srcSize` and `dictSize` are optional (use 0 if unknown).
Note : cPar is considered validated at this stage. Use ZSTD_checkCParams() to ensure that condition. */
ZSTD_compressionParameters ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
{
static const U64 minSrcSize = 513; /* (1<<9) + 1 */
static const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1);
assert(ZSTD_checkCParams(cPar)==0);
if (dictSize && (srcSize+1<2) /* srcSize unknown */ )
srcSize = minSrcSize; /* presumed small when there is a dictionary */
else if (srcSize == 0)
srcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* 0 == unknown : presumed large */
/* resize windowLog if input is small enough, to use less memory */
if ( (srcSize < maxWindowResize)
&& (dictSize < maxWindowResize) ) {
U32 const tSize = (U32)(srcSize + dictSize);
static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN;
U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN :
ZSTD_highbit32(tSize-1) + 1;
if (cPar.windowLog > srcLog) cPar.windowLog = srcLog;
}
if (cPar.hashLog > cPar.windowLog) cPar.hashLog = cPar.windowLog;
{ U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy);
if (cycleLog > cPar.windowLog)
cPar.chainLog -= (cycleLog - cPar.windowLog);
}
if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN)
cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* required for frame header */
return cPar;
}
ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize)
{
cPar = ZSTD_clampCParams(cPar);
return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize);
}
static size_t ZSTD_sizeof_matchState(ZSTD_compressionParameters const* cParams, const U32 forCCtx)
{
size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
size_t const hSize = ((size_t)1) << cParams->hashLog;
U32 const hashLog3 = (forCCtx && cParams->searchLength==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
size_t const h3Size = ((size_t)1) << hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
size_t const optPotentialSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<<Litbits)) * sizeof(U32)
+ (ZSTD_OPT_NUM+1) * (sizeof(ZSTD_match_t)+sizeof(ZSTD_optimal_t));
size_t const optSpace = (forCCtx && ((cParams->strategy == ZSTD_btopt) ||
(cParams->strategy == ZSTD_btultra)))
? optPotentialSpace
: 0;
DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u",
(U32)chainSize, (U32)hSize, (U32)h3Size);
return tableSpace + optSpace;
}
size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
/* Estimate CCtx size is supported for single-threaded compression only. */
if (params->nbWorkers > 0) { return ERROR(GENERIC); }
{ ZSTD_compressionParameters const cParams =
ZSTD_getCParamsFromCCtxParams(params, 0, 0);
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog);
U32 const divider = (cParams.searchLength==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = blockSize + 11*maxNbSeq;
size_t const entropySpace = HUF_WORKSPACE_SIZE;
size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t);
size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 1);
size_t const ldmSpace = ZSTD_ldm_getTableSize(params->ldmParams);
size_t const ldmSeqSpace = ZSTD_ldm_getMaxNbSeq(params->ldmParams, blockSize) * sizeof(rawSeq);
size_t const neededSpace = entropySpace + blockStateSpace + tokenSpace +
matchStateSize + ldmSpace + ldmSeqSpace;
DEBUGLOG(5, "sizeof(ZSTD_CCtx) : %u", (U32)sizeof(ZSTD_CCtx));
DEBUGLOG(5, "estimate workSpace : %u", (U32)neededSpace);
return sizeof(ZSTD_CCtx) + neededSpace;
}
}
size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
return ZSTD_estimateCCtxSize_usingCCtxParams(&params);
}
static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0);
return ZSTD_estimateCCtxSize_usingCParams(cParams);
}
size_t ZSTD_estimateCCtxSize(int compressionLevel)
{
int level;
size_t memBudget = 0;
for (level=1; level<=compressionLevel; level++) {
size_t const newMB = ZSTD_estimateCCtxSize_internal(level);
if (newMB > memBudget) memBudget = newMB;
}
return memBudget;
}
size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params)
{
if (params->nbWorkers > 0) { return ERROR(GENERIC); }
{ size_t const CCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(params);
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << params->cParams.windowLog);
size_t const inBuffSize = ((size_t)1 << params->cParams.windowLog) + blockSize;
size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1;
size_t const streamingSize = inBuffSize + outBuffSize;
return CCtxSize + streamingSize;
}
}
size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams)
{
ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams);
return ZSTD_estimateCStreamSize_usingCCtxParams(&params);
}
static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel) {
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0);
return ZSTD_estimateCStreamSize_usingCParams(cParams);
}
size_t ZSTD_estimateCStreamSize(int compressionLevel) {
int level;
size_t memBudget = 0;
for (level=1; level<=compressionLevel; level++) {
size_t const newMB = ZSTD_estimateCStreamSize_internal(level);
if (newMB > memBudget) memBudget = newMB;
}
return memBudget;
}
/* ZSTD_getFrameProgression():
* tells how much data has been consumed (input) and produced (output) for current frame.
* able to count progression inside worker threads (non-blocking mode).
*/
ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx)
{
#ifdef ZSTD_MULTITHREAD
if (cctx->appliedParams.nbWorkers > 0) {
return ZSTDMT_getFrameProgression(cctx->mtctx);
}
#endif
{ ZSTD_frameProgression fp;
size_t const buffered = (cctx->inBuff == NULL) ? 0 :
cctx->inBuffPos - cctx->inToCompress;
if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress);
assert(buffered <= ZSTD_BLOCKSIZE_MAX);
fp.ingested = cctx->consumedSrcSize + buffered;
fp.consumed = cctx->consumedSrcSize;
fp.produced = cctx->producedCSize;
return fp;
} }
static U32 ZSTD_equivalentCParams(ZSTD_compressionParameters cParams1,
ZSTD_compressionParameters cParams2)
{
return (cParams1.hashLog == cParams2.hashLog)
& (cParams1.chainLog == cParams2.chainLog)
& (cParams1.strategy == cParams2.strategy) /* opt parser space */
& ((cParams1.searchLength==3) == (cParams2.searchLength==3)); /* hashlog3 space */
}
/** The parameters are equivalent if ldm is not enabled in both sets or
* all the parameters are equivalent. */
static U32 ZSTD_equivalentLdmParams(ldmParams_t ldmParams1,
ldmParams_t ldmParams2)
{
return (!ldmParams1.enableLdm && !ldmParams2.enableLdm) ||
(ldmParams1.enableLdm == ldmParams2.enableLdm &&
ldmParams1.hashLog == ldmParams2.hashLog &&
ldmParams1.bucketSizeLog == ldmParams2.bucketSizeLog &&
ldmParams1.minMatchLength == ldmParams2.minMatchLength &&
ldmParams1.hashEveryLog == ldmParams2.hashEveryLog);
}
typedef enum { ZSTDb_not_buffered, ZSTDb_buffered } ZSTD_buffered_policy_e;
/* ZSTD_sufficientBuff() :
* check internal buffers exist for streaming if buffPol == ZSTDb_buffered .
* Note : they are assumed to be correctly sized if ZSTD_equivalentCParams()==1 */
static U32 ZSTD_sufficientBuff(size_t bufferSize1, size_t blockSize1,
ZSTD_buffered_policy_e buffPol2,
ZSTD_compressionParameters cParams2,
U64 pledgedSrcSize)
{
size_t const windowSize2 = MAX(1, (size_t)MIN(((U64)1 << cParams2.windowLog), pledgedSrcSize));
size_t const blockSize2 = MIN(ZSTD_BLOCKSIZE_MAX, windowSize2);
size_t const neededBufferSize2 = (buffPol2==ZSTDb_buffered) ? windowSize2 + blockSize2 : 0;
DEBUGLOG(4, "ZSTD_sufficientBuff: is windowSize2=%u <= wlog1=%u",
(U32)windowSize2, cParams2.windowLog);
DEBUGLOG(4, "ZSTD_sufficientBuff: is blockSize2=%u <= blockSize1=%u",
(U32)blockSize2, (U32)blockSize1);
return (blockSize2 <= blockSize1) /* seqStore space depends on blockSize */
& (neededBufferSize2 <= bufferSize1);
}
/** Equivalence for resetCCtx purposes */
static U32 ZSTD_equivalentParams(ZSTD_CCtx_params params1,
ZSTD_CCtx_params params2,
size_t buffSize1, size_t blockSize1,
ZSTD_buffered_policy_e buffPol2,
U64 pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_equivalentParams: pledgedSrcSize=%u", (U32)pledgedSrcSize);
return ZSTD_equivalentCParams(params1.cParams, params2.cParams) &&
ZSTD_equivalentLdmParams(params1.ldmParams, params2.ldmParams) &&
ZSTD_sufficientBuff(buffSize1, blockSize1, buffPol2, params2.cParams, pledgedSrcSize);
}
static void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs)
{
int i;
for (i = 0; i < ZSTD_REP_NUM; ++i)
bs->rep[i] = repStartValue[i];
bs->entropy.hufCTable_repeatMode = HUF_repeat_none;
bs->entropy.offcode_repeatMode = FSE_repeat_none;
bs->entropy.matchlength_repeatMode = FSE_repeat_none;
bs->entropy.litlength_repeatMode = FSE_repeat_none;
}
/*! ZSTD_invalidateMatchState()
* Invalidate all the matches in the match finder tables.
* Requires nextSrc and base to be set (can be NULL).
*/
static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms)
{
ZSTD_window_clear(&ms->window);
ms->nextToUpdate = ms->window.dictLimit + 1;
ms->loadedDictEnd = 0;
ms->opt.litLengthSum = 0; /* force reset of btopt stats */
}
/*! ZSTD_continueCCtx() :
* reuse CCtx without reset (note : requires no dictionary) */
static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_CCtx_params params, U64 pledgedSrcSize)
{
size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
DEBUGLOG(4, "ZSTD_continueCCtx: re-use context in place");
cctx->blockSize = blockSize; /* previous block size could be different even for same windowLog, due to pledgedSrcSize */
cctx->appliedParams = params;
cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1;
cctx->consumedSrcSize = 0;
cctx->producedCSize = 0;
if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
cctx->appliedParams.fParams.contentSizeFlag = 0;
DEBUGLOG(4, "pledged content size : %u ; flag : %u",
(U32)pledgedSrcSize, cctx->appliedParams.fParams.contentSizeFlag);
cctx->stage = ZSTDcs_init;
cctx->dictID = 0;
if (params.ldmParams.enableLdm)
ZSTD_window_clear(&cctx->ldmState.window);
ZSTD_referenceExternalSequences(cctx, NULL, 0);
ZSTD_invalidateMatchState(&cctx->blockState.matchState);
ZSTD_reset_compressedBlockState(cctx->blockState.prevCBlock);
XXH64_reset(&cctx->xxhState, 0);
return 0;
}
typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset } ZSTD_compResetPolicy_e;
static void* ZSTD_reset_matchState(ZSTD_matchState_t* ms, void* ptr, ZSTD_compressionParameters const* cParams, ZSTD_compResetPolicy_e const crp, U32 const forCCtx)
{
size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog);
size_t const hSize = ((size_t)1) << cParams->hashLog;
U32 const hashLog3 = (forCCtx && cParams->searchLength==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0;
size_t const h3Size = ((size_t)1) << hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
assert(((size_t)ptr & 3) == 0);
ms->hashLog3 = hashLog3;
memset(&ms->window, 0, sizeof(ms->window));
ZSTD_invalidateMatchState(ms);
/* opt parser space */
if (forCCtx && ((cParams->strategy == ZSTD_btopt) | (cParams->strategy == ZSTD_btultra))) {
DEBUGLOG(4, "reserving optimal parser space");
ms->opt.litFreq = (U32*)ptr;
ms->opt.litLengthFreq = ms->opt.litFreq + (1<<Litbits);
ms->opt.matchLengthFreq = ms->opt.litLengthFreq + (MaxLL+1);
ms->opt.offCodeFreq = ms->opt.matchLengthFreq + (MaxML+1);
ptr = ms->opt.offCodeFreq + (MaxOff+1);
ms->opt.matchTable = (ZSTD_match_t*)ptr;
ptr = ms->opt.matchTable + ZSTD_OPT_NUM+1;
ms->opt.priceTable = (ZSTD_optimal_t*)ptr;
ptr = ms->opt.priceTable + ZSTD_OPT_NUM+1;
}
/* table Space */
DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_noMemset);
assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
if (crp!=ZSTDcrp_noMemset) memset(ptr, 0, tableSpace); /* reset tables only */
ms->hashTable = (U32*)(ptr);
ms->chainTable = ms->hashTable + hSize;
ms->hashTable3 = ms->chainTable + chainSize;
ptr = ms->hashTable3 + h3Size;
assert(((size_t)ptr & 3) == 0);
return ptr;
}
/*! ZSTD_resetCCtx_internal() :
note : `params` are assumed fully validated at this stage */
static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc,
ZSTD_CCtx_params params, U64 pledgedSrcSize,
ZSTD_compResetPolicy_e const crp,
ZSTD_buffered_policy_e const zbuff)
{
DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u",
(U32)pledgedSrcSize, params.cParams.windowLog);
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
if (crp == ZSTDcrp_continue) {
if (ZSTD_equivalentParams(zc->appliedParams, params,
zc->inBuffSize, zc->blockSize,
zbuff, pledgedSrcSize)) {
DEBUGLOG(4, "ZSTD_equivalentParams()==1 -> continue mode (wLog1=%u, blockSize1=%u)",
zc->appliedParams.cParams.windowLog, (U32)zc->blockSize);
return ZSTD_continueCCtx(zc, params, pledgedSrcSize);
} }
DEBUGLOG(4, "ZSTD_equivalentParams()==0 -> reset CCtx");
if (params.ldmParams.enableLdm) {
/* Adjust long distance matching parameters */
params.ldmParams.windowLog = params.cParams.windowLog;
ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
assert(params.ldmParams.hashEveryLog < 32);
zc->ldmState.hashPower =
ZSTD_ldm_getHashPower(params.ldmParams.minMatchLength);
}
{ size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize));
size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize);
U32 const divider = (params.cParams.searchLength==3) ? 3 : 4;
size_t const maxNbSeq = blockSize / divider;
size_t const tokenSpace = blockSize + 11*maxNbSeq;
size_t const buffOutSize = (zbuff==ZSTDb_buffered) ? ZSTD_compressBound(blockSize)+1 : 0;
size_t const buffInSize = (zbuff==ZSTDb_buffered) ? windowSize + blockSize : 0;
size_t const matchStateSize = ZSTD_sizeof_matchState(&params.cParams, /* forCCtx */ 1);
size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params.ldmParams, blockSize);
void* ptr;
/* Check if workSpace is large enough, alloc a new one if needed */
{ size_t const entropySpace = HUF_WORKSPACE_SIZE;
size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t);
size_t const bufferSpace = buffInSize + buffOutSize;
size_t const ldmSpace = ZSTD_ldm_getTableSize(params.ldmParams);
size_t const ldmSeqSpace = maxNbLdmSeq * sizeof(rawSeq);
size_t const neededSpace = entropySpace + blockStateSpace + ldmSpace +
ldmSeqSpace + matchStateSize + tokenSpace +
bufferSpace;
DEBUGLOG(4, "Need %uKB workspace, including %uKB for match state, and %uKB for buffers",
(U32)(neededSpace>>10), (U32)(matchStateSize>>10), (U32)(bufferSpace>>10));
DEBUGLOG(4, "windowSize: %u - blockSize: %u", (U32)windowSize, (U32)blockSize);
if (zc->workSpaceSize < neededSpace) { /* too small : resize */
DEBUGLOG(4, "Need to update workSpaceSize from %uK to %uK",
(unsigned)(zc->workSpaceSize>>10),
(unsigned)(neededSpace>>10));
/* static cctx : no resize, error out */
if (zc->staticSize) return ERROR(memory_allocation);
zc->workSpaceSize = 0;
ZSTD_free(zc->workSpace, zc->customMem);
zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem);
if (zc->workSpace == NULL) return ERROR(memory_allocation);
zc->workSpaceSize = neededSpace;
ptr = zc->workSpace;
/* Statically sized space. entropyWorkspace never moves (but prev/next block swap places) */
assert(((size_t)zc->workSpace & 3) == 0); /* ensure correct alignment */
assert(zc->workSpaceSize >= 2 * sizeof(ZSTD_compressedBlockState_t));
zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)zc->workSpace;
zc->blockState.nextCBlock = zc->blockState.prevCBlock + 1;
ptr = zc->blockState.nextCBlock + 1;
zc->entropyWorkspace = (U32*)ptr;
} }
/* init params */
zc->appliedParams = params;
zc->pledgedSrcSizePlusOne = pledgedSrcSize+1;
zc->consumedSrcSize = 0;
zc->producedCSize = 0;
if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)
zc->appliedParams.fParams.contentSizeFlag = 0;
DEBUGLOG(4, "pledged content size : %u ; flag : %u",
(U32)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag);
zc->blockSize = blockSize;
XXH64_reset(&zc->xxhState, 0);
zc->stage = ZSTDcs_init;
zc->dictID = 0;
ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock);
ptr = zc->entropyWorkspace + HUF_WORKSPACE_SIZE_U32;
/* ldm hash table */
/* initialize bucketOffsets table later for pointer alignment */
if (params.ldmParams.enableLdm) {
size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog;
memset(ptr, 0, ldmHSize * sizeof(ldmEntry_t));
assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
zc->ldmState.hashTable = (ldmEntry_t*)ptr;
ptr = zc->ldmState.hashTable + ldmHSize;
zc->ldmSequences = (rawSeq*)ptr;
ptr = zc->ldmSequences + maxNbLdmSeq;
zc->maxNbLdmSequences = maxNbLdmSeq;
memset(&zc->ldmState.window, 0, sizeof(zc->ldmState.window));
}
assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */
ptr = ZSTD_reset_matchState(&zc->blockState.matchState, ptr, &params.cParams, crp, /* forCCtx */ 1);
/* sequences storage */
zc->seqStore.sequencesStart = (seqDef*)ptr;
ptr = zc->seqStore.sequencesStart + maxNbSeq;
zc->seqStore.llCode = (BYTE*) ptr;
zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq;
zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq;
zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq;
ptr = zc->seqStore.litStart + blockSize;
/* ldm bucketOffsets table */
if (params.ldmParams.enableLdm) {
size_t const ldmBucketSize =
((size_t)1) << (params.ldmParams.hashLog -
params.ldmParams.bucketSizeLog);
memset(ptr, 0, ldmBucketSize);
zc->ldmState.bucketOffsets = (BYTE*)ptr;
ptr = zc->ldmState.bucketOffsets + ldmBucketSize;
ZSTD_window_clear(&zc->ldmState.window);
}
ZSTD_referenceExternalSequences(zc, NULL, 0);
/* buffers */
zc->inBuffSize = buffInSize;
zc->inBuff = (char*)ptr;
zc->outBuffSize = buffOutSize;
zc->outBuff = zc->inBuff + buffInSize;
return 0;
}
}
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) {
int i;
for (i=0; i<ZSTD_REP_NUM; i++) cctx->blockState.prevCBlock->rep[i] = 0;
assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
}
static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx,
const ZSTD_CDict* cdict,
unsigned windowLog,
ZSTD_frameParameters fParams,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
{ ZSTD_CCtx_params params = cctx->requestedParams;
/* Copy only compression parameters related to tables. */
params.cParams = cdict->cParams;
if (windowLog) params.cParams.windowLog = windowLog;
params.fParams = fParams;
ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
ZSTDcrp_noMemset, zbuff);
assert(cctx->appliedParams.cParams.strategy == cdict->cParams.strategy);
assert(cctx->appliedParams.cParams.hashLog == cdict->cParams.hashLog);
assert(cctx->appliedParams.cParams.chainLog == cdict->cParams.chainLog);
}
/* copy tables */
{ size_t const chainSize = (cdict->cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << cdict->cParams.chainLog);
size_t const hSize = (size_t)1 << cdict->cParams.hashLog;
size_t const tableSpace = (chainSize + hSize) * sizeof(U32);
assert((U32*)cctx->blockState.matchState.chainTable == (U32*)cctx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */
assert((U32*)cctx->blockState.matchState.hashTable3 == (U32*)cctx->blockState.matchState.chainTable + chainSize);
assert((U32*)cdict->matchState.chainTable == (U32*)cdict->matchState.hashTable + hSize); /* chainTable must follow hashTable */
assert((U32*)cdict->matchState.hashTable3 == (U32*)cdict->matchState.chainTable + chainSize);
memcpy(cctx->blockState.matchState.hashTable, cdict->matchState.hashTable, tableSpace); /* presumes all tables follow each other */
}
/* Zero the hashTable3, since the cdict never fills it */
{ size_t const h3Size = (size_t)1 << cctx->blockState.matchState.hashLog3;
assert(cdict->matchState.hashLog3 == 0);
memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32));
}
/* copy dictionary offsets */
{
ZSTD_matchState_t const* srcMatchState = &cdict->matchState;
ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState;
dstMatchState->window = srcMatchState->window;
dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
dstMatchState->nextToUpdate3= srcMatchState->nextToUpdate3;
dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
}
cctx->dictID = cdict->dictID;
/* copy block state */
memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState));
return 0;
}
/*! ZSTD_copyCCtx_internal() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* The "context", in this case, refers to the hash and chain tables,
* entropy tables, and dictionary references.
* `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx.
* @return : 0, or an error code */
static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx,
const ZSTD_CCtx* srcCCtx,
ZSTD_frameParameters fParams,
U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(5, "ZSTD_copyCCtx_internal");
if (srcCCtx->stage!=ZSTDcs_init) return ERROR(stage_wrong);
memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem));
{ ZSTD_CCtx_params params = dstCCtx->requestedParams;
/* Copy only compression parameters related to tables. */
params.cParams = srcCCtx->appliedParams.cParams;
params.fParams = fParams;
ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize,
ZSTDcrp_noMemset, zbuff);
assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog);
assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy);
assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog);
assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog);
assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3);
}
/* copy tables */
{ size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog);
size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog;
size_t const h3Size = (size_t)1 << srcCCtx->blockState.matchState.hashLog3;
size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32);
assert((U32*)dstCCtx->blockState.matchState.chainTable == (U32*)dstCCtx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */
assert((U32*)dstCCtx->blockState.matchState.hashTable3 == (U32*)dstCCtx->blockState.matchState.chainTable + chainSize);
memcpy(dstCCtx->blockState.matchState.hashTable, srcCCtx->blockState.matchState.hashTable, tableSpace); /* presumes all tables follow each other */
}
/* copy dictionary offsets */
{
ZSTD_matchState_t const* srcMatchState = &srcCCtx->blockState.matchState;
ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState;
dstMatchState->window = srcMatchState->window;
dstMatchState->nextToUpdate = srcMatchState->nextToUpdate;
dstMatchState->nextToUpdate3= srcMatchState->nextToUpdate3;
dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd;
}
dstCCtx->dictID = srcCCtx->dictID;
/* copy block state */
memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock));
return 0;
}
/*! ZSTD_copyCCtx() :
* Duplicate an existing context `srcCCtx` into another one `dstCCtx`.
* Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()).
* pledgedSrcSize==0 means "unknown".
* @return : 0, or an error code */
size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize)
{
ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
ZSTD_buffered_policy_e const zbuff = (ZSTD_buffered_policy_e)(srcCCtx->inBuffSize>0);
ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1);
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN);
return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx,
fParams, pledgedSrcSize,
zbuff);
}
#define ZSTD_ROWSIZE 16
/*! ZSTD_reduceTable() :
* reduce table indexes by `reducerValue`, or squash to zero.
* PreserveMark preserves "unsorted mark" for btlazy2 strategy.
* It must be set to a clear 0/1 value, to remove branch during inlining.
* Presume table size is a multiple of ZSTD_ROWSIZE
* to help auto-vectorization */
FORCE_INLINE_TEMPLATE void
ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark)
{
int const nbRows = (int)size / ZSTD_ROWSIZE;
int cellNb = 0;
int rowNb;
assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */
assert(size < (1U<<31)); /* can be casted to int */
for (rowNb=0 ; rowNb < nbRows ; rowNb++) {
int column;
for (column=0; column<ZSTD_ROWSIZE; column++) {
if (preserveMark) {
U32 const adder = (table[cellNb] == ZSTD_DUBT_UNSORTED_MARK) ? reducerValue : 0;
table[cellNb] += adder;
}
if (table[cellNb] < reducerValue) table[cellNb] = 0;
else table[cellNb] -= reducerValue;
cellNb++;
} }
}
static void ZSTD_reduceTable(U32* const table, U32 const size, U32 const reducerValue)
{
ZSTD_reduceTable_internal(table, size, reducerValue, 0);
}
static void ZSTD_reduceTable_btlazy2(U32* const table, U32 const size, U32 const reducerValue)
{
ZSTD_reduceTable_internal(table, size, reducerValue, 1);
}
/*! ZSTD_reduceIndex() :
* rescale all indexes to avoid future overflow (indexes are U32) */
static void ZSTD_reduceIndex (ZSTD_CCtx* zc, const U32 reducerValue)
{
ZSTD_matchState_t* const ms = &zc->blockState.matchState;
{ U32 const hSize = (U32)1 << zc->appliedParams.cParams.hashLog;
ZSTD_reduceTable(ms->hashTable, hSize, reducerValue);
}
if (zc->appliedParams.cParams.strategy != ZSTD_fast) {
U32 const chainSize = (U32)1 << zc->appliedParams.cParams.chainLog;
if (zc->appliedParams.cParams.strategy == ZSTD_btlazy2)
ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue);
else
ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue);
}
if (ms->hashLog3) {
U32 const h3Size = (U32)1 << ms->hashLog3;
ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue);
}
}
/*-*******************************************************
* Block entropic compression
*********************************************************/
/* See doc/zstd_compression_format.md for detailed format description */
size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
if (srcSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
MEM_writeLE24(dst, (U32)(srcSize << 2) + (U32)bt_raw);
return ZSTD_blockHeaderSize+srcSize;
}
static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
if (srcSize + flSize > dstCapacity) return ERROR(dstSize_tooSmall);
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
memcpy(ostart + flSize, src, srcSize);
return srcSize + flSize;
}
static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE* const)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
(void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ostart[flSize] = *(const BYTE*)src;
return flSize+1;
}
static size_t ZSTD_minGain(size_t srcSize) { return (srcSize >> 6) + 2; }
static size_t ZSTD_compressLiterals (ZSTD_entropyCTables_t const* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
ZSTD_strategy strategy, int disableLiteralCompression,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32* workspace, const int bmi2)
{
size_t const minGain = ZSTD_minGain(srcSize);
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE* const ostart = (BYTE*)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i)",
disableLiteralCompression);
/* Prepare nextEntropy assuming reusing the existing table */
nextEntropy->hufCTable_repeatMode = prevEntropy->hufCTable_repeatMode;
memcpy(nextEntropy->hufCTable, prevEntropy->hufCTable,
sizeof(prevEntropy->hufCTable));
if (disableLiteralCompression)
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
/* small ? don't even attempt compression (speed opt) */
# define COMPRESS_LITERALS_SIZE_MIN 63
{ size_t const minLitSize = (prevEntropy->hufCTable_repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN;
if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (dstCapacity < lhSize+1) return ERROR(dstSize_tooSmall); /* not enough space for compression */
{ HUF_repeat repeat = prevEntropy->hufCTable_repeatMode;
int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0;
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11,
workspace, HUF_WORKSPACE_SIZE, (HUF_CElt*)nextEntropy->hufCTable, &repeat, preferRepeat, bmi2)
: HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11,
workspace, HUF_WORKSPACE_SIZE, (HUF_CElt*)nextEntropy->hufCTable, &repeat, preferRepeat, bmi2);
if (repeat != HUF_repeat_none) {
/* reused the existing table */
hType = set_repeat;
}
}
if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) {
memcpy(nextEntropy->hufCTable, prevEntropy->hufCTable, sizeof(prevEntropy->hufCTable));
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
}
if (cLitSize==1) {
memcpy(nextEntropy->hufCTable, prevEntropy->hufCTable, sizeof(prevEntropy->hufCTable));
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
}
if (hType == set_compressed) {
/* using a newly constructed table */
nextEntropy->hufCTable_repeatMode = HUF_repeat_check;
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
return lhSize+cLitSize;
}
void ZSTD_seqToCodes(const seqStore_t* seqStorePtr)
{
const seqDef* const sequences = seqStorePtr->sequencesStart;
BYTE* const llCodeTable = seqStorePtr->llCode;
BYTE* const ofCodeTable = seqStorePtr->ofCode;
BYTE* const mlCodeTable = seqStorePtr->mlCode;
U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
U32 u;
for (u=0; u<nbSeq; u++) {
U32 const llv = sequences[u].litLength;
U32 const mlv = sequences[u].matchLength;
llCodeTable[u] = (BYTE)ZSTD_LLcode(llv);
ofCodeTable[u] = (BYTE)ZSTD_highbit32(sequences[u].offset);
mlCodeTable[u] = (BYTE)ZSTD_MLcode(mlv);
}
if (seqStorePtr->longLengthID==1)
llCodeTable[seqStorePtr->longLengthPos] = MaxLL;
if (seqStorePtr->longLengthID==2)
mlCodeTable[seqStorePtr->longLengthPos] = MaxML;
}
typedef enum {
ZSTD_defaultDisallowed = 0,
ZSTD_defaultAllowed = 1
} ZSTD_defaultPolicy_e;
MEM_STATIC
symbolEncodingType_e ZSTD_selectEncodingType(
FSE_repeat* repeatMode, size_t const mostFrequent, size_t nbSeq,
U32 defaultNormLog, ZSTD_defaultPolicy_e const isDefaultAllowed)
{
#define MIN_SEQ_FOR_DYNAMIC_FSE 64
#define MAX_SEQ_FOR_STATIC_FSE 1000
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
if ((mostFrequent == nbSeq) && (!isDefaultAllowed || nbSeq > 2)) {
DEBUGLOG(5, "Selected set_rle");
/* Prefer set_basic over set_rle when there are 2 or less symbols,
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
* If basic encoding isn't possible, always choose RLE.
*/
*repeatMode = FSE_repeat_check;
return set_rle;
}
if ( isDefaultAllowed
&& (*repeatMode == FSE_repeat_valid) && (nbSeq < MAX_SEQ_FOR_STATIC_FSE)) {
DEBUGLOG(5, "Selected set_repeat");
return set_repeat;
}
if ( isDefaultAllowed
&& ((nbSeq < MIN_SEQ_FOR_DYNAMIC_FSE) || (mostFrequent < (nbSeq >> (defaultNormLog-1)))) ) {
DEBUGLOG(5, "Selected set_basic");
/* The format allows default tables to be repeated, but it isn't useful.
* When using simple heuristics to select encoding type, we don't want
* to confuse these tables with dictionaries. When running more careful
* analysis, we don't need to waste time checking both repeating tables
* and default tables.
*/
*repeatMode = FSE_repeat_none;
return set_basic;
}
DEBUGLOG(5, "Selected set_compressed");
*repeatMode = FSE_repeat_check;
return set_compressed;
}
MEM_STATIC
size_t ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
U32* count, U32 max,
BYTE const* codeTable, size_t nbSeq,
S16 const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
FSE_CTable const* prevCTable, size_t prevCTableSize,
void* workspace, size_t workspaceSize)
{
BYTE* op = (BYTE*)dst;
BYTE const* const oend = op + dstCapacity;
switch (type) {
case set_rle:
*op = codeTable[0];
CHECK_F(FSE_buildCTable_rle(nextCTable, (BYTE)max));
return 1;
case set_repeat:
memcpy(nextCTable, prevCTable, prevCTableSize);
return 0;
case set_basic:
CHECK_F(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */
return 0;
case set_compressed: {
S16 norm[MaxSeq + 1];
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
if (count[codeTable[nbSeq-1]] > 1) {
count[codeTable[nbSeq-1]]--;
nbSeq_1--;
}
assert(nbSeq_1 > 1);
CHECK_F(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max));
{ size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */
if (FSE_isError(NCountSize)) return NCountSize;
CHECK_F(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, workspace, workspaceSize));
return NCountSize;
}
}
default: return assert(0), ERROR(GENERIC);
}
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
CHECK_E(BIT_initCStream(&blockStream, dst, dstCapacity), dstSize_tooSmall); /* not enough space remaining */
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1];
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
BIT_flushBits(&blockStream);
}
BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
ofBits - extraBits);
} else {
BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
}
BIT_flushBits(&blockStream);
{ size_t n;
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode;
U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
sequences[n].litLength,
sequences[n].matchLength + MINMATCH,
sequences[n].offset);
/* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) {
int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offset, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
ofBits - extraBits); /* 31 */
} else {
BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
} }
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
FSE_flushCState(&blockStream, &stateMatchLength);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
FSE_flushCState(&blockStream, &stateOffsetBits);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
FSE_flushCState(&blockStream, &stateLitLength);
{ size_t const streamSize = BIT_closeCStream(&blockStream);
if (streamSize==0) return ERROR(dstSize_tooSmall); /* not enough space */
return streamSize;
}
}
static size_t
ZSTD_encodeSequences_default(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_encodeSequences_bmi2(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
(void)bmi2;
return ZSTD_encodeSequences_default(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
MEM_STATIC size_t ZSTD_compressSequences_internal(seqStore_t* seqStorePtr,
ZSTD_entropyCTables_t const* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
ZSTD_CCtx_params const* cctxParams,
void* dst, size_t dstCapacity, U32* workspace,
const int bmi2)
{
const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
U32 count[MaxSeq+1];
FSE_CTable* CTable_LitLength = nextEntropy->litlengthCTable;
FSE_CTable* CTable_OffsetBits = nextEntropy->offcodeCTable;
FSE_CTable* CTable_MatchLength = nextEntropy->matchlengthCTable;
U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */
const seqDef* const sequences = seqStorePtr->sequencesStart;
const BYTE* const ofCodeTable = seqStorePtr->ofCode;
const BYTE* const llCodeTable = seqStorePtr->llCode;
const BYTE* const mlCodeTable = seqStorePtr->mlCode;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart;
BYTE* seqHead;
ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
/* Compress literals */
{ const BYTE* const literals = seqStorePtr->litStart;
size_t const litSize = seqStorePtr->lit - literals;
size_t const cSize = ZSTD_compressLiterals(
prevEntropy, nextEntropy,
cctxParams->cParams.strategy, cctxParams->disableLiteralCompression,
op, dstCapacity,
literals, litSize,
workspace, bmi2);
if (ZSTD_isError(cSize))
return cSize;
assert(cSize <= dstCapacity);
op += cSize;
}
/* Sequences Header */
if ((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/) return ERROR(dstSize_tooSmall);
if (nbSeq < 0x7F)
*op++ = (BYTE)nbSeq;
else if (nbSeq < LONGNBSEQ)
op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
else
op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
if (nbSeq==0) {
memcpy(nextEntropy->litlengthCTable, prevEntropy->litlengthCTable, sizeof(prevEntropy->litlengthCTable));
nextEntropy->litlength_repeatMode = prevEntropy->litlength_repeatMode;
memcpy(nextEntropy->offcodeCTable, prevEntropy->offcodeCTable, sizeof(prevEntropy->offcodeCTable));
nextEntropy->offcode_repeatMode = prevEntropy->offcode_repeatMode;
memcpy(nextEntropy->matchlengthCTable, prevEntropy->matchlengthCTable, sizeof(prevEntropy->matchlengthCTable));
nextEntropy->matchlength_repeatMode = prevEntropy->matchlength_repeatMode;
return op - ostart;
}
/* seqHead : flags for FSE encoding type */
seqHead = op++;
/* convert length/distances into codes */
ZSTD_seqToCodes(seqStorePtr);
/* build CTable for Literal Lengths */
{ U32 max = MaxLL;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, llCodeTable, nbSeq, workspace);
DEBUGLOG(5, "Building LL table");
nextEntropy->litlength_repeatMode = prevEntropy->litlength_repeatMode;
LLtype = ZSTD_selectEncodingType(&nextEntropy->litlength_repeatMode, mostFrequent, nbSeq, LL_defaultNormLog, ZSTD_defaultAllowed);
{ size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype,
count, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL,
prevEntropy->litlengthCTable, sizeof(prevEntropy->litlengthCTable),
workspace, HUF_WORKSPACE_SIZE);
if (ZSTD_isError(countSize)) return countSize;
op += countSize;
} }
/* build CTable for Offsets */
{ U32 max = MaxOff;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, ofCodeTable, nbSeq, workspace);
/* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */
ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed;
DEBUGLOG(5, "Building OF table");
nextEntropy->offcode_repeatMode = prevEntropy->offcode_repeatMode;
Offtype = ZSTD_selectEncodingType(&nextEntropy->offcode_repeatMode, mostFrequent, nbSeq, OF_defaultNormLog, defaultPolicy);
{ size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype,
count, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
prevEntropy->offcodeCTable, sizeof(prevEntropy->offcodeCTable),
workspace, HUF_WORKSPACE_SIZE);
if (ZSTD_isError(countSize)) return countSize;
op += countSize;
} }
/* build CTable for MatchLengths */
{ U32 max = MaxML;
size_t const mostFrequent = FSE_countFast_wksp(count, &max, mlCodeTable, nbSeq, workspace);
DEBUGLOG(5, "Building ML table");
nextEntropy->matchlength_repeatMode = prevEntropy->matchlength_repeatMode;
MLtype = ZSTD_selectEncodingType(&nextEntropy->matchlength_repeatMode, mostFrequent, nbSeq, ML_defaultNormLog, ZSTD_defaultAllowed);
{ size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype,
count, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML,
prevEntropy->matchlengthCTable, sizeof(prevEntropy->matchlengthCTable),
workspace, HUF_WORKSPACE_SIZE);
if (ZSTD_isError(countSize)) return countSize;
op += countSize;
} }
*seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
{ size_t const bitstreamSize = ZSTD_encodeSequences(
op, oend - op,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq,
longOffsets, bmi2);
if (ZSTD_isError(bitstreamSize)) return bitstreamSize;
op += bitstreamSize;
}
return op - ostart;
}
MEM_STATIC size_t ZSTD_compressSequences(seqStore_t* seqStorePtr,
ZSTD_entropyCTables_t const* prevEntropy,
ZSTD_entropyCTables_t* nextEntropy,
ZSTD_CCtx_params const* cctxParams,
void* dst, size_t dstCapacity,
size_t srcSize, U32* workspace, int bmi2)
{
size_t const cSize = ZSTD_compressSequences_internal(
seqStorePtr, prevEntropy, nextEntropy, cctxParams, dst, dstCapacity,
workspace, bmi2);
/* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block.
* Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block.
*/
if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity))
return 0; /* block not compressed */
if (ZSTD_isError(cSize)) return cSize;
/* Check compressibility */
{ size_t const maxCSize = srcSize - ZSTD_minGain(srcSize); /* note : fixed formula, maybe should depend on compression level, or strategy */
if (cSize >= maxCSize) return 0; /* block not compressed */
}
/* We check that dictionaries have offset codes available for the first
* block. After the first block, the offcode table might not have large
* enough codes to represent the offsets in the data.
*/
if (nextEntropy->offcode_repeatMode == FSE_repeat_valid)
nextEntropy->offcode_repeatMode = FSE_repeat_check;
return cSize;
}
/* ZSTD_selectBlockCompressor() :
* Not static, but internal use only (used by long distance matcher)
* assumption : strat is a valid strategy */
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, int extDict)
{
static const ZSTD_blockCompressor blockCompressor[2][(unsigned)ZSTD_btultra+1] = {
{ ZSTD_compressBlock_fast /* default for 0 */,
ZSTD_compressBlock_fast, ZSTD_compressBlock_doubleFast, ZSTD_compressBlock_greedy,
ZSTD_compressBlock_lazy, ZSTD_compressBlock_lazy2, ZSTD_compressBlock_btlazy2,
ZSTD_compressBlock_btopt, ZSTD_compressBlock_btultra },
{ ZSTD_compressBlock_fast_extDict /* default for 0 */,
ZSTD_compressBlock_fast_extDict, ZSTD_compressBlock_doubleFast_extDict, ZSTD_compressBlock_greedy_extDict,
ZSTD_compressBlock_lazy_extDict,ZSTD_compressBlock_lazy2_extDict, ZSTD_compressBlock_btlazy2_extDict,
ZSTD_compressBlock_btopt_extDict, ZSTD_compressBlock_btultra_extDict }
};
ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1);
assert((U32)strat >= (U32)ZSTD_fast);
assert((U32)strat <= (U32)ZSTD_btultra);
return blockCompressor[extDict!=0][(U32)strat];
}
static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr,
const BYTE* anchor, size_t lastLLSize)
{
memcpy(seqStorePtr->lit, anchor, lastLLSize);
seqStorePtr->lit += lastLLSize;
}
static void ZSTD_resetSeqStore(seqStore_t* ssPtr)
{
ssPtr->lit = ssPtr->litStart;
ssPtr->sequences = ssPtr->sequencesStart;
ssPtr->longLengthID = 0;
}
static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
ZSTD_matchState_t* const ms = &zc->blockState.matchState;
DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)",
(U32)dstCapacity, ms->window.dictLimit, ms->nextToUpdate);
if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) {
ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.searchLength);
return 0; /* don't even attempt compression below a certain srcSize */
}
ZSTD_resetSeqStore(&(zc->seqStore));
/* limited update after a very long match */
{ const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const U32 current = (U32)(istart-base);
if (current > ms->nextToUpdate + 384)
ms->nextToUpdate = current - MIN(192, (U32)(current - ms->nextToUpdate - 384));
}
/* select and store sequences */
{ U32 const extDict = ZSTD_window_hasExtDict(ms->window);
size_t lastLLSize;
{ int i;
for (i = 0; i < ZSTD_REP_NUM; ++i)
zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i];
}
if (zc->externSeqStore.pos < zc->externSeqStore.size) {
assert(!zc->appliedParams.ldmParams.enableLdm);
/* Updates ldmSeqStore.pos */
lastLLSize =
ZSTD_ldm_blockCompress(&zc->externSeqStore,
ms, &zc->seqStore,
zc->blockState.nextCBlock->rep,
&zc->appliedParams.cParams,
src, srcSize, extDict);
assert(zc->externSeqStore.pos <= zc->externSeqStore.size);
} else if (zc->appliedParams.ldmParams.enableLdm) {
rawSeqStore_t ldmSeqStore = {NULL, 0, 0, 0};
ldmSeqStore.seq = zc->ldmSequences;
ldmSeqStore.capacity = zc->maxNbLdmSequences;
/* Updates ldmSeqStore.size */
CHECK_F(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore,
&zc->appliedParams.ldmParams,
src, srcSize));
/* Updates ldmSeqStore.pos */
lastLLSize =
ZSTD_ldm_blockCompress(&ldmSeqStore,
ms, &zc->seqStore,
zc->blockState.nextCBlock->rep,
&zc->appliedParams.cParams,
src, srcSize, extDict);
assert(ldmSeqStore.pos == ldmSeqStore.size);
} else { /* not long range mode */
ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, extDict);
lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, &zc->appliedParams.cParams, src, srcSize);
}
{ const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize;
ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize);
} }
/* encode sequences and literals */
{ size_t const cSize = ZSTD_compressSequences(&zc->seqStore,
&zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy,
&zc->appliedParams,
dst, dstCapacity,
srcSize, zc->entropyWorkspace, zc->bmi2);
if (ZSTD_isError(cSize) || cSize == 0) return cSize;
/* confirm repcodes and entropy tables */
{ ZSTD_compressedBlockState_t* const tmp = zc->blockState.prevCBlock;
zc->blockState.prevCBlock = zc->blockState.nextCBlock;
zc->blockState.nextCBlock = tmp;
}
return cSize;
}
}
/*! ZSTD_compress_frameChunk() :
* Compress a chunk of data into one or multiple blocks.
* All blocks will be terminated, all input will be consumed.
* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content.
* Frame is supposed already started (header already produced)
* @return : compressed size, or an error code
*/
static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 lastFrameChunk)
{
size_t blockSize = cctx->blockSize;
size_t remaining = srcSize;
const BYTE* ip = (const BYTE*)src;
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog;
assert(cctx->appliedParams.cParams.windowLog <= 31);
DEBUGLOG(5, "ZSTD_compress_frameChunk (blockSize=%u)", (U32)blockSize);
if (cctx->appliedParams.fParams.checksumFlag && srcSize)
XXH64_update(&cctx->xxhState, src, srcSize);
while (remaining) {
ZSTD_matchState_t* const ms = &cctx->blockState.matchState;
U32 const lastBlock = lastFrameChunk & (blockSize >= remaining);
if (dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE)
return ERROR(dstSize_tooSmall); /* not enough space to store compressed block */
if (remaining < blockSize) blockSize = remaining;
if (ZSTD_window_needOverflowCorrection(ms->window, ip + blockSize)) {
U32 const cycleLog = ZSTD_cycleLog(cctx->appliedParams.cParams.chainLog, cctx->appliedParams.cParams.strategy);
U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip);
ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30);
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
ZSTD_reduceIndex(cctx, correction);
if (ms->nextToUpdate < correction) ms->nextToUpdate = 0;
else ms->nextToUpdate -= correction;
ms->loadedDictEnd = 0;
}
ZSTD_window_enforceMaxDist(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd);
if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit;
{ size_t cSize = ZSTD_compressBlock_internal(cctx,
op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize,
ip, blockSize);
if (ZSTD_isError(cSize)) return cSize;
if (cSize == 0) { /* block is not compressible */
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(blockSize << 3);
if (blockSize + ZSTD_blockHeaderSize > dstCapacity) return ERROR(dstSize_tooSmall);
MEM_writeLE32(op, cBlockHeader24); /* 4th byte will be overwritten */
memcpy(op + ZSTD_blockHeaderSize, ip, blockSize);
cSize = ZSTD_blockHeaderSize + blockSize;
} else {
U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(op, cBlockHeader24);
cSize += ZSTD_blockHeaderSize;
}
ip += blockSize;
assert(remaining >= blockSize);
remaining -= blockSize;
op += cSize;
assert(dstCapacity >= cSize);
dstCapacity -= cSize;
DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u",
(U32)cSize);
} }
if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending;
return op-ostart;
}
static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity,
ZSTD_CCtx_params params, U64 pledgedSrcSize, U32 dictID)
{ BYTE* const op = (BYTE*)dst;
U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */
U32 const dictIDSizeCode = params.fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */
U32 const checksumFlag = params.fParams.checksumFlag>0;
U32 const windowSize = (U32)1 << params.cParams.windowLog;
U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize);
BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3);
U32 const fcsCode = params.fParams.contentSizeFlag ?
(pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */
BYTE const frameHeaderDecriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) );
size_t pos=0;
if (dstCapacity < ZSTD_frameHeaderSize_max) return ERROR(dstSize_tooSmall);
DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u",
!params.fParams.noDictIDFlag, dictID, dictIDSizeCode);
if (params.format == ZSTD_f_zstd1) {
MEM_writeLE32(dst, ZSTD_MAGICNUMBER);
pos = 4;
}
op[pos++] = frameHeaderDecriptionByte;
if (!singleSegment) op[pos++] = windowLogByte;
switch(dictIDSizeCode)
{
default: assert(0); /* impossible */
case 0 : break;
case 1 : op[pos] = (BYTE)(dictID); pos++; break;
case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break;
case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break;
}
switch(fcsCode)
{
default: assert(0); /* impossible */
case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break;
case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break;
case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break;
case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break;
}
return pos;
}
/* ZSTD_writeLastEmptyBlock() :
* output an empty Block with end-of-frame mark to complete a frame
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
* or an error code if `dstCapcity` is too small (<ZSTD_blockHeaderSize)
*/
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity)
{
if (dstCapacity < ZSTD_blockHeaderSize) return ERROR(dstSize_tooSmall);
{ U32 const cBlockHeader24 = 1 /*lastBlock*/ + (((U32)bt_raw)<<1); /* 0 size */
MEM_writeLE24(dst, cBlockHeader24);
return ZSTD_blockHeaderSize;
}
}
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq)
{
if (cctx->stage != ZSTDcs_init)
return ERROR(stage_wrong);
if (cctx->appliedParams.ldmParams.enableLdm)
return ERROR(parameter_unsupported);
cctx->externSeqStore.seq = seq;
cctx->externSeqStore.size = nbSeq;
cctx->externSeqStore.capacity = nbSeq;
cctx->externSeqStore.pos = 0;
return 0;
}
static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
U32 frame, U32 lastFrameChunk)
{
ZSTD_matchState_t* ms = &cctx->blockState.matchState;
size_t fhSize = 0;
DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u",
cctx->stage, (U32)srcSize);
if (cctx->stage==ZSTDcs_created) return ERROR(stage_wrong); /* missing init (ZSTD_compressBegin) */
if (frame && (cctx->stage==ZSTDcs_init)) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams,
cctx->pledgedSrcSizePlusOne-1, cctx->dictID);
if (ZSTD_isError(fhSize)) return fhSize;
dstCapacity -= fhSize;
dst = (char*)dst + fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (!srcSize) return fhSize; /* do not generate an empty block if no input */
if (!ZSTD_window_update(&ms->window, src, srcSize)) {
ms->nextToUpdate = ms->window.dictLimit;
}
if (cctx->appliedParams.ldmParams.enableLdm)
ZSTD_window_update(&cctx->ldmState.window, src, srcSize);
DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (U32)cctx->blockSize);
{ size_t const cSize = frame ?
ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) :
ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize);
if (ZSTD_isError(cSize)) return cSize;
cctx->consumedSrcSize += srcSize;
cctx->producedCSize += (cSize + fhSize);
if (cctx->appliedParams.fParams.contentSizeFlag) { /* control src size */
if (cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne) {
DEBUGLOG(4, "error : pledgedSrcSize = %u, while realSrcSize >= %u",
(U32)cctx->pledgedSrcSizePlusOne-1, (U32)cctx->consumedSrcSize);
return ERROR(srcSize_wrong);
}
}
return cSize + fhSize;
}
}
size_t ZSTD_compressContinue (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (U32)srcSize);
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */);
}
size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx)
{
ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams;
assert(!ZSTD_checkCParams(cParams));
return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog);
}
size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const blockSizeMax = ZSTD_getBlockSize(cctx);
if (srcSize > blockSizeMax) return ERROR(srcSize_wrong);
return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */);
}
/*! ZSTD_loadDictionaryContent() :
* @return : 0, or an error code
*/
static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const void* src, size_t srcSize)
{
const BYTE* const ip = (const BYTE*) src;
const BYTE* const iend = ip + srcSize;
ZSTD_compressionParameters const* cParams = &params->cParams;
ZSTD_window_update(&ms->window, src, srcSize);
ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base);
if (srcSize <= HASH_READ_SIZE) return 0;
switch(params->cParams.strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(ms, cParams, iend);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable(ms, cParams, iend);
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
if (srcSize >= HASH_READ_SIZE)
ZSTD_insertAndFindFirstIndex(ms, cParams, iend-HASH_READ_SIZE);
break;
case ZSTD_btlazy2: /* we want the dictionary table fully sorted */
case ZSTD_btopt:
case ZSTD_btultra:
if (srcSize >= HASH_READ_SIZE)
ZSTD_updateTree(ms, cParams, iend-HASH_READ_SIZE, iend);
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
ms->nextToUpdate = (U32)(iend - ms->window.base);
return 0;
}
/* Dictionaries that assign zero probability to symbols that show up causes problems
when FSE encoding. Refuse dictionaries that assign zero probability to symbols
that we may encounter during compression.
NOTE: This behavior is not standard and could be improved in the future. */
static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) {
U32 s;
if (dictMaxSymbolValue < maxSymbolValue) return ERROR(dictionary_corrupted);
for (s = 0; s <= maxSymbolValue; ++s) {
if (normalizedCounter[s] == 0) return ERROR(dictionary_corrupted);
}
return 0;
}
/* Dictionary format :
* See :
* https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format
*/
/*! ZSTD_loadZstdDictionary() :
* @return : dictID, or an error code
* assumptions : magic number supposed already checked
* dictSize supposed > 8
*/
static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs, ZSTD_matchState_t* ms, ZSTD_CCtx_params const* params, const void* dict, size_t dictSize, void* workspace)
{
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
short offcodeNCount[MaxOff+1];
unsigned offcodeMaxValue = MaxOff;
size_t dictID;
ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<<MAX(MLFSELog,LLFSELog)));
dictPtr += 4; /* skip magic number */
dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr);
dictPtr += 4;
{ unsigned maxSymbolValue = 255;
size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.hufCTable, &maxSymbolValue, dictPtr, dictEnd-dictPtr);
if (HUF_isError(hufHeaderSize)) return ERROR(dictionary_corrupted);
if (maxSymbolValue < 255) return ERROR(dictionary_corrupted);
dictPtr += hufHeaderSize;
}
{ unsigned offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
/* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */
CHECK_E( FSE_buildCTable_wksp(bs->entropy.offcodeCTable, offcodeNCount, offcodeMaxValue, offcodeLog, workspace, HUF_WORKSPACE_SIZE),
dictionary_corrupted);
dictPtr += offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
/* Every match length code must have non-zero probability */
CHECK_F( ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML));
CHECK_E( FSE_buildCTable_wksp(bs->entropy.matchlengthCTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog, workspace, HUF_WORKSPACE_SIZE),
dictionary_corrupted);
dictPtr += matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
/* Every literal length code must have non-zero probability */
CHECK_F( ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL));
CHECK_E( FSE_buildCTable_wksp(bs->entropy.litlengthCTable, litlengthNCount, litlengthMaxValue, litlengthLog, workspace, HUF_WORKSPACE_SIZE),
dictionary_corrupted);
dictPtr += litlengthHeaderSize;
}
if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
bs->rep[0] = MEM_readLE32(dictPtr+0);
bs->rep[1] = MEM_readLE32(dictPtr+4);
bs->rep[2] = MEM_readLE32(dictPtr+8);
dictPtr += 12;
{ size_t const dictContentSize = (size_t)(dictEnd - dictPtr);
U32 offcodeMax = MaxOff;
if (dictContentSize <= ((U32)-1) - 128 KB) {
U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */
offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */
}
/* All offset values <= dictContentSize + 128 KB must be representable */
CHECK_F (ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff)));
/* All repCodes must be <= dictContentSize and != 0*/
{ U32 u;
for (u=0; u<3; u++) {
if (bs->rep[u] == 0) return ERROR(dictionary_corrupted);
if (bs->rep[u] > dictContentSize) return ERROR(dictionary_corrupted);
} }
bs->entropy.hufCTable_repeatMode = HUF_repeat_valid;
bs->entropy.offcode_repeatMode = FSE_repeat_valid;
bs->entropy.matchlength_repeatMode = FSE_repeat_valid;
bs->entropy.litlength_repeatMode = FSE_repeat_valid;
CHECK_F(ZSTD_loadDictionaryContent(ms, params, dictPtr, dictContentSize));
return dictID;
}
}
/** ZSTD_compress_insertDictionary() :
* @return : dictID, or an error code */
static size_t ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs, ZSTD_matchState_t* ms,
ZSTD_CCtx_params const* params,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
void* workspace)
{
DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize);
if ((dict==NULL) || (dictSize<=8)) return 0;
ZSTD_reset_compressedBlockState(bs);
/* dict restricted modes */
if (dictContentType == ZSTD_dct_rawContent)
return ZSTD_loadDictionaryContent(ms, params, dict, dictSize);
if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) {
if (dictContentType == ZSTD_dct_auto) {
DEBUGLOG(4, "raw content dictionary detected");
return ZSTD_loadDictionaryContent(ms, params, dict, dictSize);
}
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_wrong);
assert(0); /* impossible */
}
/* dict as full zstd dictionary */
return ZSTD_loadZstdDictionary(bs, ms, params, dict, dictSize, workspace);
}
/*! ZSTD_compressBegin_internal() :
* @return : 0, or an error code */
size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, U64 pledgedSrcSize,
ZSTD_buffered_policy_e zbuff)
{
DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params.cParams.windowLog);
/* params are supposed to be fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if (cdict && cdict->dictContentSize>0) {
cctx->requestedParams = params;
return ZSTD_resetCCtx_usingCDict(cctx, cdict, params.cParams.windowLog,
params.fParams, pledgedSrcSize, zbuff);
}
CHECK_F( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize,
ZSTDcrp_continue, zbuff) );
{
size_t const dictID = ZSTD_compress_insertDictionary(
cctx->blockState.prevCBlock, &cctx->blockState.matchState,
&params, dict, dictSize, dictContentType, cctx->entropyWorkspace);
if (ZSTD_isError(dictID)) return dictID;
assert(dictID <= (size_t)(U32)-1);
cctx->dictID = (U32)dictID;
}
return 0;
}
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_dictContentType_e dictContentType,
const ZSTD_CDict* cdict,
ZSTD_CCtx_params params,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params.cParams.windowLog);
/* compression parameters verification and optimization */
CHECK_F( ZSTD_checkCParams(params.cParams) );
return ZSTD_compressBegin_internal(cctx,
dict, dictSize, dictContentType,
cdict,
params, pledgedSrcSize,
ZSTDb_not_buffered);
}
/*! ZSTD_compressBegin_advanced() :
* @return : 0, or an error code */
size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
return ZSTD_compressBegin_advanced_internal(cctx,
dict, dictSize, ZSTD_dct_auto,
NULL /*cdict*/,
cctxParams, pledgedSrcSize);
}
size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize);
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (U32)dictSize);
return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, NULL,
cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered);
}
size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel)
{
return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel);
}
/*! ZSTD_writeEpilogue() :
* Ends a frame.
* @return : nb of bytes written into dst (or an error code) */
static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* op = ostart;
size_t fhSize = 0;
DEBUGLOG(4, "ZSTD_writeEpilogue");
if (cctx->stage == ZSTDcs_created) return ERROR(stage_wrong); /* init missing */
/* special case : empty frame */
if (cctx->stage == ZSTDcs_init) {
fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, 0, 0);
if (ZSTD_isError(fhSize)) return fhSize;
dstCapacity -= fhSize;
op += fhSize;
cctx->stage = ZSTDcs_ongoing;
}
if (cctx->stage != ZSTDcs_ending) {
/* write one last empty block, make it the "last" block */
U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0;
if (dstCapacity<4) return ERROR(dstSize_tooSmall);
MEM_writeLE32(op, cBlockHeader24);
op += ZSTD_blockHeaderSize;
dstCapacity -= ZSTD_blockHeaderSize;
}
if (cctx->appliedParams.fParams.checksumFlag) {
U32 const checksum = (U32) XXH64_digest(&cctx->xxhState);
if (dstCapacity<4) return ERROR(dstSize_tooSmall);
DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", checksum);
MEM_writeLE32(op, checksum);
op += 4;
}
cctx->stage = ZSTDcs_created; /* return to "created but no init" status */
return op-ostart;
}
size_t ZSTD_compressEnd (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t endResult;
size_t const cSize = ZSTD_compressContinue_internal(cctx,
dst, dstCapacity, src, srcSize,
1 /* frame mode */, 1 /* last chunk */);
if (ZSTD_isError(cSize)) return cSize;
endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize);
if (ZSTD_isError(endResult)) return endResult;
if (cctx->appliedParams.fParams.contentSizeFlag) { /* control src size */
DEBUGLOG(4, "end of frame : controlling src size");
if (cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1) {
DEBUGLOG(4, "error : pledgedSrcSize = %u, while realSrcSize = %u",
(U32)cctx->pledgedSrcSizePlusOne-1, (U32)cctx->consumedSrcSize);
return ERROR(srcSize_wrong);
} }
return cSize + endResult;
}
static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params)
{
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
DEBUGLOG(4, "ZSTD_compress_internal");
return ZSTD_compress_advanced_internal(cctx,
dst, dstCapacity,
src, srcSize,
dict, dictSize,
cctxParams);
}
size_t ZSTD_compress_advanced (ZSTD_CCtx* ctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_parameters params)
{
DEBUGLOG(4, "ZSTD_compress_advanced");
CHECK_F(ZSTD_checkCParams(params.cParams));
return ZSTD_compress_internal(ctx, dst, dstCapacity, src, srcSize, dict, dictSize, params);
}
/* Internal */
size_t ZSTD_compress_advanced_internal(
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict,size_t dictSize,
ZSTD_CCtx_params params)
{
DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)",
(U32)srcSize);
CHECK_F( ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, NULL,
params, srcSize, ZSTDb_not_buffered) );
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize,
const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, srcSize ? srcSize : 1, dict ? dictSize : 0);
ZSTD_CCtx_params cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params);
assert(params.fParams.contentSizeFlag == 1);
ZSTD_CCtxParam_setParameter(&cctxParams, ZSTD_p_compressLiterals, compressionLevel>=0);
return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, cctxParams);
}
size_t ZSTD_compressCCtx (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel)
{
DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (U32)srcSize);
return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel);
}
size_t ZSTD_compress(void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel)
{
size_t result;
ZSTD_CCtx ctxBody;
memset(&ctxBody, 0, sizeof(ctxBody));
ctxBody.customMem = ZSTD_defaultCMem;
result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel);
ZSTD_free(ctxBody.workSpace, ZSTD_defaultCMem); /* can't free ctxBody itself, as it's on stack; free only heap content */
return result;
}
/* ===== Dictionary API ===== */
/*! ZSTD_estimateCDictSize_advanced() :
* Estimate amount of memory that will be needed to create a dictionary with following arguments */
size_t ZSTD_estimateCDictSize_advanced(
size_t dictSize, ZSTD_compressionParameters cParams,
ZSTD_dictLoadMethod_e dictLoadMethod)
{
DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (U32)sizeof(ZSTD_CDict));
return sizeof(ZSTD_CDict) + HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
}
size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy);
}
size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support sizeof on NULL */
DEBUGLOG(5, "sizeof(*cdict) : %u", (U32)sizeof(*cdict));
return cdict->workspaceSize + (cdict->dictBuffer ? cdict->dictContentSize : 0) + sizeof(*cdict);
}
static size_t ZSTD_initCDict_internal(
ZSTD_CDict* cdict,
const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams)
{
DEBUGLOG(3, "ZSTD_initCDict_internal, dictContentType %u", (U32)dictContentType);
assert(!ZSTD_checkCParams(cParams));
cdict->cParams = cParams;
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) {
cdict->dictBuffer = NULL;
cdict->dictContent = dictBuffer;
} else {
void* const internalBuffer = ZSTD_malloc(dictSize, cdict->customMem);
cdict->dictBuffer = internalBuffer;
cdict->dictContent = internalBuffer;
if (!internalBuffer) return ERROR(memory_allocation);
memcpy(internalBuffer, dictBuffer, dictSize);
}
cdict->dictContentSize = dictSize;
/* Reset the state to no dictionary */
ZSTD_reset_compressedBlockState(&cdict->cBlockState);
{ void* const end = ZSTD_reset_matchState(
&cdict->matchState,
(U32*)cdict->workspace + HUF_WORKSPACE_SIZE_U32,
&cParams, ZSTDcrp_continue, /* forCCtx */ 0);
assert(end == (char*)cdict->workspace + cdict->workspaceSize);
(void)end;
}
/* (Maybe) load the dictionary
* Skips loading the dictionary if it is <= 8 bytes.
*/
{ ZSTD_CCtx_params params;
memset(&params, 0, sizeof(params));
params.compressionLevel = ZSTD_CLEVEL_DEFAULT;
params.fParams.contentSizeFlag = 1;
params.cParams = cParams;
{ size_t const dictID = ZSTD_compress_insertDictionary(
&cdict->cBlockState, &cdict->matchState, &params,
cdict->dictContent, cdict->dictContentSize,
dictContentType, cdict->workspace);
if (ZSTD_isError(dictID)) return dictID;
assert(dictID <= (size_t)(U32)-1);
cdict->dictID = (U32)dictID;
}
}
return 0;
}
ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams, ZSTD_customMem customMem)
{
DEBUGLOG(3, "ZSTD_createCDict_advanced, mode %u", (U32)dictContentType);
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
{ ZSTD_CDict* const cdict = (ZSTD_CDict*)ZSTD_malloc(sizeof(ZSTD_CDict), customMem);
size_t const workspaceSize = HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0);
void* const workspace = ZSTD_malloc(workspaceSize, customMem);
if (!cdict || !workspace) {
ZSTD_free(cdict, customMem);
ZSTD_free(workspace, customMem);
return NULL;
}
cdict->customMem = customMem;
cdict->workspace = workspace;
cdict->workspaceSize = workspaceSize;
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dictBuffer, dictSize,
dictLoadMethod, dictContentType,
cParams) )) {
ZSTD_freeCDict(cdict);
return NULL;
}
return cdict;
}
}
ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
return ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
}
ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize);
return ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byRef, ZSTD_dct_auto,
cParams, ZSTD_defaultCMem);
}
size_t ZSTD_freeCDict(ZSTD_CDict* cdict)
{
if (cdict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = cdict->customMem;
ZSTD_free(cdict->workspace, cMem);
ZSTD_free(cdict->dictBuffer, cMem);
ZSTD_free(cdict, cMem);
return 0;
}
}
/*! ZSTD_initStaticCDict_advanced() :
* Generate a digested dictionary in provided memory area.
* workspace: The memory area to emplace the dictionary into.
* Provided pointer must 8-bytes aligned.
* It must outlive dictionary usage.
* workspaceSize: Use ZSTD_estimateCDictSize()
* to determine how large workspace must be.
* cParams : use ZSTD_getCParams() to transform a compression level
* into its relevants cParams.
* @return : pointer to ZSTD_CDict*, or NULL if error (size too small)
* Note : there is no corresponding "free" function.
* Since workspace was allocated externally, it must be freed externally.
*/
const ZSTD_CDict* ZSTD_initStaticCDict(
void* workspace, size_t workspaceSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_compressionParameters cParams)
{
size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0);
size_t const neededSize = sizeof(ZSTD_CDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize)
+ HUF_WORKSPACE_SIZE + matchStateSize;
ZSTD_CDict* const cdict = (ZSTD_CDict*) workspace;
void* ptr;
if ((size_t)workspace & 7) return NULL; /* 8-aligned */
DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u",
(U32)workspaceSize, (U32)neededSize, (U32)(workspaceSize < neededSize));
if (workspaceSize < neededSize) return NULL;
if (dictLoadMethod == ZSTD_dlm_byCopy) {
memcpy(cdict+1, dict, dictSize);
dict = cdict+1;
ptr = (char*)workspace + sizeof(ZSTD_CDict) + dictSize;
} else {
ptr = cdict+1;
}
cdict->workspace = ptr;
cdict->workspaceSize = HUF_WORKSPACE_SIZE + matchStateSize;
if (ZSTD_isError( ZSTD_initCDict_internal(cdict,
dict, dictSize,
ZSTD_dlm_byRef, dictContentType,
cParams) ))
return NULL;
return cdict;
}
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict)
{
assert(cdict != NULL);
return cdict->cParams;
}
/* ZSTD_compressBegin_usingCDict_advanced() :
* cdict must be != NULL */
size_t ZSTD_compressBegin_usingCDict_advanced(
ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict,
ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced");
if (cdict==NULL) return ERROR(dictionary_wrong);
{ ZSTD_CCtx_params params = cctx->requestedParams;
params.cParams = ZSTD_getCParamsFromCDict(cdict);
/* Increase window log to fit the entire dictionary and source if the
* source size is known. Limit the increase to 19, which is the
* window log for compression level 1 with the largest source size.
*/
if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) {
U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19);
U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1;
params.cParams.windowLog = MAX(params.cParams.windowLog, limitedSrcLog);
}
params.fParams = fParams;
return ZSTD_compressBegin_internal(cctx,
NULL, 0, ZSTD_dct_auto,
cdict,
params, pledgedSrcSize,
ZSTDb_not_buffered);
}
}
/* ZSTD_compressBegin_usingCDict() :
* pledgedSrcSize=0 means "unknown"
* if pledgedSrcSize>0, it will enable contentSizeFlag */
size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag);
return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, 0);
}
size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict, ZSTD_frameParameters fParams)
{
CHECK_F (ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize)); /* will check if cdict != NULL */
return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize);
}
/*! ZSTD_compress_usingCDict() :
* Compression using a digested Dictionary.
* Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times.
* Note that compression parameters are decided at CDict creation time
* while frame parameters are hardcoded */
size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ };
return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams);
}
/* ******************************************************************
* Streaming
********************************************************************/
ZSTD_CStream* ZSTD_createCStream(void)
{
DEBUGLOG(3, "ZSTD_createCStream");
return ZSTD_createCStream_advanced(ZSTD_defaultCMem);
}
ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize)
{
return ZSTD_initStaticCCtx(workspace, workspaceSize);
}
ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem)
{ /* CStream and CCtx are now same object */
return ZSTD_createCCtx_advanced(customMem);
}
size_t ZSTD_freeCStream(ZSTD_CStream* zcs)
{
return ZSTD_freeCCtx(zcs); /* same object */
}
/*====== Initialization ======*/
size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; }
size_t ZSTD_CStreamOutSize(void)
{
return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ;
}
static size_t ZSTD_resetCStream_internal(ZSTD_CStream* cctx,
const void* const dict, size_t const dictSize, ZSTD_dictContentType_e const dictContentType,
const ZSTD_CDict* const cdict,
ZSTD_CCtx_params const params, unsigned long long const pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_resetCStream_internal (disableLiteralCompression=%i)",
params.disableLiteralCompression);
/* params are supposed to be fully validated at this point */
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
CHECK_F( ZSTD_compressBegin_internal(cctx,
dict, dictSize, dictContentType,
cdict,
params, pledgedSrcSize,
ZSTDb_buffered) );
cctx->inToCompress = 0;
cctx->inBuffPos = 0;
cctx->inBuffTarget = cctx->blockSize
+ (cctx->blockSize == pledgedSrcSize); /* for small input: avoid automatic flush on reaching end of block, since it would require to add a 3-bytes null block to end frame */
cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0;
cctx->streamStage = zcss_load;
cctx->frameEnded = 0;
return 0; /* ready to go */
}
/* ZSTD_resetCStream():
* pledgedSrcSize == 0 means "unknown" */
size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize)
{
ZSTD_CCtx_params params = zcs->requestedParams;
DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (U32)pledgedSrcSize);
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN;
params.fParams.contentSizeFlag = 1;
params.cParams = ZSTD_getCParamsFromCCtxParams(&params, pledgedSrcSize, 0);
return ZSTD_resetCStream_internal(zcs, NULL, 0, ZSTD_dct_auto, zcs->cdict, params, pledgedSrcSize);
}
/*! ZSTD_initCStream_internal() :
* Note : for lib/compress only. Used by zstdmt_compress.c.
* Assumption 1 : params are valid
* Assumption 2 : either dict, or cdict, is defined, not both */
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
const void* dict, size_t dictSize, const ZSTD_CDict* cdict,
ZSTD_CCtx_params params, unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_internal");
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
if (dict && dictSize >= 8) {
DEBUGLOG(4, "loading dictionary of size %u", (U32)dictSize);
if (zcs->staticSize) { /* static CCtx : never uses malloc */
/* incompatible with internal cdict creation */
return ERROR(memory_allocation);
}
ZSTD_freeCDict(zcs->cdictLocal);
zcs->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
ZSTD_dlm_byCopy, ZSTD_dct_auto,
params.cParams, zcs->customMem);
zcs->cdict = zcs->cdictLocal;
if (zcs->cdictLocal == NULL) return ERROR(memory_allocation);
} else {
if (cdict) {
params.cParams = ZSTD_getCParamsFromCDict(cdict); /* cParams are enforced from cdict; it includes windowLog */
}
ZSTD_freeCDict(zcs->cdictLocal);
zcs->cdictLocal = NULL;
zcs->cdict = cdict;
}
return ZSTD_resetCStream_internal(zcs, NULL, 0, ZSTD_dct_auto, zcs->cdict, params, pledgedSrcSize);
}
/* ZSTD_initCStream_usingCDict_advanced() :
* same as ZSTD_initCStream_usingCDict(), with control over frame parameters */
size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs,
const ZSTD_CDict* cdict,
ZSTD_frameParameters fParams,
unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced");
if (!cdict) return ERROR(dictionary_wrong); /* cannot handle NULL cdict (does not know what to do) */
{ ZSTD_CCtx_params params = zcs->requestedParams;
params.cParams = ZSTD_getCParamsFromCDict(cdict);
params.fParams = fParams;
return ZSTD_initCStream_internal(zcs,
NULL, 0, cdict,
params, pledgedSrcSize);
}
}
/* note : cdict must outlive compression session */
size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict)
{
ZSTD_frameParameters const fParams = { 0 /* contentSizeFlag */, 0 /* checksum */, 0 /* hideDictID */ };
DEBUGLOG(4, "ZSTD_initCStream_usingCDict");
return ZSTD_initCStream_usingCDict_advanced(zcs, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN); /* note : will check that cdict != NULL */
}
/* ZSTD_initCStream_advanced() :
* pledgedSrcSize must be exact.
* if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN.
* dict is loaded with default parameters ZSTD_dm_auto and ZSTD_dlm_byCopy. */
size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
DEBUGLOG(4, "ZSTD_initCStream_advanced: pledgedSrcSize=%u, flag=%u",
(U32)pledgedSrcSize, params.fParams.contentSizeFlag);
CHECK_F( ZSTD_checkCParams(params.cParams) );
if ((pledgedSrcSize==0) && (params.fParams.contentSizeFlag==0)) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* for compatibility with older programs relying on this behavior. Users should now specify ZSTD_CONTENTSIZE_UNKNOWN. This line will be removed in the future. */
{ ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params);
return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL /*cdict*/, cctxParams, pledgedSrcSize);
}
}
size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel)
{
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, 0, dictSize);
ZSTD_CCtx_params const cctxParams =
ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params);
return ZSTD_initCStream_internal(zcs, dict, dictSize, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN);
}
size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss)
{
U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; /* temporary : 0 interpreted as "unknown" during transition period. Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. `0` will be interpreted as "empty" in the future */
ZSTD_parameters const params = ZSTD_getParams(compressionLevel, pledgedSrcSize, 0);
ZSTD_CCtx_params const cctxParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params);
return ZSTD_initCStream_internal(zcs, NULL, 0, NULL, cctxParams, pledgedSrcSize);
}
size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel)
{
DEBUGLOG(4, "ZSTD_initCStream");
return ZSTD_initCStream_srcSize(zcs, compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN);
}
/*====== Compression ======*/
MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
if (length) memcpy(dst, src, length);
return length;
}
/** ZSTD_compressStream_generic():
* internal function for all *compressStream*() variants and *compress_generic()
* non-static, because can be called from zstdmt_compress.c
* @return : hint size for next input */
size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective const flushMode)
{
const char* const istart = (const char*)input->src;
const char* const iend = istart + input->size;
const char* ip = istart + input->pos;
char* const ostart = (char*)output->dst;
char* const oend = ostart + output->size;
char* op = ostart + output->pos;
U32 someMoreWork = 1;
/* check expectations */
DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (U32)flushMode);
assert(zcs->inBuff != NULL);
assert(zcs->inBuffSize > 0);
assert(zcs->outBuff != NULL);
assert(zcs->outBuffSize > 0);
assert(output->pos <= output->size);
assert(input->pos <= input->size);
while (someMoreWork) {
switch(zcs->streamStage)
{
case zcss_init:
/* call ZSTD_initCStream() first ! */
return ERROR(init_missing);
case zcss_load:
if ( (flushMode == ZSTD_e_end)
&& ((size_t)(oend-op) >= ZSTD_compressBound(iend-ip)) /* enough dstCapacity */
&& (zcs->inBuffPos == 0) ) {
/* shortcut to compression pass directly into output buffer */
size_t const cSize = ZSTD_compressEnd(zcs,
op, oend-op, ip, iend-ip);
DEBUGLOG(4, "ZSTD_compressEnd : %u", (U32)cSize);
if (ZSTD_isError(cSize)) return cSize;
ip = iend;
op += cSize;
zcs->frameEnded = 1;
ZSTD_startNewCompression(zcs);
someMoreWork = 0; break;
}
/* complete loading into inBuffer */
{ size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos;
size_t const loaded = ZSTD_limitCopy(
zcs->inBuff + zcs->inBuffPos, toLoad,
ip, iend-ip);
zcs->inBuffPos += loaded;
ip += loaded;
if ( (flushMode == ZSTD_e_continue)
&& (zcs->inBuffPos < zcs->inBuffTarget) ) {
/* not enough input to fill full block : stop here */
someMoreWork = 0; break;
}
if ( (flushMode == ZSTD_e_flush)
&& (zcs->inBuffPos == zcs->inToCompress) ) {
/* empty */
someMoreWork = 0; break;
}
}
/* compress current block (note : this stage cannot be stopped in the middle) */
DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode);
{ void* cDst;
size_t cSize;
size_t const iSize = zcs->inBuffPos - zcs->inToCompress;
size_t oSize = oend-op;
unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend);
if (oSize >= ZSTD_compressBound(iSize))
cDst = op; /* compress into output buffer, to skip flush stage */
else
cDst = zcs->outBuff, oSize = zcs->outBuffSize;
cSize = lastBlock ?
ZSTD_compressEnd(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize) :
ZSTD_compressContinue(zcs, cDst, oSize,
zcs->inBuff + zcs->inToCompress, iSize);
if (ZSTD_isError(cSize)) return cSize;
zcs->frameEnded = lastBlock;
/* prepare next block */
zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize;
if (zcs->inBuffTarget > zcs->inBuffSize)
zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize;
DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u",
(U32)zcs->inBuffTarget, (U32)zcs->inBuffSize);
if (!lastBlock)
assert(zcs->inBuffTarget <= zcs->inBuffSize);
zcs->inToCompress = zcs->inBuffPos;
if (cDst == op) { /* no need to flush */
op += cSize;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed directly in outBuffer");
someMoreWork = 0;
ZSTD_startNewCompression(zcs);
}
break;
}
zcs->outBuffContentSize = cSize;
zcs->outBuffFlushedSize = 0;
zcs->streamStage = zcss_flush; /* pass-through to flush stage */
}
/* fall-through */
case zcss_flush:
DEBUGLOG(5, "flush stage");
{ size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize;
size_t const flushed = ZSTD_limitCopy(op, oend-op,
zcs->outBuff + zcs->outBuffFlushedSize, toFlush);
DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u",
(U32)toFlush, (U32)(oend-op), (U32)flushed);
op += flushed;
zcs->outBuffFlushedSize += flushed;
if (toFlush!=flushed) {
/* flush not fully completed, presumably because dst is too small */
assert(op==oend);
someMoreWork = 0;
break;
}
zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0;
if (zcs->frameEnded) {
DEBUGLOG(5, "Frame completed on flush");
someMoreWork = 0;
ZSTD_startNewCompression(zcs);
break;
}
zcs->streamStage = zcss_load;
break;
}
default: /* impossible */
assert(0);
}
}
input->pos = ip - istart;
output->pos = op - ostart;
if (zcs->frameEnded) return 0;
{ size_t hintInSize = zcs->inBuffTarget - zcs->inBuffPos;
if (hintInSize==0) hintInSize = zcs->blockSize;
return hintInSize;
}
}
size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
/* check conditions */
if (output->pos > output->size) return ERROR(GENERIC);
if (input->pos > input->size) return ERROR(GENERIC);
return ZSTD_compressStream_generic(zcs, output, input, ZSTD_e_continue);
}
size_t ZSTD_compress_generic (ZSTD_CCtx* cctx,
ZSTD_outBuffer* output,
ZSTD_inBuffer* input,
ZSTD_EndDirective endOp)
{
DEBUGLOG(5, "ZSTD_compress_generic, endOp=%u ", (U32)endOp);
/* check conditions */
if (output->pos > output->size) return ERROR(GENERIC);
if (input->pos > input->size) return ERROR(GENERIC);
assert(cctx!=NULL);
/* transparent initialization stage */
if (cctx->streamStage == zcss_init) {
ZSTD_CCtx_params params = cctx->requestedParams;
ZSTD_prefixDict const prefixDict = cctx->prefixDict;
memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */
assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */
DEBUGLOG(4, "ZSTD_compress_generic : transparent init stage");
if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = input->size + 1; /* auto-fix pledgedSrcSize */
params.cParams = ZSTD_getCParamsFromCCtxParams(
&cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, 0 /*dictSize*/);
#ifdef ZSTD_MULTITHREAD
if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) {
params.nbWorkers = 0; /* do not invoke multi-threading when src size is too small */
}
if (params.nbWorkers > 0) {
/* mt context creation */
if (cctx->mtctx == NULL || (params.nbWorkers != ZSTDMT_getNbWorkers(cctx->mtctx))) {
DEBUGLOG(4, "ZSTD_compress_generic: creating new mtctx for nbWorkers=%u",
params.nbWorkers);
if (cctx->mtctx != NULL)
DEBUGLOG(4, "ZSTD_compress_generic: previous nbWorkers was %u",
ZSTDMT_getNbWorkers(cctx->mtctx));
ZSTDMT_freeCCtx(cctx->mtctx);
cctx->mtctx = ZSTDMT_createCCtx_advanced(params.nbWorkers, cctx->customMem);
if (cctx->mtctx == NULL) return ERROR(memory_allocation);
}
/* mt compression */
DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbWorkers=%u", params.nbWorkers);
CHECK_F( ZSTDMT_initCStream_internal(
cctx->mtctx,
prefixDict.dict, prefixDict.dictSize, ZSTD_dct_rawContent,
cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) );
cctx->streamStage = zcss_load;
cctx->appliedParams.nbWorkers = params.nbWorkers;
} else
#endif
{ CHECK_F( ZSTD_resetCStream_internal(cctx,
prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType,
cctx->cdict,
params, cctx->pledgedSrcSizePlusOne-1) );
assert(cctx->streamStage == zcss_load);
assert(cctx->appliedParams.nbWorkers == 0);
} }
/* compression stage */
#ifdef ZSTD_MULTITHREAD
if (cctx->appliedParams.nbWorkers > 0) {
if (cctx->cParamsChanged) {
ZSTDMT_updateCParams_whileCompressing(cctx->mtctx, &cctx->requestedParams);
cctx->cParamsChanged = 0;
}
{ size_t const flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp);
if ( ZSTD_isError(flushMin)
|| (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */
ZSTD_startNewCompression(cctx);
}
return flushMin;
} }
#endif
CHECK_F( ZSTD_compressStream_generic(cctx, output, input, endOp) );
DEBUGLOG(5, "completed ZSTD_compress_generic");
return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */
}
size_t ZSTD_compress_generic_simpleArgs (
ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos,
ZSTD_EndDirective endOp)
{
ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
ZSTD_inBuffer input = { src, srcSize, *srcPos };
/* ZSTD_compress_generic() will check validity of dstPos and srcPos */
size_t const cErr = ZSTD_compress_generic(cctx, &output, &input, endOp);
*dstPos = output.pos;
*srcPos = input.pos;
return cErr;
}
/*====== Finalize ======*/
/*! ZSTD_flushStream() :
* @return : amount of data remaining to flush */
size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
if (output->pos > output->size) return ERROR(GENERIC);
CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_flush) );
return zcs->outBuffContentSize - zcs->outBuffFlushedSize; /* remaining to flush */
}
size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output)
{
ZSTD_inBuffer input = { NULL, 0, 0 };
if (output->pos > output->size) return ERROR(GENERIC);
CHECK_F( ZSTD_compressStream_generic(zcs, output, &input, ZSTD_e_end) );
{ size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE;
size_t const checksumSize = zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4;
size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize + lastBlockSize + checksumSize;
DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (U32)toFlush);
return toFlush;
}
}
/*-===== Pre-defined compression levels =====-*/
#define ZSTD_MAX_CLEVEL 22
int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; }
static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
{ /* "default" - guarantees a monotonically increasing memory budget */
/* W, C, H, S, L, TL, strat */
{ 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
{ 19, 13, 14, 1, 7, 1, ZSTD_fast }, /* level 1 */
{ 19, 15, 16, 1, 6, 1, ZSTD_fast }, /* level 2 */
{ 20, 16, 17, 1, 5, 8, ZSTD_dfast }, /* level 3 */
{ 20, 17, 18, 1, 5, 8, ZSTD_dfast }, /* level 4 */
{ 20, 17, 18, 2, 5, 16, ZSTD_greedy }, /* level 5 */
{ 21, 17, 19, 2, 5, 16, ZSTD_lazy }, /* level 6 */
{ 21, 18, 19, 3, 5, 16, ZSTD_lazy }, /* level 7 */
{ 21, 18, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */
{ 21, 19, 20, 3, 5, 16, ZSTD_lazy2 }, /* level 9 */
{ 21, 19, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */
{ 22, 20, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */
{ 22, 20, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */
{ 22, 21, 22, 4, 5, 32, ZSTD_btlazy2 }, /* level 13 */
{ 22, 21, 22, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
{ 22, 22, 22, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
{ 22, 21, 22, 4, 5, 48, ZSTD_btopt }, /* level 16 */
{ 23, 22, 22, 4, 4, 48, ZSTD_btopt }, /* level 17 */
{ 23, 22, 22, 5, 3, 64, ZSTD_btopt }, /* level 18 */
{ 23, 23, 22, 7, 3,128, ZSTD_btopt }, /* level 19 */
{ 25, 25, 23, 7, 3,128, ZSTD_btultra }, /* level 20 */
{ 26, 26, 24, 7, 3,256, ZSTD_btultra }, /* level 21 */
{ 27, 27, 25, 9, 3,512, ZSTD_btultra }, /* level 22 */
},
{ /* for srcSize <= 256 KB */
/* W, C, H, S, L, T, strat */
{ 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 18, 13, 14, 1, 6, 1, ZSTD_fast }, /* level 1 */
{ 18, 14, 13, 1, 5, 8, ZSTD_dfast }, /* level 2 */
{ 18, 16, 15, 1, 5, 8, ZSTD_dfast }, /* level 3 */
{ 18, 15, 17, 1, 5, 8, ZSTD_greedy }, /* level 4.*/
{ 18, 16, 17, 4, 5, 8, ZSTD_greedy }, /* level 5.*/
{ 18, 16, 17, 3, 5, 8, ZSTD_lazy }, /* level 6.*/
{ 18, 17, 17, 4, 4, 8, ZSTD_lazy }, /* level 7 */
{ 18, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 18, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 18, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 18, 18, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 11.*/
{ 18, 18, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 12.*/
{ 18, 19, 17, 7, 4, 8, ZSTD_btlazy2 }, /* level 13 */
{ 18, 18, 18, 4, 4, 16, ZSTD_btopt }, /* level 14.*/
{ 18, 18, 18, 4, 3, 16, ZSTD_btopt }, /* level 15.*/
{ 18, 19, 18, 6, 3, 32, ZSTD_btopt }, /* level 16.*/
{ 18, 19, 18, 8, 3, 64, ZSTD_btopt }, /* level 17.*/
{ 18, 19, 18, 9, 3,128, ZSTD_btopt }, /* level 18.*/
{ 18, 19, 18, 10, 3,256, ZSTD_btopt }, /* level 19.*/
{ 18, 19, 18, 11, 3,512, ZSTD_btultra }, /* level 20.*/
{ 18, 19, 18, 12, 3,512, ZSTD_btultra }, /* level 21.*/
{ 18, 19, 18, 13, 3,512, ZSTD_btultra }, /* level 22.*/
},
{ /* for srcSize <= 128 KB */
/* W, C, H, S, L, T, strat */
{ 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* level 0 - not used */
{ 17, 12, 13, 1, 6, 1, ZSTD_fast }, /* level 1 */
{ 17, 13, 16, 1, 5, 1, ZSTD_fast }, /* level 2 */
{ 17, 16, 16, 2, 5, 8, ZSTD_dfast }, /* level 3 */
{ 17, 13, 15, 3, 4, 8, ZSTD_greedy }, /* level 4 */
{ 17, 15, 17, 4, 4, 8, ZSTD_greedy }, /* level 5 */
{ 17, 16, 17, 3, 4, 8, ZSTD_lazy }, /* level 6 */
{ 17, 15, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 17, 17, 17, 7, 4, 8, ZSTD_lazy2 }, /* level 11 */
{ 17, 17, 17, 8, 4, 8, ZSTD_lazy2 }, /* level 12 */
{ 17, 18, 17, 6, 4, 8, ZSTD_btlazy2 }, /* level 13.*/
{ 17, 17, 17, 7, 3, 8, ZSTD_btopt }, /* level 14.*/
{ 17, 17, 17, 7, 3, 16, ZSTD_btopt }, /* level 15.*/
{ 17, 18, 17, 7, 3, 32, ZSTD_btopt }, /* level 16.*/
{ 17, 18, 17, 7, 3, 64, ZSTD_btopt }, /* level 17.*/
{ 17, 18, 17, 7, 3,256, ZSTD_btopt }, /* level 18.*/
{ 17, 18, 17, 8, 3,256, ZSTD_btopt }, /* level 19.*/
{ 17, 18, 17, 9, 3,256, ZSTD_btultra }, /* level 20.*/
{ 17, 18, 17, 10, 3,256, ZSTD_btultra }, /* level 21.*/
{ 17, 18, 17, 11, 3,512, ZSTD_btultra }, /* level 22.*/
},
{ /* for srcSize <= 16 KB */
/* W, C, H, S, L, T, strat */
{ 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 14, 14, 14, 1, 6, 1, ZSTD_fast }, /* level 1 */
{ 14, 14, 14, 1, 4, 1, ZSTD_fast }, /* level 2 */
{ 14, 14, 14, 1, 4, 6, ZSTD_dfast }, /* level 3.*/
{ 14, 14, 14, 4, 4, 6, ZSTD_greedy }, /* level 4.*/
{ 14, 14, 14, 3, 4, 6, ZSTD_lazy }, /* level 5.*/
{ 14, 14, 14, 4, 4, 6, ZSTD_lazy2 }, /* level 6 */
{ 14, 14, 14, 5, 4, 6, ZSTD_lazy2 }, /* level 7 */
{ 14, 14, 14, 6, 4, 6, ZSTD_lazy2 }, /* level 8.*/
{ 14, 15, 14, 6, 4, 6, ZSTD_btlazy2 }, /* level 9.*/
{ 14, 15, 14, 3, 3, 6, ZSTD_btopt }, /* level 10.*/
{ 14, 15, 14, 6, 3, 8, ZSTD_btopt }, /* level 11.*/
{ 14, 15, 14, 6, 3, 16, ZSTD_btopt }, /* level 12.*/
{ 14, 15, 14, 6, 3, 24, ZSTD_btopt }, /* level 13.*/
{ 14, 15, 15, 6, 3, 48, ZSTD_btopt }, /* level 14.*/
{ 14, 15, 15, 6, 3, 64, ZSTD_btopt }, /* level 15.*/
{ 14, 15, 15, 6, 3, 96, ZSTD_btopt }, /* level 16.*/
{ 14, 15, 15, 6, 3,128, ZSTD_btopt }, /* level 17.*/
{ 14, 15, 15, 6, 3,256, ZSTD_btopt }, /* level 18.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btopt }, /* level 19.*/
{ 14, 15, 15, 8, 3,256, ZSTD_btultra }, /* level 20.*/
{ 14, 15, 15, 9, 3,256, ZSTD_btultra }, /* level 21.*/
{ 14, 15, 15, 10, 3,256, ZSTD_btultra }, /* level 22.*/
},
};
/*! ZSTD_getCParams() :
* @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize.
* Size values are optional, provide 0 if not known or unused */
ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize)
{
size_t const addedSize = srcSizeHint ? 0 : 500;
U64 const rSize = srcSizeHint+dictSize ? srcSizeHint+dictSize+addedSize : (U64)-1;
U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); /* intentional underflow for srcSizeHint == 0 */
int row = compressionLevel;
DEBUGLOG(5, "ZSTD_getCParams (cLevel=%i)", compressionLevel);
if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */
if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */
if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL;
{ ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row];
if (compressionLevel < 0) cp.targetLength = (unsigned)(-compressionLevel); /* acceleration factor */
return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize); }
}
/*! ZSTD_getParams() :
* same as ZSTD_getCParams(), but @return a `ZSTD_parameters` object (instead of `ZSTD_compressionParameters`).
* All fields of `ZSTD_frameParameters` are set to default (0) */
ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) {
ZSTD_parameters params;
ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSizeHint, dictSize);
DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel);
memset(&params, 0, sizeof(params));
params.cParams = cParams;
params.fParams.contentSizeFlag = 1;
return params;
}