virtualx-engine/core/math/octree_definition.inc
2021-05-05 15:02:01 +02:00

1692 lines
46 KiB
C++

// DO NOT ADD INCLUDE GUARDS OR PRAGMA ONCE.
// This file will be included more than once.
/*************************************************************************/
/* octree_definition.inc */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "core/list.h"
#include "core/local_vector.h"
#include "core/map.h"
#include "core/math/aabb.h"
#include "core/math/geometry.h"
#include "core/math/vector3.h"
#include "core/os/os.h"
#include "core/print_string.h"
#include "core/variant.h"
typedef uint32_t OctreeElementID;
// macro to reduce boiler plate code when providing function implementations
#define OCTREE_FUNC(RET_VALUE) template <class T, bool use_pairs, class AL> \
RET_VALUE OCTREE_CLASS_NAME<T, use_pairs, AL>
#define OCTREE_FUNC_CONSTRUCTOR template <class T, bool use_pairs, class AL> \
OCTREE_CLASS_NAME<T, use_pairs, AL>
template <class T, bool use_pairs = false, class AL = DefaultAllocator>
class OCTREE_CLASS_NAME {
public:
typedef void *(*PairCallback)(void *, OctreeElementID, T *, int, OctreeElementID, T *, int);
typedef void (*UnpairCallback)(void *, OctreeElementID, T *, int, OctreeElementID, T *, int, void *);
private:
enum {
NEG = 0,
POS = 1,
};
enum {
OCTANT_NX_NY_NZ,
OCTANT_PX_NY_NZ,
OCTANT_NX_PY_NZ,
OCTANT_PX_PY_NZ,
OCTANT_NX_NY_PZ,
OCTANT_PX_NY_PZ,
OCTANT_NX_PY_PZ,
OCTANT_PX_PY_PZ
};
struct PairKey {
union {
struct {
OctreeElementID A;
OctreeElementID B;
};
uint64_t key;
};
_FORCE_INLINE_ bool operator<(const PairKey &p_pair) const {
return key < p_pair.key;
}
_FORCE_INLINE_ PairKey(OctreeElementID p_A, OctreeElementID p_B) {
if (p_A < p_B) {
A = p_A;
B = p_B;
} else {
B = p_A;
A = p_B;
}
}
_FORCE_INLINE_ PairKey() {}
};
struct Element;
#ifdef OCTREE_USE_CACHED_LISTS
// instead of iterating the linked list every time within octants,
// we can cache a linear list of prepared elements containing essential data
// for fast traversal, and rebuild it only when an octant changes.
struct CachedList {
LocalVector<AABB> aabbs;
LocalVector<Element *> elements;
void update(List<Element *, AL> &eles) {
// make sure local vector doesn't delete the memory
// no need to be thrashing allocations
aabbs.clear();
elements.clear();
typename List<Element *, AL>::Element *E = eles.front();
while (E) {
Element *e = E->get();
aabbs.push_back(e->aabb);
elements.push_back(e);
E = E->next();
}
}
};
#endif
struct Octant {
// cached for FAST plane check
AABB aabb;
uint64_t last_pass;
Octant *parent;
Octant *children[8];
int children_count; // cache for amount of childrens (fast check for removal)
int parent_index; // cache for parent index (fast check for removal)
List<Element *, AL> pairable_elements;
List<Element *, AL> elements;
#ifdef OCTREE_USE_CACHED_LISTS
// cached lists are linear in memory so are faster than using linked list
CachedList clist_pairable;
CachedList clist;
// use dirty flag to indicate when cached lists need updating
// this avoids having to update the cached list on lots of octants
// if nothing is moving in them.
bool dirty;
void update_cached_lists() {
if (!dirty) {
#ifdef TOOLS_ENABLED
//#define OCTREE_CACHED_LIST_ERROR_CHECKS
#endif
#ifdef OCTREE_CACHED_LIST_ERROR_CHECKS
// debug - this will slow down performance a lot,
// only enable these error checks for testing that the cached
// lists are up to date.
int hash_before_P = clist_pairable.aabbs.size();
int hash_before_N = clist.aabbs.size();
clist_pairable.update(pairable_elements);
clist.update(elements);
int hash_after_P = clist_pairable.aabbs.size();
int hash_after_N = clist.aabbs.size();
ERR_FAIL_COND(hash_before_P != hash_after_P);
ERR_FAIL_COND(hash_before_N != hash_after_N);
#endif
return;
}
clist_pairable.update(pairable_elements);
clist.update(elements);
dirty = false;
}
#endif
Octant() {
children_count = 0;
parent_index = -1;
last_pass = 0;
parent = nullptr;
#ifdef OCTREE_USE_CACHED_LISTS
dirty = true;
#endif
for (int i = 0; i < 8; i++) {
children[i] = nullptr;
}
}
~Octant() {
/*
for (int i=0;i<8;i++)
memdelete_notnull(children[i]);
*/
}
};
struct PairData;
struct Element {
OCTREE_CLASS_NAME *octree;
T *userdata;
int subindex;
bool pairable;
uint32_t pairable_mask;
uint32_t pairable_type;
uint64_t last_pass;
OctreeElementID _id;
Octant *common_parent;
AABB aabb;
AABB container_aabb;
List<PairData *, AL> pair_list;
struct OctantOwner {
Octant *octant;
typename List<Element *, AL>::Element *E;
}; // an element can be in max 8 octants
List<OctantOwner, AL> octant_owners;
#ifdef OCTREE_USE_CACHED_LISTS
// when moving we need make all owner octants dirty, because the AABB can change.
void moving() {
for (typename List<typename Element::OctantOwner, AL>::Element *F = octant_owners.front(); F;) {
Octant *o = F->get().octant;
o->dirty = true;
F = F->next();
}
}
#endif
Element() {
last_pass = 0;
_id = 0;
pairable = false;
subindex = 0;
userdata = nullptr;
octree = nullptr;
pairable_mask = 0;
pairable_type = 0;
common_parent = nullptr;
}
};
struct PairData {
int refcount;
bool intersect;
Element *A, *B;
void *ud;
typename List<PairData *, AL>::Element *eA, *eB;
};
typedef Map<OctreeElementID, Element, Comparator<OctreeElementID>, AL> ElementMap;
typedef Map<PairKey, PairData, Comparator<PairKey>, AL> PairMap;
ElementMap element_map;
PairMap pair_map;
PairCallback pair_callback;
UnpairCallback unpair_callback;
void *pair_callback_userdata;
void *unpair_callback_userdata;
OctreeElementID last_element_id;
uint64_t pass;
real_t unit_size;
Octant *root;
int octant_count;
int pair_count;
int octant_elements_limit;
_FORCE_INLINE_ void _pair_check(PairData *p_pair) {
bool intersect = p_pair->A->aabb.intersects_inclusive(p_pair->B->aabb);
if (intersect != p_pair->intersect) {
if (intersect) {
if (pair_callback) {
p_pair->ud = pair_callback(pair_callback_userdata, p_pair->A->_id, p_pair->A->userdata, p_pair->A->subindex, p_pair->B->_id, p_pair->B->userdata, p_pair->B->subindex);
}
pair_count++;
} else {
if (unpair_callback) {
unpair_callback(pair_callback_userdata, p_pair->A->_id, p_pair->A->userdata, p_pair->A->subindex, p_pair->B->_id, p_pair->B->userdata, p_pair->B->subindex, p_pair->ud);
}
pair_count--;
}
p_pair->intersect = intersect;
}
}
_FORCE_INLINE_ void _pair_reference(Element *p_A, Element *p_B) {
if (p_A == p_B || (p_A->userdata == p_B->userdata && p_A->userdata)) {
return;
}
if (!(p_A->pairable_type & p_B->pairable_mask) &&
!(p_B->pairable_type & p_A->pairable_mask)) {
return; // none can pair with none
}
PairKey key(p_A->_id, p_B->_id);
typename PairMap::Element *E = pair_map.find(key);
if (!E) {
PairData pdata;
pdata.refcount = 1;
pdata.A = p_A;
pdata.B = p_B;
pdata.intersect = false;
E = pair_map.insert(key, pdata);
E->get().eA = p_A->pair_list.push_back(&E->get());
E->get().eB = p_B->pair_list.push_back(&E->get());
/*
if (pair_callback)
pair_callback(pair_callback_userdata,p_A->userdata,p_B->userdata);
*/
} else {
E->get().refcount++;
}
}
_FORCE_INLINE_ void _pair_unreference(Element *p_A, Element *p_B) {
if (p_A == p_B) {
return;
}
PairKey key(p_A->_id, p_B->_id);
typename PairMap::Element *E = pair_map.find(key);
if (!E) {
return; // no pair
}
E->get().refcount--;
if (E->get().refcount == 0) {
// bye pair
if (E->get().intersect) {
if (unpair_callback) {
unpair_callback(pair_callback_userdata, p_A->_id, p_A->userdata, p_A->subindex, p_B->_id, p_B->userdata, p_B->subindex, E->get().ud);
}
pair_count--;
}
if (p_A == E->get().B) {
//may be reaching inverted
SWAP(p_A, p_B);
}
p_A->pair_list.erase(E->get().eA);
p_B->pair_list.erase(E->get().eB);
pair_map.erase(E);
}
}
_FORCE_INLINE_ void _element_check_pairs(Element *p_element) {
typename List<PairData *, AL>::Element *E = p_element->pair_list.front();
while (E) {
_pair_check(E->get());
E = E->next();
}
}
_FORCE_INLINE_ void _optimize() {
while (root && root->children_count < 2 && !root->elements.size() && !(use_pairs && root->pairable_elements.size())) {
Octant *new_root = nullptr;
if (root->children_count == 1) {
for (int i = 0; i < 8; i++) {
if (root->children[i]) {
new_root = root->children[i];
root->children[i] = nullptr;
break;
}
}
ERR_FAIL_COND(!new_root);
new_root->parent = nullptr;
new_root->parent_index = -1;
}
memdelete_allocator<Octant, AL>(root);
octant_count--;
root = new_root;
}
}
void _insert_element(Element *p_element, Octant *p_octant);
void _ensure_valid_root(const AABB &p_aabb);
bool _remove_element_pair_and_remove_empty_octants(Element *p_element, Octant *p_octant, Octant *p_limit = nullptr);
void _remove_element(Element *p_element);
void _pair_element(Element *p_element, Octant *p_octant);
void _unpair_element(Element *p_element, Octant *p_octant);
struct _CullConvexData {
const Plane *planes;
int plane_count;
const Vector3 *points;
int point_count;
T **result_array;
int *result_idx;
int result_max;
uint32_t mask;
};
void _cull_convex(Octant *p_octant, _CullConvexData *p_cull);
void _cull_aabb(Octant *p_octant, const AABB &p_aabb, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
void _cull_segment(Octant *p_octant, const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
void _cull_point(Octant *p_octant, const Vector3 &p_point, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
void _remove_tree(Octant *p_octant) {
if (!p_octant) {
return;
}
for (int i = 0; i < 8; i++) {
if (p_octant->children[i]) {
_remove_tree(p_octant->children[i]);
}
}
memdelete_allocator<Octant, AL>(p_octant);
}
#ifdef TOOLS_ENABLED
String debug_aabb_to_string(const AABB &aabb) const;
void debug_octant(const Octant &oct, int depth = 0);
#endif
public:
OctreeElementID create(T *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1);
void move(OctreeElementID p_id, const AABB &p_aabb);
void set_pairable(OctreeElementID p_id, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1);
void erase(OctreeElementID p_id);
bool is_pairable(OctreeElementID p_id) const;
T *get(OctreeElementID p_id) const;
int get_subindex(OctreeElementID p_id) const;
int cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF);
int cull_aabb(const AABB &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
int cull_segment(const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
int cull_point(const Vector3 &p_point, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
void set_pair_callback(PairCallback p_callback, void *p_userdata);
void set_unpair_callback(UnpairCallback p_callback, void *p_userdata);
int get_octant_count() const { return octant_count; }
int get_pair_count() const { return pair_count; }
void set_octant_elements_limit(int p_limit) { octant_elements_limit = p_limit; }
// just convenience for project settings, as users don't need to know exact numbers
void set_balance(float p_bal) // 0.0 is optimized for multiple tests, 1.0 is for multiple edits (moves etc)
{
float v = CLAMP(p_bal, 0.0f, 1.0f);
v *= v;
v *= v;
v *= 8096.0f; // these values have been found empirically
int l = 0 + v;
set_octant_elements_limit(l);
}
#ifdef TOOLS_ENABLED
void debug_octants();
#endif
OCTREE_CLASS_NAME(real_t p_unit_size = 1.0);
~OCTREE_CLASS_NAME() { _remove_tree(root); }
};
/* PRIVATE FUNCTIONS */
OCTREE_FUNC(T *)::get(OctreeElementID p_id) const {
const typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND_V(!E, nullptr);
return E->get().userdata;
}
OCTREE_FUNC(bool)::is_pairable(OctreeElementID p_id) const {
const typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND_V(!E, false);
return E->get().pairable;
}
OCTREE_FUNC(int)::get_subindex(OctreeElementID p_id) const {
const typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND_V(!E, -1);
return E->get().subindex;
}
#define OCTREE_DIVISOR 4
OCTREE_FUNC(void)::_insert_element(Element *p_element, Octant *p_octant) {
real_t element_size = p_element->aabb.get_longest_axis_size() * 1.01; // avoid precision issues
// don't create new child octants unless there is more than a certain number in
// this octant. This prevents runaway creation of too many octants, and is more efficient
// because brute force is faster up to a certain point.
bool can_split = true;
if (p_element->pairable) {
if (p_octant->pairable_elements.size() < octant_elements_limit) {
can_split = false;
}
} else {
if (p_octant->elements.size() < octant_elements_limit) {
can_split = false;
}
}
if (!can_split || (element_size > (p_octant->aabb.size.x / OCTREE_DIVISOR))) {
/* at smallest possible size for the element */
typename Element::OctantOwner owner;
owner.octant = p_octant;
if (use_pairs && p_element->pairable) {
p_octant->pairable_elements.push_back(p_element);
owner.E = p_octant->pairable_elements.back();
} else {
p_octant->elements.push_back(p_element);
owner.E = p_octant->elements.back();
}
#ifdef OCTREE_USE_CACHED_LISTS
p_octant->dirty = true;
#endif
p_element->octant_owners.push_back(owner);
if (p_element->common_parent == nullptr) {
p_element->common_parent = p_octant;
p_element->container_aabb = p_octant->aabb;
} else {
p_element->container_aabb.merge_with(p_octant->aabb);
}
if (use_pairs && p_octant->children_count > 0) {
pass++; //elements below this only get ONE reference added
for (int i = 0; i < 8; i++) {
if (p_octant->children[i]) {
_pair_element(p_element, p_octant->children[i]);
}
}
}
} else {
/* not big enough, send it to subitems */
int splits = 0;
bool candidate = p_element->common_parent == nullptr;
for (int i = 0; i < 8; i++) {
if (p_octant->children[i]) {
/* element exists, go straight to it */
if (p_octant->children[i]->aabb.intersects_inclusive(p_element->aabb)) {
_insert_element(p_element, p_octant->children[i]);
splits++;
}
} else {
/* check against AABB where child should be */
AABB aabb = p_octant->aabb;
aabb.size *= 0.5;
if (i & 1) {
aabb.position.x += aabb.size.x;
}
if (i & 2) {
aabb.position.y += aabb.size.y;
}
if (i & 4) {
aabb.position.z += aabb.size.z;
}
if (aabb.intersects_inclusive(p_element->aabb)) {
/* if actually intersects, create the child */
Octant *child = memnew_allocator(Octant, AL);
p_octant->children[i] = child;
child->parent = p_octant;
child->parent_index = i;
child->aabb = aabb;
p_octant->children_count++;
_insert_element(p_element, child);
octant_count++;
splits++;
}
}
}
if (candidate && splits > 1) {
p_element->common_parent = p_octant;
}
}
if (use_pairs) {
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
while (E) {
_pair_reference(p_element, E->get());
E = E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E = p_octant->elements.front();
while (E) {
_pair_reference(p_element, E->get());
E = E->next();
}
}
}
}
OCTREE_FUNC(void)::_ensure_valid_root(const AABB &p_aabb) {
if (!root) {
// octre is empty
AABB base(Vector3(), Vector3(1.0, 1.0, 1.0) * unit_size);
while (!base.encloses(p_aabb)) {
if (ABS(base.position.x + base.size.x) <= ABS(base.position.x)) {
/* grow towards positive */
base.size *= 2.0;
} else {
base.position -= base.size;
base.size *= 2.0;
}
}
root = memnew_allocator(Octant, AL);
root->parent = nullptr;
root->parent_index = -1;
root->aabb = base;
octant_count++;
} else {
AABB base = root->aabb;
while (!base.encloses(p_aabb)) {
ERR_FAIL_COND_MSG(base.size.x > OCTREE_SIZE_LIMIT, "Octree upper size limit reached, does the AABB supplied contain NAN?");
Octant *gp = memnew_allocator(Octant, AL);
octant_count++;
root->parent = gp;
if (ABS(base.position.x + base.size.x) <= ABS(base.position.x)) {
/* grow towards positive */
base.size *= 2.0;
gp->aabb = base;
gp->children[0] = root;
root->parent_index = 0;
} else {
base.position -= base.size;
base.size *= 2.0;
gp->aabb = base;
gp->children[(1 << 0) | (1 << 1) | (1 << 2)] = root; // add at all-positive
root->parent_index = (1 << 0) | (1 << 1) | (1 << 2);
}
gp->children_count = 1;
root = gp;
}
}
}
OCTREE_FUNC(bool)::_remove_element_pair_and_remove_empty_octants(Element *p_element, Octant *p_octant, Octant *p_limit) {
bool octant_removed = false;
while (true) {
// check all exit conditions
if (p_octant == p_limit) { // reached limit, nothing to erase, exit
return octant_removed;
}
bool unpaired = false;
if (use_pairs && p_octant->last_pass != pass) {
// check whether we should unpair stuff
// always test pairable
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
while (E) {
_pair_unreference(p_element, E->get());
E = E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E = p_octant->elements.front();
while (E) {
_pair_unreference(p_element, E->get());
E = E->next();
}
}
p_octant->last_pass = pass;
unpaired = true;
}
bool removed = false;
Octant *parent = p_octant->parent;
if (p_octant->children_count == 0 && p_octant->elements.empty() && p_octant->pairable_elements.empty()) {
// erase octant
if (p_octant == root) { // won't have a parent, just erase
root = nullptr;
} else {
ERR_FAIL_INDEX_V(p_octant->parent_index, 8, octant_removed);
parent->children[p_octant->parent_index] = nullptr;
parent->children_count--;
}
memdelete_allocator<Octant, AL>(p_octant);
octant_count--;
removed = true;
octant_removed = true;
}
if (!removed && !unpaired) {
return octant_removed; // no reason to keep going up anymore! was already visited and was not removed
}
p_octant = parent;
}
return octant_removed;
}
OCTREE_FUNC(void)::_unpair_element(Element *p_element, Octant *p_octant) {
// always test pairable
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
while (E) {
if (E->get()->last_pass != pass) { // only remove ONE reference
_pair_unreference(p_element, E->get());
E->get()->last_pass = pass;
}
E = E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E = p_octant->elements.front();
while (E) {
if (E->get()->last_pass != pass) { // only remove ONE reference
_pair_unreference(p_element, E->get());
E->get()->last_pass = pass;
}
E = E->next();
}
}
p_octant->last_pass = pass;
if (p_octant->children_count == 0) {
return; // small optimization for leafs
}
for (int i = 0; i < 8; i++) {
if (p_octant->children[i]) {
_unpair_element(p_element, p_octant->children[i]);
}
}
}
OCTREE_FUNC(void)::_pair_element(Element *p_element, Octant *p_octant) {
// always test pairable
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
while (E) {
if (E->get()->last_pass != pass) { // only get ONE reference
_pair_reference(p_element, E->get());
E->get()->last_pass = pass;
}
E = E->next();
}
if (p_element->pairable) {
// and always test non-pairable if element is pairable
E = p_octant->elements.front();
while (E) {
if (E->get()->last_pass != pass) { // only get ONE reference
_pair_reference(p_element, E->get());
E->get()->last_pass = pass;
}
E = E->next();
}
}
p_octant->last_pass = pass;
if (p_octant->children_count == 0) {
return; // small optimization for leafs
}
for (int i = 0; i < 8; i++) {
if (p_octant->children[i]) {
_pair_element(p_element, p_octant->children[i]);
}
}
}
OCTREE_FUNC(void)::_remove_element(Element *p_element) {
pass++; // will do a new pass for this
typename List<typename Element::OctantOwner, AL>::Element *I = p_element->octant_owners.front();
for (; I; I = I->next()) {
Octant *o = I->get().octant;
if (!use_pairs) {
o->elements.erase(I->get().E);
} else {
// erase children pairs, they are erased ONCE even if repeated
pass++;
for (int i = 0; i < 8; i++) {
if (o->children[i]) {
_unpair_element(p_element, o->children[i]);
}
}
if (p_element->pairable) {
o->pairable_elements.erase(I->get().E);
} else {
o->elements.erase(I->get().E);
}
}
#ifdef OCTREE_USE_CACHED_LISTS
o->dirty = true;
#endif
_remove_element_pair_and_remove_empty_octants(p_element, o);
}
p_element->octant_owners.clear();
if (use_pairs) {
int remaining = p_element->pair_list.size();
//p_element->pair_list.clear();
ERR_FAIL_COND(remaining);
}
}
OCTREE_FUNC(OctreeElementID)::create(T *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
// check for AABB validity
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(p_aabb.position.x > 1e15 || p_aabb.position.x < -1e15, 0);
ERR_FAIL_COND_V(p_aabb.position.y > 1e15 || p_aabb.position.y < -1e15, 0);
ERR_FAIL_COND_V(p_aabb.position.z > 1e15 || p_aabb.position.z < -1e15, 0);
ERR_FAIL_COND_V(p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0, 0);
ERR_FAIL_COND_V(p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0, 0);
ERR_FAIL_COND_V(p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0, 0);
ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.x), 0);
ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.y), 0);
ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.z), 0);
#endif
typename ElementMap::Element *E = element_map.insert(last_element_id++,
Element());
Element &e = E->get();
e.aabb = p_aabb;
e.userdata = p_userdata;
e.subindex = p_subindex;
e.last_pass = 0;
e.octree = this;
e.pairable = p_pairable;
e.pairable_type = p_pairable_type;
e.pairable_mask = p_pairable_mask;
e._id = last_element_id - 1;
if (!e.aabb.has_no_surface()) {
_ensure_valid_root(p_aabb);
_insert_element(&e, root);
if (use_pairs) {
_element_check_pairs(&e);
}
}
return last_element_id - 1;
}
OCTREE_FUNC(void)::move(OctreeElementID p_id, const AABB &p_aabb) {
#ifdef DEBUG_ENABLED
// check for AABB validity
ERR_FAIL_COND(p_aabb.position.x > 1e15 || p_aabb.position.x < -1e15);
ERR_FAIL_COND(p_aabb.position.y > 1e15 || p_aabb.position.y < -1e15);
ERR_FAIL_COND(p_aabb.position.z > 1e15 || p_aabb.position.z < -1e15);
ERR_FAIL_COND(p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0);
ERR_FAIL_COND(p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0);
ERR_FAIL_COND(p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0);
ERR_FAIL_COND(Math::is_nan(p_aabb.size.x));
ERR_FAIL_COND(Math::is_nan(p_aabb.size.y));
ERR_FAIL_COND(Math::is_nan(p_aabb.size.z));
#endif
typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND(!E);
Element &e = E->get();
bool old_has_surf = !e.aabb.has_no_surface();
bool new_has_surf = !p_aabb.has_no_surface();
if (old_has_surf != new_has_surf) {
if (old_has_surf) {
_remove_element(&e); // removing
e.common_parent = nullptr;
e.aabb = AABB();
_optimize();
} else {
_ensure_valid_root(p_aabb); // inserting
e.common_parent = nullptr;
e.aabb = p_aabb;
_insert_element(&e, root);
if (use_pairs) {
_element_check_pairs(&e);
}
}
return;
}
if (!old_has_surf) { // doing nothing
return;
}
// it still is enclosed in the same AABB it was assigned to
if (e.container_aabb.encloses(p_aabb)) {
e.aabb = p_aabb;
if (use_pairs) {
_element_check_pairs(&e); // must check pairs anyway
}
#ifdef OCTREE_USE_CACHED_LISTS
e.moving();
#endif
return;
}
AABB combined = e.aabb;
combined.merge_with(p_aabb);
_ensure_valid_root(combined);
ERR_FAIL_COND(e.octant_owners.front() == nullptr);
/* FIND COMMON PARENT */
List<typename Element::OctantOwner, AL> owners = e.octant_owners; // save the octant owners
Octant *common_parent = e.common_parent;
ERR_FAIL_COND(!common_parent);
//src is now the place towards where insertion is going to happen
pass++;
while (common_parent && !common_parent->aabb.encloses(p_aabb)) {
common_parent = common_parent->parent;
}
ERR_FAIL_COND(!common_parent);
//prepare for reinsert
e.octant_owners.clear();
e.common_parent = nullptr;
e.aabb = p_aabb;
_insert_element(&e, common_parent); // reinsert from this point
pass++;
for (typename List<typename Element::OctantOwner, AL>::Element *F = owners.front(); F;) {
Octant *o = F->get().octant;
typename List<typename Element::OctantOwner, AL>::Element *N = F->next();
/*
if (!use_pairs)
o->elements.erase( F->get().E );
*/
if (use_pairs && e.pairable) {
o->pairable_elements.erase(F->get().E);
} else {
o->elements.erase(F->get().E);
}
#ifdef OCTREE_USE_CACHED_LISTS
o->dirty = true;
#endif
if (_remove_element_pair_and_remove_empty_octants(&e, o, common_parent->parent)) {
owners.erase(F);
}
F = N;
}
if (use_pairs) {
//unpair child elements in anything that survived
for (typename List<typename Element::OctantOwner, AL>::Element *F = owners.front(); F; F = F->next()) {
Octant *o = F->get().octant;
// erase children pairs, unref ONCE
pass++;
for (int i = 0; i < 8; i++) {
if (o->children[i]) {
_unpair_element(&e, o->children[i]);
}
}
}
_element_check_pairs(&e);
}
_optimize();
}
OCTREE_FUNC(void)::set_pairable(OctreeElementID p_id, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND(!E);
Element &e = E->get();
if (p_pairable == e.pairable && e.pairable_type == p_pairable_type && e.pairable_mask == p_pairable_mask) {
return; // no changes, return
}
if (!e.aabb.has_no_surface()) {
_remove_element(&e);
}
e.pairable = p_pairable;
e.pairable_type = p_pairable_type;
e.pairable_mask = p_pairable_mask;
e.common_parent = nullptr;
if (!e.aabb.has_no_surface()) {
_ensure_valid_root(e.aabb);
_insert_element(&e, root);
if (use_pairs) {
_element_check_pairs(&e);
}
}
}
OCTREE_FUNC(void)::erase(OctreeElementID p_id) {
typename ElementMap::Element *E = element_map.find(p_id);
ERR_FAIL_COND(!E);
Element &e = E->get();
if (!e.aabb.has_no_surface()) {
_remove_element(&e);
}
element_map.erase(p_id);
_optimize();
}
OCTREE_FUNC(void)::_cull_convex(Octant *p_octant, _CullConvexData *p_cull) {
if (*p_cull->result_idx == p_cull->result_max) {
return; //pointless
}
if (!p_octant->elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist.aabbs[n];
Element *e = p_octant->clist.elements[n];
// in most cases with the cached linear list tests we will do the AABB checks BEFORE last pass and cull mask.
// The reason is that the later checks are more expensive because they are not in cache, and many of the AABB
// tests will fail so we can avoid these cache misses.
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
continue;
}
e->last_pass = pass;
if (*p_cull->result_idx < p_cull->result_max) {
p_cull->result_array[*p_cull->result_idx] = e->userdata;
(*p_cull->result_idx)++;
} else {
return; // pointless to continue
}
}
} // for n
#else
typename List<Element *, AL>::Element *I;
I = p_octant->elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
continue;
}
e->last_pass = pass;
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
if (*p_cull->result_idx < p_cull->result_max) {
p_cull->result_array[*p_cull->result_idx] = e->userdata;
(*p_cull->result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
} // if elements not empty
if (use_pairs && !p_octant->pairable_elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist_pairable.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
Element *e = p_octant->clist_pairable.elements[n];
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
continue;
}
e->last_pass = pass;
if (*p_cull->result_idx < p_cull->result_max) {
p_cull->result_array[*p_cull->result_idx] = e->userdata;
(*p_cull->result_idx)++;
} else {
return; // pointless to continue
}
}
}
#else
typename List<Element *, AL>::Element *I;
I = p_octant->pairable_elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
continue;
}
e->last_pass = pass;
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
if (*p_cull->result_idx < p_cull->result_max) {
p_cull->result_array[*p_cull->result_idx] = e->userdata;
(*p_cull->result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
}
for (int i = 0; i < 8; i++) {
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
_cull_convex(p_octant->children[i], p_cull);
}
}
}
OCTREE_FUNC(void)::_cull_aabb(Octant *p_octant, const AABB &p_aabb, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
if (*p_result_idx == p_result_max) {
return; //pointless
}
if (!p_octant->elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist.aabbs[n];
Element *e = p_octant->clist.elements[n];
if (p_aabb.intersects_inclusive(aabb)) {
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#else
typename List<Element *, AL>::Element *I;
I = p_octant->elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (p_aabb.intersects_inclusive(aabb)) {
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
}
if (use_pairs && !p_octant->pairable_elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist_pairable.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
Element *e = p_octant->clist_pairable.elements[n];
if (p_aabb.intersects_inclusive(aabb)) {
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#else
typename List<Element *, AL>::Element *I;
I = p_octant->pairable_elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (p_aabb.intersects_inclusive(aabb)) {
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
}
for (int i = 0; i < 8; i++) {
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_inclusive(p_aabb)) {
_cull_aabb(p_octant->children[i], p_aabb, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
}
}
}
OCTREE_FUNC(void)::_cull_segment(Octant *p_octant, const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
if (*p_result_idx == p_result_max) {
return; //pointless
}
if (!p_octant->elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist.aabbs[n];
Element *e = p_octant->clist.elements[n];
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (aabb.intersects_segment(p_from, p_to)) {
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#else
typename List<Element *, AL>::Element *I;
I = p_octant->elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (aabb.intersects_segment(p_from, p_to)) {
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
}
if (use_pairs && !p_octant->pairable_elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist_pairable.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
Element *e = p_octant->clist_pairable.elements[n];
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (aabb.intersects_segment(p_from, p_to)) {
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#else
typename List<Element *, AL>::Element *I;
I = p_octant->pairable_elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (aabb.intersects_segment(p_from, p_to)) {
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
}
for (int i = 0; i < 8; i++) {
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_segment(p_from, p_to)) {
_cull_segment(p_octant->children[i], p_from, p_to, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
}
}
}
OCTREE_FUNC(void)::_cull_point(Octant *p_octant, const Vector3 &p_point, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
if (*p_result_idx == p_result_max) {
return; //pointless
}
if (!p_octant->elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist.aabbs[n];
Element *e = p_octant->clist.elements[n];
if (aabb.has_point(p_point)) {
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#else
typename List<Element *, AL>::Element *I;
I = p_octant->elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (aabb.has_point(p_point)) {
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
}
if (use_pairs && !p_octant->pairable_elements.empty()) {
#ifdef OCTREE_USE_CACHED_LISTS
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
p_octant->update_cached_lists();
int num_elements = p_octant->clist_pairable.elements.size();
for (int n = 0; n < num_elements; n++) {
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
Element *e = p_octant->clist_pairable.elements[n];
if (aabb.has_point(p_point)) {
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#else
typename List<Element *, AL>::Element *I;
I = p_octant->pairable_elements.front();
for (; I; I = I->next()) {
Element *e = I->get();
const AABB &aabb = e->aabb;
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
continue;
}
e->last_pass = pass;
if (aabb.has_point(p_point)) {
if (*p_result_idx < p_result_max) {
p_result_array[*p_result_idx] = e->userdata;
if (p_subindex_array) {
p_subindex_array[*p_result_idx] = e->subindex;
}
(*p_result_idx)++;
} else {
return; // pointless to continue
}
}
}
#endif
}
for (int i = 0; i < 8; i++) {
//could be optimized..
if (p_octant->children[i] && p_octant->children[i]->aabb.has_point(p_point)) {
_cull_point(p_octant->children[i], p_point, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
}
}
}
OCTREE_FUNC(int)::cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask) {
if (!root || p_convex.size() == 0) {
return 0;
}
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(&p_convex[0], p_convex.size());
if (convex_points.size() == 0) {
return 0;
}
int result_count = 0;
pass++;
_CullConvexData cdata;
cdata.planes = &p_convex[0];
cdata.plane_count = p_convex.size();
cdata.points = &convex_points[0];
cdata.point_count = convex_points.size();
cdata.result_array = p_result_array;
cdata.result_max = p_result_max;
cdata.result_idx = &result_count;
cdata.mask = p_mask;
_cull_convex(root, &cdata);
return result_count;
}
OCTREE_FUNC(int)::cull_aabb(const AABB &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
if (!root) {
return 0;
}
int result_count = 0;
pass++;
_cull_aabb(root, p_aabb, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
return result_count;
}
OCTREE_FUNC(int)::cull_segment(const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
if (!root) {
return 0;
}
int result_count = 0;
pass++;
_cull_segment(root, p_from, p_to, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
return result_count;
}
OCTREE_FUNC(int)::cull_point(const Vector3 &p_point, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
if (!root) {
return 0;
}
int result_count = 0;
pass++;
_cull_point(root, p_point, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
return result_count;
}
OCTREE_FUNC(void)::set_pair_callback(PairCallback p_callback, void *p_userdata) {
pair_callback = p_callback;
pair_callback_userdata = p_userdata;
}
OCTREE_FUNC(void)::set_unpair_callback(UnpairCallback p_callback, void *p_userdata) {
unpair_callback = p_callback;
unpair_callback_userdata = p_userdata;
}
OCTREE_FUNC_CONSTRUCTOR::OCTREE_CLASS_NAME(real_t p_unit_size) {
last_element_id = 1;
pass = 1;
unit_size = p_unit_size;
root = nullptr;
octant_count = 0;
pair_count = 0;
octant_elements_limit = OCTREE_DEFAULT_OCTANT_LIMIT;
pair_callback = nullptr;
unpair_callback = nullptr;
pair_callback_userdata = nullptr;
unpair_callback_userdata = nullptr;
}
#ifdef TOOLS_ENABLED
OCTREE_FUNC(String)::debug_aabb_to_string(const AABB &aabb) const {
String sz;
sz = "( " + String(aabb.position);
sz += " ) - ( ";
Vector3 max = aabb.position + aabb.size;
sz += String(max) + " )";
return sz;
}
OCTREE_FUNC(void)::debug_octants() {
if (root) {
debug_octant(*root);
}
}
OCTREE_FUNC(void)::debug_octant(const Octant &oct, int depth) {
String sz = "";
for (int d = 0; d < depth; d++) {
sz += "\t";
}
sz += "Octant " + debug_aabb_to_string(oct.aabb);
sz += "\tnum_children " + itos(oct.children_count);
sz += ", num_eles " + itos(oct.elements.size());
sz += ", num_paired_eles" + itos(oct.pairable_elements.size());
print_line(sz);
for (int n = 0; n < 8; n++) {
const Octant *pChild = oct.children[n];
if (pChild) {
debug_octant(*pChild, depth + 1);
}
}
}
#endif // TOOLS_ENABLED
#undef OCTREE_FUNC