virtualx-engine/modules/fbx/data/fbx_mesh_data.cpp
Rémi Verschelde 1426cd3b3a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".

Backported from #70885.
2023-01-10 15:26:54 +01:00

1447 lines
56 KiB
C++

/**************************************************************************/
/* fbx_mesh_data.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "fbx_mesh_data.h"
#include "core/local_vector.h"
#include "scene/resources/mesh.h"
#include "scene/resources/surface_tool.h"
#include "thirdparty/misc/triangulator.h"
template <class T>
T collect_first(const Vector<VertexData<T>> *p_data, T p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
return (*p_data)[0].data;
}
template <class T>
HashMap<int, T> collect_all(const Vector<VertexData<T>> *p_data, HashMap<int, T> p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
HashMap<int, T> collection;
for (int i = 0; i < p_data->size(); i += 1) {
const VertexData<T> &vd = (*p_data)[i];
collection[vd.polygon_index] = vd.data;
}
return collection;
}
template <class T>
T collect_average(const Vector<VertexData<T>> *p_data, T p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
T combined = (*p_data)[0].data; // Make sure the data is always correctly initialized.
print_verbose("size of data: " + itos(p_data->size()));
for (int i = 1; i < p_data->size(); i += 1) {
combined += (*p_data)[i].data;
}
combined = combined / real_t(p_data->size());
return combined.normalized();
}
HashMap<int, Vector3> collect_normal(const Vector<VertexData<Vector3>> *p_data, HashMap<int, Vector3> p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
HashMap<int, Vector3> collection;
for (int i = 0; i < p_data->size(); i += 1) {
const VertexData<Vector3> &vd = (*p_data)[i];
collection[vd.polygon_index] = vd.data;
}
return collection;
}
HashMap<int, Vector2> collect_uv(const Vector<VertexData<Vector2>> *p_data, HashMap<int, Vector2> p_fall_back) {
if (p_data->empty()) {
return p_fall_back;
}
HashMap<int, Vector2> collection;
for (int i = 0; i < p_data->size(); i += 1) {
const VertexData<Vector2> &vd = (*p_data)[i];
collection[vd.polygon_index] = vd.data;
}
return collection;
}
typedef int Vertex;
typedef int SurfaceId;
typedef int PolygonId;
typedef int DataIndex;
struct SurfaceData {
Ref<SurfaceTool> surface_tool;
OrderedHashMap<Vertex, int> lookup_table; // proposed fix is to replace lookup_table[vertex_id] to give the position of the vertices_map[int] index.
LocalVector<Vertex> vertices_map; // this must be ordered the same as insertion <-- slow to do find() operation.
Ref<SpatialMaterial> material;
HashMap<PolygonId, Vector<DataIndex>> surface_polygon_vertex;
Array morphs;
};
MeshInstance *FBXMeshData::create_fbx_mesh(const ImportState &state, const FBXDocParser::MeshGeometry *p_mesh_geometry, const FBXDocParser::Model *model, uint32_t p_compress_flags) {
mesh_geometry = p_mesh_geometry;
// todo: make this just use a uint64_t FBX ID this is a copy of our original materials unfortunately.
const std::vector<const FBXDocParser::Material *> &material_lookup = model->GetMaterials();
std::vector<int> polygon_indices = mesh_geometry->get_polygon_indices();
std::vector<Vector3> vertices = mesh_geometry->get_vertices();
// Phase 1. Parse all FBX data.
HashMap<int, Vector3> normals;
HashMap<int, HashMap<int, Vector3>> normals_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_normals(),
&collect_all,
HashMap<int, Vector3>());
HashMap<int, Vector2> uvs_0;
HashMap<int, HashMap<int, Vector2>> uvs_0_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_uv_0(),
&collect_all,
HashMap<int, Vector2>());
HashMap<int, Vector2> uvs_1;
HashMap<int, HashMap<int, Vector2>> uvs_1_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_uv_1(),
&collect_all,
HashMap<int, Vector2>());
HashMap<int, Color> colors;
HashMap<int, HashMap<int, Color>> colors_raw = extract_per_vertex_data(
vertices.size(),
mesh_geometry->get_edge_map(),
polygon_indices,
mesh_geometry->get_colors(),
&collect_all,
HashMap<int, Color>());
// TODO what about tangents?
// TODO what about bi-nomials?
// TODO there is other?
HashMap<int, SurfaceId> polygon_surfaces = extract_per_polygon(
vertices.size(),
polygon_indices,
mesh_geometry->get_material_allocation_id(),
-1);
HashMap<String, MorphVertexData> morphs;
extract_morphs(mesh_geometry, morphs);
// TODO please add skinning.
//mesh_id = mesh_geometry->ID();
sanitize_vertex_weights(state);
// Re organize polygon vertices to to correctly take into account strange
// UVs.
reorganize_vertices(
polygon_indices,
vertices,
normals,
uvs_0,
uvs_1,
colors,
morphs,
normals_raw,
colors_raw,
uvs_0_raw,
uvs_1_raw);
const int color_count = colors.size();
print_verbose("Vertex color count: " + itos(color_count));
// Make sure that from this moment on the mesh_geometry is no used anymore.
// This is a safety step, because the mesh_geometry data are no more valid
// at this point.
const int vertex_count = vertices.size();
print_verbose("Vertex count: " + itos(vertex_count));
// The map key is the material allocator id that is also used as surface id.
HashMap<SurfaceId, SurfaceData> surfaces;
// Phase 2. For each material create a surface tool (So a different mesh).
{
if (polygon_surfaces.empty()) {
// No material, just use the default one with index -1.
// Set -1 to all polygons.
const int polygon_count = count_polygons(polygon_indices);
for (int p = 0; p < polygon_count; p += 1) {
polygon_surfaces[p] = -1;
}
}
// Create the surface now.
for (const int *polygon_id = polygon_surfaces.next(nullptr); polygon_id != nullptr; polygon_id = polygon_surfaces.next(polygon_id)) {
const int surface_id = polygon_surfaces[*polygon_id];
if (surfaces.has(surface_id) == false) {
SurfaceData sd;
sd.surface_tool.instance();
sd.surface_tool->begin(Mesh::PRIMITIVE_TRIANGLES);
if (surface_id < 0) {
// nothing to do
} else if (surface_id < (int)material_lookup.size()) {
const FBXDocParser::Material *mat_mapping = material_lookup.at(surface_id);
const uint64_t mapping_id = mat_mapping->ID();
if (state.cached_materials.has(mapping_id)) {
sd.material = state.cached_materials[mapping_id];
}
} else {
WARN_PRINT("out of bounds surface detected, FBX file has corrupt material data");
}
surfaces.set(surface_id, sd);
}
}
}
// Phase 3. Map the vertices relative to each surface, in this way we can
// just insert the vertices that we need per each surface.
{
PolygonId polygon_index = -1;
SurfaceId surface_id = -1;
SurfaceData *surface_data = nullptr;
for (size_t polygon_vertex = 0; polygon_vertex < polygon_indices.size(); polygon_vertex += 1) {
if (is_start_of_polygon(polygon_indices, polygon_vertex)) {
polygon_index += 1;
ERR_FAIL_COND_V_MSG(polygon_surfaces.has(polygon_index) == false, nullptr, "The FBX file is corrupted, This surface_index is not expected.");
surface_id = polygon_surfaces[polygon_index];
surface_data = surfaces.getptr(surface_id);
CRASH_COND(surface_data == nullptr); // Can't be null.
}
const int vertex = get_vertex_from_polygon_vertex(polygon_indices, polygon_vertex);
// The vertex position in the surface
// Uses a lookup table for speed with large scenes
bool has_polygon_vertex_index = surface_data->lookup_table.has(vertex);
int surface_polygon_vertex_index = -1;
if (has_polygon_vertex_index) {
surface_polygon_vertex_index = surface_data->lookup_table[vertex];
} else {
surface_polygon_vertex_index = surface_data->vertices_map.size();
surface_data->lookup_table[vertex] = surface_polygon_vertex_index;
surface_data->vertices_map.push_back(vertex);
}
surface_data->surface_polygon_vertex[polygon_index].push_back(surface_polygon_vertex_index);
}
}
//print_verbose("[debug UV 1] UV1: " + itos(uvs_0.size()));
//print_verbose("[debug UV 2] UV2: " + itos(uvs_1.size()));
// Phase 4. Per each surface just insert the vertices and add the indices.
for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
SurfaceData *surface = surfaces.getptr(*surface_id);
// Just add the vertices data.
for (unsigned int i = 0; i < surface->vertices_map.size(); i += 1) {
const Vertex vertex = surface->vertices_map[i];
// This must be done before add_vertex because the surface tool is
// expecting this before the st->add_vertex() call
add_vertex(state,
surface->surface_tool,
state.scale,
vertex,
vertices,
normals,
uvs_0,
uvs_1,
colors);
}
// Triangulate the various polygons and add the indices.
for (const PolygonId *polygon_id = surface->surface_polygon_vertex.next(nullptr); polygon_id != nullptr; polygon_id = surface->surface_polygon_vertex.next(polygon_id)) {
const Vector<DataIndex> *indices = surface->surface_polygon_vertex.getptr(*polygon_id);
triangulate_polygon(
surface->surface_tool,
*indices,
surface->vertices_map,
vertices);
}
}
// Phase 5. Compose the morphs if any.
for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
SurfaceData *surface = surfaces.getptr(*surface_id);
for (const String *morph_name = morphs.next(nullptr); morph_name != nullptr; morph_name = morphs.next(morph_name)) {
MorphVertexData *morph_data = morphs.getptr(*morph_name);
// As said by the docs, this is not supposed to be different than
// vertex_count.
CRASH_COND(morph_data->vertices.size() != vertex_count);
CRASH_COND(morph_data->normals.size() != vertex_count);
Vector3 *vertices_ptr = morph_data->vertices.ptrw();
Vector3 *normals_ptr = morph_data->normals.ptrw();
Ref<SurfaceTool> morph_st;
morph_st.instance();
morph_st->begin(Mesh::PRIMITIVE_TRIANGLES);
for (unsigned int vi = 0; vi < surface->vertices_map.size(); vi += 1) {
const Vertex vertex = surface->vertices_map[vi];
add_vertex(
state,
morph_st,
state.scale,
vertex,
vertices,
normals,
uvs_0,
uvs_1,
colors,
vertices_ptr[vertex],
normals_ptr[vertex]);
}
if (state.is_blender_fbx) {
morph_st->generate_normals();
}
morph_st->generate_tangents();
surface->morphs.push_back(morph_st->commit_to_arrays());
}
}
// Phase 6. Compose the mesh and return it.
Ref<ArrayMesh> mesh;
mesh.instance();
// Add blend shape info.
for (const String *morph_name = morphs.next(nullptr); morph_name != nullptr; morph_name = morphs.next(morph_name)) {
mesh->add_blend_shape(*morph_name);
}
// TODO always normalized, Why?
mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
// Add surfaces.
int in_mesh_surface_id = 0;
for (const SurfaceId *surface_id = surfaces.next(nullptr); surface_id != nullptr; surface_id = surfaces.next(surface_id)) {
SurfaceData *surface = surfaces.getptr(*surface_id);
if (state.is_blender_fbx) {
surface->surface_tool->generate_normals();
}
// you can't generate them without a valid uv map.
if (uvs_0_raw.size() > 0) {
surface->surface_tool->generate_tangents();
}
mesh->add_surface_from_arrays(
Mesh::PRIMITIVE_TRIANGLES,
surface->surface_tool->commit_to_arrays(),
surface->morphs,
p_compress_flags);
if (surface->material.is_valid()) {
mesh->surface_set_name(in_mesh_surface_id, surface->material->get_name());
mesh->surface_set_material(in_mesh_surface_id, surface->material);
}
in_mesh_surface_id += 1;
}
MeshInstance *godot_mesh = memnew(MeshInstance);
godot_mesh->set_mesh(mesh);
return godot_mesh;
}
void FBXMeshData::sanitize_vertex_weights(const ImportState &state) {
const int max_vertex_influence_count = VS::ARRAY_WEIGHTS_SIZE;
Map<int, int> skeleton_to_skin_bind_id;
// TODO: error's need added
const FBXDocParser::Skin *fbx_skin = mesh_geometry->DeformerSkin();
if (fbx_skin == nullptr || fbx_skin->Clusters().size() == 0) {
return; // do nothing
}
//
// Precalculate the skin cluster mapping
//
int bind_id = 0;
for (const FBXDocParser::Cluster *cluster : fbx_skin->Clusters()) {
ERR_CONTINUE_MSG(!state.fbx_bone_map.has(cluster->TargetNode()->ID()), "Missing bone map for cluster target node with id " + uitos(cluster->TargetNode()->ID()) + ".");
Ref<FBXBone> bone = state.fbx_bone_map[cluster->TargetNode()->ID()];
skeleton_to_skin_bind_id.insert(bone->godot_bone_id, bind_id);
bind_id++;
}
for (const Vertex *v = vertex_weights.next(nullptr); v != nullptr; v = vertex_weights.next(v)) {
VertexWeightMapping *vm = vertex_weights.getptr(*v);
ERR_CONTINUE(vm->bones.size() != vm->weights.size()); // No message, already checked.
ERR_CONTINUE(vm->bones_ref.size() != vm->weights.size()); // No message, already checked.
const int initial_size = vm->weights.size();
{
// Init bone id
int *bones_ptr = vm->bones.ptrw();
Ref<FBXBone> *bones_ref_ptr = vm->bones_ref.ptrw();
for (int i = 0; i < vm->weights.size(); i += 1) {
// At this point this is not possible because the skeleton is already initialized.
CRASH_COND(bones_ref_ptr[i]->godot_bone_id == -2);
bones_ptr[i] = skeleton_to_skin_bind_id[bones_ref_ptr[i]->godot_bone_id];
}
// From this point on the data is no more valid.
vm->bones_ref.clear();
}
{
// Sort
real_t *weights_ptr = vm->weights.ptrw();
int *bones_ptr = vm->bones.ptrw();
for (int i = 0; i < vm->weights.size(); i += 1) {
for (int x = i + 1; x < vm->weights.size(); x += 1) {
if (weights_ptr[i] < weights_ptr[x]) {
SWAP(weights_ptr[i], weights_ptr[x]);
SWAP(bones_ptr[i], bones_ptr[x]);
}
}
}
}
{
// Resize
vm->weights.resize(max_vertex_influence_count);
vm->bones.resize(max_vertex_influence_count);
real_t *weights_ptr = vm->weights.ptrw();
int *bones_ptr = vm->bones.ptrw();
for (int i = initial_size; i < max_vertex_influence_count; i += 1) {
weights_ptr[i] = 0.0;
bones_ptr[i] = 0;
}
// Normalize
real_t sum = 0.0;
for (int i = 0; i < max_vertex_influence_count; i += 1) {
sum += weights_ptr[i];
}
if (sum > 0.0) {
for (int i = 0; i < vm->weights.size(); i += 1) {
weights_ptr[i] = weights_ptr[i] / sum;
}
}
}
}
}
void FBXMeshData::reorganize_vertices(
std::vector<int> &r_polygon_indices,
std::vector<Vector3> &r_vertices,
HashMap<int, Vector3> &r_normals,
HashMap<int, Vector2> &r_uv_1,
HashMap<int, Vector2> &r_uv_2,
HashMap<int, Color> &r_color,
HashMap<String, MorphVertexData> &r_morphs,
HashMap<int, HashMap<int, Vector3>> &r_normals_raw,
HashMap<int, HashMap<int, Color>> &r_colors_raw,
HashMap<int, HashMap<int, Vector2>> &r_uv_1_raw,
HashMap<int, HashMap<int, Vector2>> &r_uv_2_raw) {
// Key: OldVertex; Value: [New vertices];
HashMap<int, Vector<int>> duplicated_vertices;
PolygonId polygon_index = -1;
for (int pv = 0; pv < (int)r_polygon_indices.size(); pv += 1) {
if (is_start_of_polygon(r_polygon_indices, pv)) {
polygon_index += 1;
}
const Vertex index = get_vertex_from_polygon_vertex(r_polygon_indices, pv);
bool need_duplication = false;
Vector2 this_vert_poly_uv1 = Vector2();
Vector2 this_vert_poly_uv2 = Vector2();
Vector3 this_vert_poly_normal = Vector3();
Color this_vert_poly_color = Color();
// Take the normal and see if we need to duplicate this polygon.
if (r_normals_raw.has(index)) {
const HashMap<PolygonId, Vector3> *nrml_arr = r_normals_raw.getptr(index);
if (nrml_arr->has(polygon_index)) {
this_vert_poly_normal = nrml_arr->get(polygon_index);
} else if (nrml_arr->has(-1)) {
this_vert_poly_normal = nrml_arr->get(-1);
} else {
print_error("invalid normal detected: " + itos(index) + " polygon index: " + itos(polygon_index));
for (const PolygonId *pid = nrml_arr->next(nullptr); pid != nullptr; pid = nrml_arr->next(pid)) {
print_verbose("debug contents key: " + itos(*pid));
if (nrml_arr->has(*pid)) {
print_verbose("contents valid: " + nrml_arr->get(*pid));
}
}
}
// Now, check if we need to duplicate it.
for (const PolygonId *pid = nrml_arr->next(nullptr); pid != nullptr; pid = nrml_arr->next(pid)) {
if (*pid == polygon_index) {
continue;
}
const Vector3 vert_poly_normal = *nrml_arr->getptr(*pid);
if ((this_vert_poly_normal - vert_poly_normal).length_squared() > CMP_EPSILON) {
// Yes this polygon need duplication.
need_duplication = true;
break;
}
}
}
// TODO: make me vertex color
// Take the normal and see if we need to duplicate this polygon.
if (r_colors_raw.has(index)) {
const HashMap<PolygonId, Color> *color_arr = r_colors_raw.getptr(index);
if (color_arr->has(polygon_index)) {
this_vert_poly_color = color_arr->get(polygon_index);
} else if (color_arr->has(-1)) {
this_vert_poly_color = color_arr->get(-1);
} else {
print_error("invalid color detected: " + itos(index) + " polygon index: " + itos(polygon_index));
for (const PolygonId *pid = color_arr->next(nullptr); pid != nullptr; pid = color_arr->next(pid)) {
print_verbose("debug contents key: " + itos(*pid));
if (color_arr->has(*pid)) {
print_verbose("contents valid: " + color_arr->get(*pid));
}
}
}
// Now, check if we need to duplicate it.
for (const PolygonId *pid = color_arr->next(nullptr); pid != nullptr; pid = color_arr->next(pid)) {
if (*pid == polygon_index) {
continue;
}
const Color vert_poly_color = *color_arr->getptr(*pid);
if (!this_vert_poly_color.is_equal_approx(vert_poly_color)) {
// Yes this polygon need duplication.
need_duplication = true;
break;
}
}
}
// Take the UV1 and UV2 and see if we need to duplicate this polygon.
{
HashMap<int, HashMap<int, Vector2>> *uv_raw = &r_uv_1_raw;
Vector2 *this_vert_poly_uv = &this_vert_poly_uv1;
for (int kk = 0; kk < 2; kk++) {
if (uv_raw->has(index)) {
const HashMap<PolygonId, Vector2> *uvs = uv_raw->getptr(index);
if (uvs->has(polygon_index)) {
// This Polygon has its own uv.
(*this_vert_poly_uv) = *uvs->getptr(polygon_index);
// Check if we need to duplicate it.
for (const PolygonId *pid = uvs->next(nullptr); pid != nullptr; pid = uvs->next(pid)) {
if (*pid == polygon_index) {
continue;
}
const Vector2 vert_poly_uv = *uvs->getptr(*pid);
if (((*this_vert_poly_uv) - vert_poly_uv).length_squared() > CMP_EPSILON) {
// Yes this polygon need duplication.
need_duplication = true;
break;
}
}
} else if (uvs->has(-1)) {
// It has the default UV.
(*this_vert_poly_uv) = *uvs->getptr(-1);
} else if (uvs->size() > 0) {
// No uv, this is strange, just take the first and duplicate.
(*this_vert_poly_uv) = *uvs->getptr(*uvs->next(nullptr));
WARN_PRINT("No UVs for this polygon, while there is no default and some other polygons have it. This FBX file may be corrupted.");
}
}
uv_raw = &r_uv_2_raw;
this_vert_poly_uv = &this_vert_poly_uv2;
}
}
// If we want to duplicate it, Let's see if we already duplicated this
// vertex.
if (need_duplication) {
if (duplicated_vertices.has(index)) {
Vertex similar_vertex = -1;
// Let's see if one of the new vertices has the same data of this.
const Vector<int> *new_vertices = duplicated_vertices.getptr(index);
for (int j = 0; j < new_vertices->size(); j += 1) {
const Vertex new_vertex = (*new_vertices)[j];
bool same_uv1 = false;
bool same_uv2 = false;
bool same_normal = false;
bool same_color = false;
if (r_uv_1.has(new_vertex)) {
if ((this_vert_poly_uv1 - (*r_uv_1.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
same_uv1 = true;
}
}
if (r_uv_2.has(new_vertex)) {
if ((this_vert_poly_uv2 - (*r_uv_2.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
same_uv2 = true;
}
}
if (r_color.has(new_vertex)) {
if (this_vert_poly_color.is_equal_approx((*r_color.getptr(new_vertex)))) {
same_color = true;
}
}
if (r_normals.has(new_vertex)) {
if ((this_vert_poly_normal - (*r_normals.getptr(new_vertex))).length_squared() <= CMP_EPSILON) {
same_uv2 = true;
}
}
if (same_uv1 && same_uv2 && same_normal && same_color) {
similar_vertex = new_vertex;
break;
}
}
if (similar_vertex != -1) {
// Update polygon.
if (is_end_of_polygon(r_polygon_indices, pv)) {
r_polygon_indices[pv] = ~similar_vertex;
} else {
r_polygon_indices[pv] = similar_vertex;
}
need_duplication = false;
}
}
}
if (need_duplication) {
const Vertex old_index = index;
const Vertex new_index = r_vertices.size();
// Polygon index.
if (is_end_of_polygon(r_polygon_indices, pv)) {
r_polygon_indices[pv] = ~new_index;
} else {
r_polygon_indices[pv] = new_index;
}
// Vertex position.
r_vertices.push_back(r_vertices[old_index]);
// Normals
if (r_normals_raw.has(old_index)) {
r_normals.set(new_index, this_vert_poly_normal);
r_normals_raw.getptr(old_index)->erase(polygon_index);
r_normals_raw[new_index][polygon_index] = this_vert_poly_normal;
}
// Vertex Color
if (r_colors_raw.has(old_index)) {
r_color.set(new_index, this_vert_poly_color);
r_colors_raw.getptr(old_index)->erase(polygon_index);
r_colors_raw[new_index][polygon_index] = this_vert_poly_color;
}
// UV 0
if (r_uv_1_raw.has(old_index)) {
r_uv_1.set(new_index, this_vert_poly_uv1);
r_uv_1_raw.getptr(old_index)->erase(polygon_index);
r_uv_1_raw[new_index][polygon_index] = this_vert_poly_uv1;
}
// UV 1
if (r_uv_2_raw.has(old_index)) {
r_uv_2.set(new_index, this_vert_poly_uv2);
r_uv_2_raw.getptr(old_index)->erase(polygon_index);
r_uv_2_raw[new_index][polygon_index] = this_vert_poly_uv2;
}
// Morphs
for (const String *mname = r_morphs.next(nullptr); mname != nullptr; mname = r_morphs.next(mname)) {
MorphVertexData *d = r_morphs.getptr(*mname);
// This can't never happen.
CRASH_COND(d == nullptr);
if (d->vertices.size() > old_index) {
d->vertices.push_back(d->vertices[old_index]);
}
if (d->normals.size() > old_index) {
d->normals.push_back(d->normals[old_index]);
}
}
if (vertex_weights.has(old_index)) {
vertex_weights.set(new_index, vertex_weights[old_index]);
}
duplicated_vertices[old_index].push_back(new_index);
} else {
if (r_normals_raw.has(index) &&
r_normals.has(index) == false) {
r_normals.set(index, this_vert_poly_normal);
}
if (r_colors_raw.has(index) && r_color.has(index) == false) {
r_color.set(index, this_vert_poly_color);
}
if (r_uv_1_raw.has(index) &&
r_uv_1.has(index) == false) {
r_uv_1.set(index, this_vert_poly_uv1);
}
if (r_uv_2_raw.has(index) &&
r_uv_2.has(index) == false) {
r_uv_2.set(index, this_vert_poly_uv2);
}
}
}
}
void FBXMeshData::add_vertex(
const ImportState &state,
Ref<SurfaceTool> p_surface_tool,
real_t p_scale,
Vertex p_vertex,
const std::vector<Vector3> &p_vertices_position,
const HashMap<int, Vector3> &p_normals,
const HashMap<int, Vector2> &p_uvs_0,
const HashMap<int, Vector2> &p_uvs_1,
const HashMap<int, Color> &p_colors,
const Vector3 &p_morph_value,
const Vector3 &p_morph_normal) {
ERR_FAIL_INDEX_MSG(p_vertex, (Vertex)p_vertices_position.size(), "FBX file is corrupted, the position of the vertex can't be retrieved.");
if (p_normals.has(p_vertex) && !state.is_blender_fbx) {
p_surface_tool->add_normal(p_normals[p_vertex] + p_morph_normal);
}
if (p_uvs_0.has(p_vertex)) {
//print_verbose("uv1: [" + itos(p_vertex) + "] " + p_uvs_0[p_vertex]);
// Inverts Y UV.
p_surface_tool->add_uv(Vector2(p_uvs_0[p_vertex].x, 1 - p_uvs_0[p_vertex].y));
}
if (p_uvs_1.has(p_vertex)) {
//print_verbose("uv2: [" + itos(p_vertex) + "] " + p_uvs_1[p_vertex]);
// Inverts Y UV.
p_surface_tool->add_uv2(Vector2(p_uvs_1[p_vertex].x, 1 - p_uvs_1[p_vertex].y));
}
if (p_colors.has(p_vertex)) {
p_surface_tool->add_color(p_colors[p_vertex]);
}
// TODO what about binormals?
// TODO there is other?
if (vertex_weights.has(p_vertex)) {
// Let's extract the weight info.
const VertexWeightMapping *vm = vertex_weights.getptr(p_vertex);
const Vector<int> &bones = vm->bones;
// the bug is that the bone idx is wrong because it is not ref'ing the skin.
if (bones.size() > VS::ARRAY_WEIGHTS_SIZE) {
print_error("[weight overflow detected]");
}
p_surface_tool->add_weights(vm->weights);
// 0 1 2 3 4 5 6 7 < local skeleton / skin for mesh
// 0 1 2 3 4 5 6 7 8 9 10 < actual skeleton with all joints
p_surface_tool->add_bones(bones);
}
// The surface tool want the vertex position as last thing.
p_surface_tool->add_vertex((p_vertices_position[p_vertex] + p_morph_value) * p_scale);
}
void FBXMeshData::triangulate_polygon(Ref<SurfaceTool> st, Vector<int> p_polygon_vertex, const Vector<Vertex> p_surface_vertex_map, const std::vector<Vector3> &p_vertices) const {
const int polygon_vertex_count = p_polygon_vertex.size();
if (polygon_vertex_count == 1) {
// point to triangle
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[0]);
return;
} else if (polygon_vertex_count == 2) {
// line to triangle
st->add_index(p_polygon_vertex[1]);
st->add_index(p_polygon_vertex[1]);
st->add_index(p_polygon_vertex[0]);
return;
} else if (polygon_vertex_count == 3) {
// triangle to triangle
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[2]);
st->add_index(p_polygon_vertex[1]);
return;
} else if (polygon_vertex_count == 4) {
// quad to triangle - this code is awesome for import times
// it prevents triangles being generated slowly
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[2]);
st->add_index(p_polygon_vertex[1]);
st->add_index(p_polygon_vertex[2]);
st->add_index(p_polygon_vertex[0]);
st->add_index(p_polygon_vertex[3]);
return;
} else {
// non triangulated - we must run the triangulation algorithm
bool is_simple_convex = false;
// this code is 'slow' but required it triangulates all the unsupported geometry.
// Doesn't allow for bigger polygons because those are unlikely be convex
if (polygon_vertex_count <= 6) {
// Start from true, check if it's false.
is_simple_convex = true;
Vector3 first_vec;
for (int i = 0; i < polygon_vertex_count; i += 1) {
const Vector3 p1 = p_vertices[p_surface_vertex_map[p_polygon_vertex[i]]];
const Vector3 p2 = p_vertices[p_surface_vertex_map[p_polygon_vertex[(i + 1) % polygon_vertex_count]]];
const Vector3 p3 = p_vertices[p_surface_vertex_map[p_polygon_vertex[(i + 2) % polygon_vertex_count]]];
const Vector3 edge1 = p1 - p2;
const Vector3 edge2 = p3 - p2;
const Vector3 res = edge1.normalized().cross(edge2.normalized()).normalized();
if (i == 0) {
first_vec = res;
} else {
if (first_vec.dot(res) < 0.0) {
// Ok we found an angle that is not the same dir of the
// others.
is_simple_convex = false;
break;
}
}
}
}
if (is_simple_convex) {
// This is a convex polygon, so just triangulate it.
for (int i = 0; i < (polygon_vertex_count - 2); i += 1) {
st->add_index(p_polygon_vertex[2 + i]);
st->add_index(p_polygon_vertex[1 + i]);
st->add_index(p_polygon_vertex[0]);
}
return;
}
}
{
// This is a concave polygon.
std::vector<Vector3> poly_vertices(polygon_vertex_count);
for (int i = 0; i < polygon_vertex_count; i += 1) {
poly_vertices[i] = p_vertices[p_surface_vertex_map[p_polygon_vertex[i]]];
}
const Vector3 poly_norm = get_poly_normal(poly_vertices);
if (poly_norm.length_squared() <= CMP_EPSILON) {
ERR_FAIL_COND_MSG(poly_norm.length_squared() <= CMP_EPSILON, "The normal of this poly was not computed. Is this FBX file corrupted.");
}
// Select the plan coordinate.
int axis_1_coord = 0;
int axis_2_coord = 1;
{
real_t inv = poly_norm.z;
const real_t axis_x = ABS(poly_norm.x);
const real_t axis_y = ABS(poly_norm.y);
const real_t axis_z = ABS(poly_norm.z);
if (axis_x > axis_y) {
if (axis_x > axis_z) {
// For the most part the normal point toward X.
axis_1_coord = 1;
axis_2_coord = 2;
inv = poly_norm.x;
}
} else if (axis_y > axis_z) {
// For the most part the normal point toward Y.
axis_1_coord = 2;
axis_2_coord = 0;
inv = poly_norm.y;
}
// Swap projection axes to take the negated projection vector into account
if (inv < 0.0f) {
SWAP(axis_1_coord, axis_2_coord);
}
}
TriangulatorPoly triangulator_poly;
triangulator_poly.Init(polygon_vertex_count);
std::vector<Vector2> projected_vertices(polygon_vertex_count);
for (int i = 0; i < polygon_vertex_count; i += 1) {
const Vector2 pv(poly_vertices[i][axis_1_coord], poly_vertices[i][axis_2_coord]);
projected_vertices[i] = pv;
triangulator_poly.GetPoint(i) = pv;
}
triangulator_poly.SetOrientation(TRIANGULATOR_CCW);
List<TriangulatorPoly> out_poly;
TriangulatorPartition triangulator_partition;
if (triangulator_partition.Triangulate_OPT(&triangulator_poly, &out_poly) == 0) { // Good result.
if (triangulator_partition.Triangulate_EC(&triangulator_poly, &out_poly) == 0) { // Medium result.
if (triangulator_partition.Triangulate_MONO(&triangulator_poly, &out_poly) == 0) { // Really poor result.
ERR_FAIL_MSG("The triangulation of this polygon failed, please try to triangulate your mesh or check if it has broken polygons.");
}
}
}
std::vector<Vector2> tris(out_poly.size());
for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
TriangulatorPoly &tp = I->get();
ERR_FAIL_COND_MSG(tp.GetNumPoints() != 3, "The triangulator returned more points, how this is possible?");
// Find Index
for (int i = 2; i >= 0; i -= 1) {
const Vector2 vertex = tp.GetPoint(i);
bool done = false;
// Find Index
for (int y = 0; y < polygon_vertex_count; y += 1) {
if ((projected_vertices[y] - vertex).length_squared() <= CMP_EPSILON) {
// This seems the right vertex
st->add_index(p_polygon_vertex[y]);
done = true;
break;
}
}
ERR_FAIL_COND(done == false);
}
}
}
}
void FBXMeshData::gen_weight_info(Ref<SurfaceTool> st, Vertex vertex_id) const {
if (vertex_weights.empty()) {
return;
}
if (vertex_weights.has(vertex_id)) {
// Let's extract the weight info.
const VertexWeightMapping *vm = vertex_weights.getptr(vertex_id);
st->add_weights(vm->weights);
st->add_bones(vm->bones);
}
}
int FBXMeshData::get_vertex_from_polygon_vertex(const std::vector<int> &p_polygon_indices, int p_index) const {
if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
return -1;
}
const int vertex = p_polygon_indices[p_index];
if (vertex >= 0) {
return vertex;
} else {
// Negative numbers are the end of the face, reversing the bits is
// possible to obtain the positive correct vertex number.
return ~vertex;
}
}
bool FBXMeshData::is_end_of_polygon(const std::vector<int> &p_polygon_indices, int p_index) const {
if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
return false;
}
const int vertex = p_polygon_indices[p_index];
// If the index is negative this is the end of the Polygon.
return vertex < 0;
}
bool FBXMeshData::is_start_of_polygon(const std::vector<int> &p_polygon_indices, int p_index) const {
if (p_index < 0 || p_index >= (int)p_polygon_indices.size()) {
return false;
}
if (p_index == 0) {
return true;
}
// If the previous indices is negative this is the begin of a new Polygon.
return p_polygon_indices[p_index - 1] < 0;
}
int FBXMeshData::count_polygons(const std::vector<int> &p_polygon_indices) const {
// The negative numbers define the end of the polygon. Counting the amount of
// negatives the numbers of polygons are obtained.
int count = 0;
for (size_t i = 0; i < p_polygon_indices.size(); i += 1) {
if (p_polygon_indices[i] < 0) {
count += 1;
}
}
return count;
}
template <class R, class T>
HashMap<int, R> FBXMeshData::extract_per_vertex_data(
int p_vertex_count,
const std::vector<FBXDocParser::MeshGeometry::Edge> &p_edge_map,
const std::vector<int> &p_mesh_indices,
const FBXDocParser::MeshGeometry::MappingData<T> &p_mapping_data,
R (*collector_function)(const Vector<VertexData<T>> *p_vertex_data, R p_fall_back),
R p_fall_back) const {
/* When index_to_direct is set
* index size is 184 ( contains index for the data array [values 0, 96] )
* data size is 96 (contains uv coordinates)
* this means index is simple data reduction basically
*/
////
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_mapping_data.index.size() == 0) {
print_verbose("debug count: index size: " + itos(p_mapping_data.index.size()) + ", data size: " + itos(p_mapping_data.data.size()));
print_verbose("vertex indices count: " + itos(p_mesh_indices.size()));
print_verbose("Edge map size: " + itos(p_edge_map.size()));
}
ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_mapping_data.index.size() == 0, (HashMap<int, R>()), "FBX importer needs to map correctly to this field, please specify the override index name to fix this problem!");
ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index && p_mapping_data.index.size() == 0, (HashMap<int, R>()), "The FBX seems corrupted");
// Aggregate vertex data.
HashMap<Vertex, Vector<VertexData<T>>> aggregate_vertex_data;
switch (p_mapping_data.map_type) {
case FBXDocParser::MeshGeometry::MapType::none: {
// No data nothing to do.
return (HashMap<int, R>());
}
case FBXDocParser::MeshGeometry::MapType::vertex: {
ERR_FAIL_COND_V_MSG(p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct, (HashMap<int, R>()), "We will support in future");
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data is mapped per vertex directly.
ERR_FAIL_COND_V_MSG((int)p_mapping_data.data.size() != p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR01");
for (size_t vertex_index = 0; vertex_index < p_mapping_data.data.size(); vertex_index += 1) {
aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[vertex_index] });
}
} else {
// The data is mapped per vertex using a reference.
// The indices array, contains a *reference_id for each vertex.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG((int)p_mapping_data.index.size() != p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR02");
for (size_t vertex_index = 0; vertex_index < p_mapping_data.index.size(); vertex_index += 1) {
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[vertex_index], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR03.");
aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[p_mapping_data.index[vertex_index]] });
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::polygon_vertex: {
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct) {
// The data is mapped using each index from the indexes array then direct to the data (data reduction algorithm)
ERR_FAIL_COND_V_MSG((int)p_mesh_indices.size() != (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR04");
int polygon_id = -1;
for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.index.size(); polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_id += 1;
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR05");
ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR06");
const int index_to_direct = get_vertex_from_polygon_vertex(p_mapping_data.index, polygon_vertex_index);
T value = p_mapping_data.data[index_to_direct];
aggregate_vertex_data[vertex_index].push_back({ polygon_id, value });
}
} else if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per polygon vertex directly.
ERR_FAIL_COND_V_MSG((int)p_mesh_indices.size() != (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR04");
int polygon_id = -1;
for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.data.size(); polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_id += 1;
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR05");
ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR06");
aggregate_vertex_data[vertex_index].push_back({ polygon_id, p_mapping_data.data[polygon_vertex_index] });
}
} else {
// The data is mapped per polygon_vertex using a reference.
// The indices array, contains a *reference_id for each polygon_vertex.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG(p_mesh_indices.size() != p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR7");
int polygon_id = -1;
for (size_t polygon_vertex_index = 0; polygon_vertex_index < p_mapping_data.index.size(); polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_id += 1;
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_COND_V_MSG(vertex_index < 0, (HashMap<int, R>()), "FBX file corrupted: #ERR8");
ERR_FAIL_COND_V_MSG(vertex_index >= p_vertex_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR9.");
ERR_FAIL_COND_V_MSG(p_mapping_data.index[polygon_vertex_index] < 0, (HashMap<int, R>()), "FBX file seems corrupted: #ERR10.");
ERR_FAIL_COND_V_MSG(p_mapping_data.index[polygon_vertex_index] >= (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR11.");
aggregate_vertex_data[vertex_index].push_back({ polygon_id, p_mapping_data.data[p_mapping_data.index[polygon_vertex_index]] });
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::polygon: {
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per polygon directly.
const int polygon_count = count_polygons(p_mesh_indices);
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR12");
// Advance each polygon vertex, each new polygon advance the polygon index.
int polygon_index = -1;
for (size_t polygon_vertex_index = 0;
polygon_vertex_index < p_mesh_indices.size();
polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_index += 1;
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR13");
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_INDEX_V_MSG(vertex_index, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR14");
aggregate_vertex_data[vertex_index].push_back({ polygon_index, p_mapping_data.data[polygon_index] });
}
ERR_FAIL_COND_V_MSG((polygon_index + 1) != polygon_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR16. Not all Polygons are present in the file.");
} else {
// The data is mapped per polygon using a reference.
// The indices array, contains a *reference_id for each polygon.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
const int polygon_count = count_polygons(p_mesh_indices);
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR17");
// Advance each polygon vertex, each new polygon advance the polygon index.
int polygon_index = -1;
for (size_t polygon_vertex_index = 0;
polygon_vertex_index < p_mesh_indices.size();
polygon_vertex_index += 1) {
if (is_start_of_polygon(p_mesh_indices, polygon_vertex_index)) {
polygon_index += 1;
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR18");
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[polygon_index], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR19");
}
const int vertex_index = get_vertex_from_polygon_vertex(p_mesh_indices, polygon_vertex_index);
ERR_FAIL_INDEX_V_MSG(vertex_index, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR20");
aggregate_vertex_data[vertex_index].push_back({ polygon_index, p_mapping_data.data[p_mapping_data.index[polygon_index]] });
}
ERR_FAIL_COND_V_MSG((polygon_index + 1) != polygon_count, (HashMap<int, R>()), "FBX file seems corrupted: #ERR22. Not all Polygons are present in the file.");
}
} break;
case FBXDocParser::MeshGeometry::MapType::edge: {
if (p_mapping_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per edge directly.
ERR_FAIL_COND_V_MSG(p_edge_map.size() != p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR23");
for (size_t edge_index = 0; edge_index < p_mapping_data.data.size(); edge_index += 1) {
const FBXDocParser::MeshGeometry::Edge edge = FBXDocParser::MeshGeometry::get_edge(p_edge_map, edge_index);
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR24");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR25");
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR26");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR27");
aggregate_vertex_data[edge.vertex_0].push_back({ -1, p_mapping_data.data[edge_index] });
aggregate_vertex_data[edge.vertex_1].push_back({ -1, p_mapping_data.data[edge_index] });
}
} else {
// The data is mapped per edge using a reference.
// The indices array, contains a *reference_id for each polygon.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG(p_edge_map.size() != p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file seems corrupted: #ERR28");
for (size_t edge_index = 0; edge_index < p_mapping_data.data.size(); edge_index += 1) {
const FBXDocParser::MeshGeometry::Edge edge = FBXDocParser::MeshGeometry::get_edge(p_edge_map, edge_index);
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR29");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, p_vertex_count, (HashMap<int, R>()), "FBX file corrupted: #ERR30");
ERR_FAIL_INDEX_V_MSG(edge.vertex_0, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR31");
ERR_FAIL_INDEX_V_MSG(edge.vertex_1, (int)p_mapping_data.index.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR32");
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[edge.vertex_0], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR33");
ERR_FAIL_INDEX_V_MSG(p_mapping_data.index[edge.vertex_1], (int)p_mapping_data.data.size(), (HashMap<int, R>()), "FBX file corrupted: #ERR34");
aggregate_vertex_data[edge.vertex_0].push_back({ -1, p_mapping_data.data[p_mapping_data.index[edge_index]] });
aggregate_vertex_data[edge.vertex_1].push_back({ -1, p_mapping_data.data[p_mapping_data.index[edge_index]] });
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::all_the_same: {
// No matter the mode, no matter the data size; The first always win
// and is set to all the vertices.
ERR_FAIL_COND_V_MSG(p_mapping_data.data.size() <= 0, (HashMap<int, R>()), "FBX file seems corrupted: #ERR35");
if (p_mapping_data.data.size() > 0) {
for (int vertex_index = 0; vertex_index < p_vertex_count; vertex_index += 1) {
aggregate_vertex_data[vertex_index].push_back({ -1, p_mapping_data.data[0] });
}
}
} break;
}
if (aggregate_vertex_data.size() == 0) {
return (HashMap<int, R>());
}
// A map is used because turns out that the some FBX file are not well organized
// with vertices well compacted. Using a map allows avoid those issues.
HashMap<Vertex, R> result;
// Aggregate the collected data.
for (const Vertex *index = aggregate_vertex_data.next(nullptr); index != nullptr; index = aggregate_vertex_data.next(index)) {
Vector<VertexData<T>> *aggregated_vertex = aggregate_vertex_data.getptr(*index);
// This can't be null because we are just iterating.
CRASH_COND(aggregated_vertex == nullptr);
ERR_FAIL_INDEX_V_MSG(0, aggregated_vertex->size(), (HashMap<int, R>()), "The FBX file is corrupted, No valid data for this vertex index.");
result[*index] = collector_function(aggregated_vertex, p_fall_back);
}
// Sanitize the data now, if the file is broken we can try import it anyway.
bool problem_found = false;
for (size_t i = 0; i < p_mesh_indices.size(); i += 1) {
const Vertex vertex = get_vertex_from_polygon_vertex(p_mesh_indices, i);
if (result.has(vertex) == false) {
result[vertex] = p_fall_back;
problem_found = true;
}
}
if (problem_found) {
WARN_PRINT("Some data is missing, this FBX file may be corrupted: #WARN0.");
}
return result;
}
template <class T>
HashMap<int, T> FBXMeshData::extract_per_polygon(
int p_vertex_count,
const std::vector<int> &p_polygon_indices,
const FBXDocParser::MeshGeometry::MappingData<T> &p_fbx_data,
T p_fallback_value) const {
ERR_FAIL_COND_V_MSG(p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct && p_fbx_data.data.size() == 0, (HashMap<int, T>()), "invalid index to direct array");
ERR_FAIL_COND_V_MSG(p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index && p_fbx_data.index.size() == 0, (HashMap<int, T>()), "The FBX seems corrupted");
const int polygon_count = count_polygons(p_polygon_indices);
// Aggregate vertex data.
HashMap<int, Vector<T>> aggregate_polygon_data;
switch (p_fbx_data.map_type) {
case FBXDocParser::MeshGeometry::MapType::none: {
// No data nothing to do.
return (HashMap<int, T>());
}
case FBXDocParser::MeshGeometry::MapType::vertex: {
ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per vertex. This should not happen.");
} break;
case FBXDocParser::MeshGeometry::MapType::polygon_vertex: {
ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per polygon vertex. This should not happen.");
} break;
case FBXDocParser::MeshGeometry::MapType::polygon: {
if (p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::index_to_direct) {
// The data is stored efficiently index_to_direct allows less data in the FBX file.
for (int polygon_index = 0;
polygon_index < polygon_count;
polygon_index += 1) {
if (p_fbx_data.index.size() == 0) {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR62");
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[polygon_index]);
} else {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR62");
const int index_to_direct = get_vertex_from_polygon_vertex(p_fbx_data.index, polygon_index);
T value = p_fbx_data.data[index_to_direct];
aggregate_polygon_data[polygon_index].push_back(value);
}
}
} else if (p_fbx_data.ref_type == FBXDocParser::MeshGeometry::ReferenceType::direct) {
// The data are mapped per polygon directly.
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR51");
// Advance each polygon vertex, each new polygon advance the polygon index.
for (int polygon_index = 0;
polygon_index < polygon_count;
polygon_index += 1) {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR52");
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[polygon_index]);
}
} else {
// The data is mapped per polygon using a reference.
// The indices array, contains a *reference_id for each polygon.
// * Note that the reference_id is the id of data into the data array.
//
// https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_layer_element_html
ERR_FAIL_COND_V_MSG(polygon_count != (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file seems corrupted: #ERR52");
// Advance each polygon vertex, each new polygon advance the polygon index.
for (int polygon_index = 0;
polygon_index < polygon_count;
polygon_index += 1) {
ERR_FAIL_INDEX_V_MSG(polygon_index, (int)p_fbx_data.index.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR53");
ERR_FAIL_INDEX_V_MSG(p_fbx_data.index[polygon_index], (int)p_fbx_data.data.size(), (HashMap<int, T>()), "FBX file is corrupted: #ERR54");
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[p_fbx_data.index[polygon_index]]);
}
}
} break;
case FBXDocParser::MeshGeometry::MapType::edge: {
ERR_FAIL_V_MSG((HashMap<int, T>()), "This data can't be extracted and organized per polygon, since into the FBX is mapped per edge. This should not happen.");
} break;
case FBXDocParser::MeshGeometry::MapType::all_the_same: {
// No matter the mode, no matter the data size; The first always win
// and is set to all the vertices.
ERR_FAIL_COND_V_MSG(p_fbx_data.data.size() <= 0, (HashMap<int, T>()), "FBX file seems corrupted: #ERR55");
if (p_fbx_data.data.size() > 0) {
for (int polygon_index = 0; polygon_index < polygon_count; polygon_index += 1) {
aggregate_polygon_data[polygon_index].push_back(p_fbx_data.data[0]);
}
}
} break;
}
if (aggregate_polygon_data.size() == 0) {
return (HashMap<int, T>());
}
// A map is used because turns out that the some FBX file are not well organized
// with vertices well compacted. Using a map allows avoid those issues.
HashMap<int, T> polygons;
// Take the first value for each vertex.
for (const Vertex *index = aggregate_polygon_data.next(nullptr); index != nullptr; index = aggregate_polygon_data.next(index)) {
Vector<T> *aggregated_polygon = aggregate_polygon_data.getptr(*index);
// This can't be null because we are just iterating.
CRASH_COND(aggregated_polygon == nullptr);
ERR_FAIL_INDEX_V_MSG(0, (int)aggregated_polygon->size(), (HashMap<int, T>()), "The FBX file is corrupted, No valid data for this polygon index.");
// Validate the final value.
polygons[*index] = (*aggregated_polygon)[0];
}
// Sanitize the data now, if the file is broken we can try import it anyway.
bool problem_found = false;
for (int polygon_i = 0; polygon_i < polygon_count; polygon_i += 1) {
if (polygons.has(polygon_i) == false) {
polygons[polygon_i] = p_fallback_value;
problem_found = true;
}
}
if (problem_found) {
WARN_PRINT("Some data is missing, this FBX file may be corrupted: #WARN1.");
}
return polygons;
}
void FBXMeshData::extract_morphs(const FBXDocParser::MeshGeometry *mesh_geometry, HashMap<String, MorphVertexData> &r_data) {
r_data.clear();
const int vertex_count = mesh_geometry->get_vertices().size();
for (const FBXDocParser::BlendShape *blend_shape : mesh_geometry->get_blend_shapes()) {
for (const FBXDocParser::BlendShapeChannel *blend_shape_channel : blend_shape->BlendShapeChannels()) {
const std::vector<const FBXDocParser::ShapeGeometry *> &shape_geometries = blend_shape_channel->GetShapeGeometries();
for (const FBXDocParser::ShapeGeometry *shape_geometry : shape_geometries) {
String morph_name = ImportUtils::FBXAnimMeshName(shape_geometry->Name()).c_str();
if (morph_name.empty()) {
morph_name = "morph";
}
// TODO we have only these??
const std::vector<unsigned int> &morphs_vertex_indices = shape_geometry->GetIndices();
const std::vector<Vector3> &morphs_vertices = shape_geometry->GetVertices();
const std::vector<Vector3> &morphs_normals = shape_geometry->GetNormals();
ERR_FAIL_COND_MSG((int)morphs_vertex_indices.size() > vertex_count, "The FBX file is corrupted: #ERR103");
ERR_FAIL_COND_MSG(morphs_vertex_indices.size() != morphs_vertices.size(), "The FBX file is corrupted: #ERR104");
ERR_FAIL_COND_MSG((int)morphs_vertices.size() > vertex_count, "The FBX file is corrupted: #ERR105");
ERR_FAIL_COND_MSG(morphs_normals.size() != 0 && morphs_normals.size() != morphs_vertices.size(), "The FBX file is corrupted: #ERR106");
if (r_data.has(morph_name) == false) {
// This morph doesn't exist yet.
// Create it.
MorphVertexData md;
md.vertices.resize(vertex_count);
md.normals.resize(vertex_count);
r_data.set(morph_name, md);
}
MorphVertexData *data = r_data.getptr(morph_name);
Vector3 *data_vertices_ptr = data->vertices.ptrw();
Vector3 *data_normals_ptr = data->normals.ptrw();
for (int i = 0; i < (int)morphs_vertex_indices.size(); i += 1) {
const Vertex vertex = morphs_vertex_indices[i];
ERR_FAIL_INDEX_MSG(vertex, vertex_count, "The blend shapes of this FBX file are corrupted. It has a not valid vertex.");
data_vertices_ptr[vertex] = morphs_vertices[i];
if (morphs_normals.size() != 0) {
data_normals_ptr[vertex] = morphs_normals[i];
}
}
}
}
}
}