virtualx-engine/drivers/webp/dsp/enc_sse41.c
2015-12-04 10:21:22 -03:00

375 lines
15 KiB
C

// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE4 version of some encoding functions.
//
// Author: Skal (pascal.massimino@gmail.com)
#include "./dsp.h"
#if defined(WEBP_USE_SSE41)
#include <smmintrin.h>
#include <stdlib.h> // for abs()
#include "../enc/vp8enci.h"
//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms.
static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block,
VP8Histogram* const histo) {
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
int j;
int distribution[MAX_COEFF_THRESH + 1] = { 0 };
for (j = start_block; j < end_block; ++j) {
int16_t out[16];
int k;
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
// Convert coefficients to bin (within out[]).
{
// Load.
const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
// v = abs(out) >> 3
const __m128i abs0 = _mm_abs_epi16(out0);
const __m128i abs1 = _mm_abs_epi16(out1);
const __m128i v0 = _mm_srai_epi16(abs0, 3);
const __m128i v1 = _mm_srai_epi16(abs1, 3);
// bin = min(v, MAX_COEFF_THRESH)
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
// Store.
_mm_storeu_si128((__m128i*)&out[0], bin0);
_mm_storeu_si128((__m128i*)&out[8], bin1);
}
// Convert coefficients to bin.
for (k = 0; k < 16; ++k) {
++distribution[out[k]];
}
}
VP8SetHistogramData(distribution, histo);
}
//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.
// Hadamard transform
// Returns the difference between the weighted sum of the absolute value of
// transformed coefficients.
static int TTransform(const uint8_t* inA, const uint8_t* inB,
const uint16_t* const w) {
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
// Load, combine and transpose inputs.
{
const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
// Combine inA and inB (we'll do two transforms in parallel).
const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
// a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
// a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
// a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
// a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
// Transpose the two 4x4, discarding the filling zeroes.
const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
// a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
// a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
// a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
// Convert to 16b.
tmp_0 = _mm_cvtepu8_epi16(transpose1_0);
tmp_1 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_0, 8));
tmp_2 = _mm_cvtepu8_epi16(transpose1_1);
tmp_3 = _mm_cvtepu8_epi16(_mm_srli_si128(transpose1_1, 8));
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Horizontal pass and subsequent transpose.
{
// Calculate a and b (two 4x4 at once).
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
const __m128i b0 = _mm_add_epi16(a0, a1);
const __m128i b1 = _mm_add_epi16(a3, a2);
const __m128i b2 = _mm_sub_epi16(a3, a2);
const __m128i b3 = _mm_sub_epi16(a0, a1);
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
// Transpose the two 4x4.
const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Vertical pass and difference of weighted sums.
{
// Load all inputs.
const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
// Calculate a and b (two 4x4 at once).
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
const __m128i b0 = _mm_add_epi16(a0, a1);
const __m128i b1 = _mm_add_epi16(a3, a2);
const __m128i b2 = _mm_sub_epi16(a3, a2);
const __m128i b3 = _mm_sub_epi16(a0, a1);
// Separate the transforms of inA and inB.
__m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
__m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
__m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
__m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
A_b0 = _mm_abs_epi16(A_b0);
A_b2 = _mm_abs_epi16(A_b2);
B_b0 = _mm_abs_epi16(B_b0);
B_b2 = _mm_abs_epi16(B_b2);
// weighted sums
A_b0 = _mm_madd_epi16(A_b0, w_0);
A_b2 = _mm_madd_epi16(A_b2, w_8);
B_b0 = _mm_madd_epi16(B_b0, w_0);
B_b2 = _mm_madd_epi16(B_b2, w_8);
A_b0 = _mm_add_epi32(A_b0, A_b2);
B_b0 = _mm_add_epi32(B_b0, B_b2);
// difference of weighted sums
A_b2 = _mm_sub_epi32(A_b0, B_b0);
// cascading summation of the differences
B_b0 = _mm_hadd_epi32(A_b2, A_b2);
B_b2 = _mm_hadd_epi32(B_b0, B_b0);
return _mm_cvtsi128_si32(B_b2);
}
}
static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
const int diff_sum = TTransform(a, b, w);
return abs(diff_sum) >> 5;
}
static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
int D = 0;
int x, y;
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
for (x = 0; x < 16; x += 4) {
D += Disto4x4(a + x + y, b + x + y, w);
}
}
return D;
}
//------------------------------------------------------------------------------
// Quantization
//
// Generates a pshufb constant for shuffling 16b words.
#define PSHUFB_CST(A,B,C,D,E,F,G,H) \
_mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
const uint16_t* const sharpen,
const VP8Matrix* const mtx) {
const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
const __m128i zero = _mm_setzero_si128();
__m128i out0, out8;
__m128i packed_out;
// Load all inputs.
// TODO(cduvivier): Make variable declarations and allocations aligned so that
// we can use _mm_load_si128 instead of _mm_loadu_si128.
__m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
__m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
// coeff = abs(in)
__m128i coeff0 = _mm_abs_epi16(in0);
__m128i coeff8 = _mm_abs_epi16(in8);
// coeff = abs(in) + sharpen
if (sharpen != NULL) {
const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
coeff0 = _mm_add_epi16(coeff0, sharpen0);
coeff8 = _mm_add_epi16(coeff8, sharpen8);
}
// out = (coeff * iQ + B) >> QFIX
{
// doing calculations with 32b precision (QFIX=17)
// out = (coeff * iQ)
const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
__m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
__m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
__m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
__m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
// out = (coeff * iQ + B)
const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
out_00 = _mm_add_epi32(out_00, bias_00);
out_04 = _mm_add_epi32(out_04, bias_04);
out_08 = _mm_add_epi32(out_08, bias_08);
out_12 = _mm_add_epi32(out_12, bias_12);
// out = QUANTDIV(coeff, iQ, B, QFIX)
out_00 = _mm_srai_epi32(out_00, QFIX);
out_04 = _mm_srai_epi32(out_04, QFIX);
out_08 = _mm_srai_epi32(out_08, QFIX);
out_12 = _mm_srai_epi32(out_12, QFIX);
// pack result as 16b
out0 = _mm_packs_epi32(out_00, out_04);
out8 = _mm_packs_epi32(out_08, out_12);
// if (coeff > 2047) coeff = 2047
out0 = _mm_min_epi16(out0, max_coeff_2047);
out8 = _mm_min_epi16(out8, max_coeff_2047);
}
// put sign back
out0 = _mm_sign_epi16(out0, in0);
out8 = _mm_sign_epi16(out8, in8);
// in = out * Q
in0 = _mm_mullo_epi16(out0, q0);
in8 = _mm_mullo_epi16(out8, q8);
_mm_storeu_si128((__m128i*)&in[0], in0);
_mm_storeu_si128((__m128i*)&in[8], in8);
// zigzag the output before storing it. The re-ordering is:
// 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15
// -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
// There's only two misplaced entries ([8] and [7]) that are crossing the
// reg's boundaries.
// We use pshufb instead of pshuflo/pshufhi.
{
const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7
const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8
const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
_mm_storeu_si128((__m128i*)&out[0], out_z0);
_mm_storeu_si128((__m128i*)&out[8], out_z8);
packed_out = _mm_packs_epi16(out_z0, out_z8);
}
// detect if all 'out' values are zeroes or not
return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
}
#undef PSHUFB_CST
static int QuantizeBlock(int16_t in[16], int16_t out[16],
const VP8Matrix* const mtx) {
return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
}
static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
const VP8Matrix* const mtx) {
return DoQuantizeBlock(in, out, NULL, mtx);
}
static int Quantize2Blocks(int16_t in[32], int16_t out[32],
const VP8Matrix* const mtx) {
int nz;
const uint16_t* const sharpen = &mtx->sharpen_[0];
nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
return nz;
}
//------------------------------------------------------------------------------
// Entry point
extern void VP8EncDspInitSSE41(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
VP8CollectHistogram = CollectHistogram;
VP8EncQuantizeBlock = QuantizeBlock;
VP8EncQuantize2Blocks = Quantize2Blocks;
VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
VP8TDisto4x4 = Disto4x4;
VP8TDisto16x16 = Disto16x16;
}
#else // !WEBP_USE_SSE41
WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
#endif // WEBP_USE_SSE41