606 lines
22 KiB
C
606 lines
22 KiB
C
// Copyright 2014 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// YUV->RGB conversion functions
|
|
//
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#include "./yuv.h"
|
|
|
|
#if defined(WEBP_USE_SSE2)
|
|
|
|
#include <emmintrin.h>
|
|
#include <string.h> // for memcpy
|
|
|
|
typedef union { // handy struct for converting SSE2 registers
|
|
int32_t i32[4];
|
|
uint8_t u8[16];
|
|
__m128i m;
|
|
} VP8kCstSSE2;
|
|
|
|
#if defined(WEBP_YUV_USE_SSE2_TABLES)
|
|
|
|
#include "./yuv_tables_sse2.h"
|
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInitSSE2(void) {}
|
|
|
|
#else
|
|
|
|
static int done_sse2 = 0;
|
|
static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256];
|
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInitSSE2(void) {
|
|
if (!done_sse2) {
|
|
int i;
|
|
for (i = 0; i < 256; ++i) {
|
|
VP8kYtoRGBA[i].i32[0] =
|
|
VP8kYtoRGBA[i].i32[1] =
|
|
VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2;
|
|
VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2;
|
|
|
|
VP8kUtoRGBA[i].i32[0] = 0;
|
|
VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128);
|
|
VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128);
|
|
VP8kUtoRGBA[i].i32[3] = 0;
|
|
|
|
VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128);
|
|
VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128);
|
|
VP8kVtoRGBA[i].i32[2] = 0;
|
|
VP8kVtoRGBA[i].i32[3] = 0;
|
|
}
|
|
done_sse2 = 1;
|
|
|
|
#if 0 // code used to generate 'yuv_tables_sse2.h'
|
|
printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n");
|
|
for (i = 0; i < 256; ++i) {
|
|
printf(" {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n",
|
|
VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1],
|
|
VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]);
|
|
}
|
|
printf("};\n\n");
|
|
printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n");
|
|
for (i = 0; i < 256; ++i) {
|
|
printf(" {{0, 0x%.8x, 0x%.8x, 0}},\n",
|
|
VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]);
|
|
}
|
|
printf("};\n\n");
|
|
printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n");
|
|
for (i = 0; i < 256; ++i) {
|
|
printf(" {{0x%.8x, 0x%.8x, 0, 0}},\n",
|
|
VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]);
|
|
}
|
|
printf("};\n\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // WEBP_YUV_USE_SSE2_TABLES
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
static WEBP_INLINE __m128i LoadUVPart(int u, int v) {
|
|
const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m);
|
|
const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m);
|
|
const __m128i uv_part = _mm_add_epi32(u_part, v_part);
|
|
return uv_part;
|
|
}
|
|
|
|
static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) {
|
|
const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m);
|
|
const __m128i rgba1 = _mm_add_epi32(y_part, uv_part);
|
|
const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2);
|
|
return rgba2;
|
|
}
|
|
|
|
static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) {
|
|
const __m128i uv_part = LoadUVPart(u, v);
|
|
return GetRGBA32bWithUV(y, uv_part);
|
|
}
|
|
|
|
static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v,
|
|
uint8_t* const rgb) {
|
|
const __m128i tmp0 = GetRGBA32b(y, u, v);
|
|
const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0);
|
|
const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1);
|
|
// Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
|
|
_mm_storel_epi64((__m128i*)rgb, tmp2);
|
|
}
|
|
|
|
static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v,
|
|
uint8_t* const bgr) {
|
|
const __m128i tmp0 = GetRGBA32b(y, u, v);
|
|
const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2));
|
|
const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1);
|
|
const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2);
|
|
// Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
|
|
_mm_storel_epi64((__m128i*)bgr, tmp3);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Convert spans of 32 pixels to various RGB formats for the fancy upsampler.
|
|
|
|
void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst) {
|
|
int n;
|
|
for (n = 0; n < 32; n += 4) {
|
|
const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
|
|
const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
|
|
const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]);
|
|
const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]);
|
|
const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
|
|
const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
|
|
const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
|
|
_mm_storeu_si128((__m128i*)dst, tmp2);
|
|
dst += 4 * 4;
|
|
}
|
|
}
|
|
|
|
void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst) {
|
|
int n;
|
|
for (n = 0; n < 32; n += 2) {
|
|
const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
|
|
const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
|
|
const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
|
|
const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
|
|
const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
|
|
const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
|
|
_mm_storel_epi64((__m128i*)dst, tmp3);
|
|
dst += 4 * 2;
|
|
}
|
|
}
|
|
|
|
void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst) {
|
|
int n;
|
|
uint8_t tmp0[2 * 3 + 5 + 15];
|
|
uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
|
|
for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory
|
|
YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3);
|
|
}
|
|
// Last two pixels are special: we write in a tmp buffer before sending
|
|
// to dst.
|
|
YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
|
|
YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
|
|
memcpy(dst + n * 3, tmp, 2 * 3);
|
|
}
|
|
|
|
void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst) {
|
|
int n;
|
|
uint8_t tmp0[2 * 3 + 5 + 15];
|
|
uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
|
|
for (n = 0; n < 30; ++n) {
|
|
YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3);
|
|
}
|
|
YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
|
|
YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
|
|
memcpy(dst + n * 3, tmp, 2 * 3);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Arbitrary-length row conversion functions
|
|
|
|
static void YuvToRgbaRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst, int len) {
|
|
int n;
|
|
for (n = 0; n + 4 <= len; n += 4) {
|
|
const __m128i uv_0 = LoadUVPart(u[0], v[0]);
|
|
const __m128i uv_1 = LoadUVPart(u[1], v[1]);
|
|
const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
|
|
const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
|
|
const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1);
|
|
const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1);
|
|
const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
|
|
const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
|
|
const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
|
|
_mm_storeu_si128((__m128i*)dst, tmp2);
|
|
dst += 4 * 4;
|
|
y += 4;
|
|
u += 2;
|
|
v += 2;
|
|
}
|
|
// Finish off
|
|
while (n < len) {
|
|
VP8YuvToRgba(y[0], u[0], v[0], dst);
|
|
dst += 4;
|
|
++y;
|
|
u += (n & 1);
|
|
v += (n & 1);
|
|
++n;
|
|
}
|
|
}
|
|
|
|
static void YuvToBgraRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst, int len) {
|
|
int n;
|
|
for (n = 0; n + 2 <= len; n += 2) {
|
|
const __m128i uv_0 = LoadUVPart(u[0], v[0]);
|
|
const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
|
|
const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
|
|
const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
|
|
const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
|
|
const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
|
|
const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
|
|
_mm_storel_epi64((__m128i*)dst, tmp3);
|
|
dst += 4 * 2;
|
|
y += 2;
|
|
++u;
|
|
++v;
|
|
}
|
|
// Finish off
|
|
if (len & 1) {
|
|
VP8YuvToBgra(y[0], u[0], v[0], dst);
|
|
}
|
|
}
|
|
|
|
static void YuvToArgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst, int len) {
|
|
int n;
|
|
for (n = 0; n + 2 <= len; n += 2) {
|
|
const __m128i uv_0 = LoadUVPart(u[0], v[0]);
|
|
const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
|
|
const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
|
|
const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3));
|
|
const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3));
|
|
const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
|
|
const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
|
|
_mm_storel_epi64((__m128i*)dst, tmp3);
|
|
dst += 4 * 2;
|
|
y += 2;
|
|
++u;
|
|
++v;
|
|
}
|
|
// Finish off
|
|
if (len & 1) {
|
|
VP8YuvToArgb(y[0], u[0], v[0], dst);
|
|
}
|
|
}
|
|
|
|
static void YuvToRgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst, int len) {
|
|
int n;
|
|
for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory
|
|
YuvToRgbSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes
|
|
dst += 3;
|
|
++y;
|
|
u += (n & 1);
|
|
v += (n & 1);
|
|
}
|
|
VP8YuvToRgb(y[0], u[0], v[0], dst);
|
|
if (len > 1) {
|
|
VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3);
|
|
}
|
|
}
|
|
|
|
static void YuvToBgrRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
|
|
uint8_t* dst, int len) {
|
|
int n;
|
|
for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory
|
|
YuvToBgrSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes
|
|
dst += 3;
|
|
++y;
|
|
u += (n & 1);
|
|
v += (n & 1);
|
|
}
|
|
VP8YuvToBgr(y[0], u[0], v[0], dst + 0);
|
|
if (len > 1) {
|
|
VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3);
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Entry point
|
|
|
|
extern void WebPInitSamplersSSE2(void);
|
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE2(void) {
|
|
WebPSamplers[MODE_RGB] = YuvToRgbRow;
|
|
WebPSamplers[MODE_RGBA] = YuvToRgbaRow;
|
|
WebPSamplers[MODE_BGR] = YuvToBgrRow;
|
|
WebPSamplers[MODE_BGRA] = YuvToBgraRow;
|
|
WebPSamplers[MODE_ARGB] = YuvToArgbRow;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// RGB24/32 -> YUV converters
|
|
|
|
// Load eight 16b-words from *src.
|
|
#define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src))
|
|
// Store either 16b-words into *dst
|
|
#define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V))
|
|
|
|
// Convert 8 packed RGB or BGR samples to r[], g[], b[]
|
|
static WEBP_INLINE void RGB24PackedToPlanar(const uint8_t* const rgb,
|
|
__m128i* const r,
|
|
__m128i* const g,
|
|
__m128i* const b,
|
|
int input_is_bgr) {
|
|
const __m128i zero = _mm_setzero_si128();
|
|
// in0: r0 g0 b0 r1 | g1 b1 r2 g2 | b2 r3 g3 b3 | r4 g4 b4 r5
|
|
// in1: b2 r3 g3 b3 | r4 g4 b4 r5 | g5 b5 r6 g6 | b6 r7 g7 b7
|
|
const __m128i in0 = LOAD_16(rgb + 0);
|
|
const __m128i in1 = LOAD_16(rgb + 8);
|
|
// A0: | r2 g2 b2 r3 | g3 b3 r4 g4 | b4 r5 ...
|
|
// A1: ... b2 r3 | g3 b3 r4 g4 | b4 r5 g5 b5 |
|
|
const __m128i A0 = _mm_srli_si128(in0, 6);
|
|
const __m128i A1 = _mm_slli_si128(in1, 6);
|
|
// B0: r0 r2 g0 g2 | b0 b2 r1 r3 | g1 g3 b1 b3 | r2 r4 b2 b4
|
|
// B1: g3 g5 b3 b5 | r4 r6 g4 g6 | b4 b6 r5 r7 | g5 g7 b5 b7
|
|
const __m128i B0 = _mm_unpacklo_epi8(in0, A0);
|
|
const __m128i B1 = _mm_unpackhi_epi8(A1, in1);
|
|
// C0: r1 r3 g1 g3 | b1 b3 r2 r4 | b2 b4 ...
|
|
// C1: ... g3 g5 | b3 b5 r4 r6 | g4 g6 b4 b6
|
|
const __m128i C0 = _mm_srli_si128(B0, 6);
|
|
const __m128i C1 = _mm_slli_si128(B1, 6);
|
|
// D0: r0 r1 r2 r3 | g0 g1 g2 g3 | b0 b1 b2 b3 | r1 r2 r3 r4
|
|
// D1: b3 b4 b5 b6 | r4 r5 r6 r7 | g4 g5 g6 g7 | b4 b5 b6 b7 |
|
|
const __m128i D0 = _mm_unpacklo_epi8(B0, C0);
|
|
const __m128i D1 = _mm_unpackhi_epi8(C1, B1);
|
|
// r4 r5 r6 r7 | g4 g5 g6 g7 | b4 b5 b6 b7 | 0
|
|
const __m128i D2 = _mm_srli_si128(D1, 4);
|
|
// r0 r1 r2 r3 | r4 r5 r6 r7 | g0 g1 g2 g3 | g4 g5 g6 g7
|
|
const __m128i E0 = _mm_unpacklo_epi32(D0, D2);
|
|
// b0 b1 b2 b3 | b4 b5 b6 b7 | r1 r2 r3 r4 | 0
|
|
const __m128i E1 = _mm_unpackhi_epi32(D0, D2);
|
|
// g0 g1 g2 g3 | g4 g5 g6 g7 | 0
|
|
const __m128i E2 = _mm_srli_si128(E0, 8);
|
|
const __m128i F0 = _mm_unpacklo_epi8(E0, zero); // -> R
|
|
const __m128i F1 = _mm_unpacklo_epi8(E1, zero); // -> B
|
|
const __m128i F2 = _mm_unpacklo_epi8(E2, zero); // -> G
|
|
*g = F2;
|
|
if (input_is_bgr) {
|
|
*r = F1;
|
|
*b = F0;
|
|
} else {
|
|
*r = F0;
|
|
*b = F1;
|
|
}
|
|
}
|
|
|
|
// Convert 8 packed ARGB to r[], g[], b[]
|
|
static WEBP_INLINE void RGB32PackedToPlanar(const uint32_t* const argb,
|
|
__m128i* const r,
|
|
__m128i* const g,
|
|
__m128i* const b) {
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i in0 = LOAD_16(argb + 0); // argb3 | argb2 | argb1 | argb0
|
|
const __m128i in1 = LOAD_16(argb + 4); // argb7 | argb6 | argb5 | argb4
|
|
// column-wise transpose
|
|
const __m128i A0 = _mm_unpacklo_epi8(in0, in1);
|
|
const __m128i A1 = _mm_unpackhi_epi8(in0, in1);
|
|
const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
|
|
const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
|
|
// C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0
|
|
// C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0
|
|
const __m128i C0 = _mm_unpacklo_epi8(B0, B1);
|
|
const __m128i C1 = _mm_unpackhi_epi8(B0, B1);
|
|
// store 16b
|
|
*r = _mm_unpacklo_epi8(C1, zero);
|
|
*g = _mm_unpackhi_epi8(C0, zero);
|
|
*b = _mm_unpacklo_epi8(C0, zero);
|
|
}
|
|
|
|
// This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX
|
|
// It's a macro and not a function because we need to use immediate values with
|
|
// srai_epi32, e.g.
|
|
#define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \
|
|
ROUNDER, DESCALE_FIX, OUT) do { \
|
|
const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \
|
|
const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \
|
|
const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \
|
|
const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \
|
|
const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \
|
|
const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \
|
|
const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \
|
|
const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \
|
|
const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \
|
|
const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \
|
|
(OUT) = _mm_packs_epi32(V5_lo, V5_hi); \
|
|
} while (0)
|
|
|
|
#define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A))
|
|
static WEBP_INLINE void ConvertRGBToY(const __m128i* const R,
|
|
const __m128i* const G,
|
|
const __m128i* const B,
|
|
__m128i* const Y) {
|
|
const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384);
|
|
const __m128i kGB_y = MK_CST_16(16384, 6420);
|
|
const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF);
|
|
|
|
const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
|
|
const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
|
|
const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
|
|
const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
|
|
TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y);
|
|
}
|
|
|
|
static WEBP_INLINE void ConvertRGBToUV(const __m128i* const R,
|
|
const __m128i* const G,
|
|
const __m128i* const B,
|
|
__m128i* const U, __m128i* const V) {
|
|
const __m128i kRG_u = MK_CST_16(-9719, -19081);
|
|
const __m128i kGB_u = MK_CST_16(0, 28800);
|
|
const __m128i kRG_v = MK_CST_16(28800, 0);
|
|
const __m128i kGB_v = MK_CST_16(-24116, -4684);
|
|
const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2);
|
|
|
|
const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
|
|
const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
|
|
const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
|
|
const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
|
|
TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u,
|
|
kHALF_UV, YUV_FIX + 2, *U);
|
|
TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v,
|
|
kHALF_UV, YUV_FIX + 2, *V);
|
|
}
|
|
|
|
#undef MK_CST_16
|
|
#undef TRANSFORM
|
|
|
|
static void ConvertRGB24ToY(const uint8_t* rgb, uint8_t* y, int width) {
|
|
const int max_width = width & ~15;
|
|
int i;
|
|
for (i = 0; i < max_width; i += 16, rgb += 3 * 16) {
|
|
__m128i r, g, b, Y0, Y1;
|
|
RGB24PackedToPlanar(rgb + 0 * 8, &r, &g, &b, 0);
|
|
ConvertRGBToY(&r, &g, &b, &Y0);
|
|
RGB24PackedToPlanar(rgb + 3 * 8, &r, &g, &b, 0);
|
|
ConvertRGBToY(&r, &g, &b, &Y1);
|
|
STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
|
|
}
|
|
for (; i < width; ++i, rgb += 3) { // left-over
|
|
y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF);
|
|
}
|
|
}
|
|
|
|
static void ConvertBGR24ToY(const uint8_t* bgr, uint8_t* y, int width) {
|
|
int i;
|
|
const int max_width = width & ~15;
|
|
for (i = 0; i < max_width; i += 16, bgr += 3 * 16) {
|
|
__m128i r, g, b, Y0, Y1;
|
|
RGB24PackedToPlanar(bgr + 0 * 8, &r, &g, &b, 1);
|
|
ConvertRGBToY(&r, &g, &b, &Y0);
|
|
RGB24PackedToPlanar(bgr + 3 * 8, &r, &g, &b, 1);
|
|
ConvertRGBToY(&r, &g, &b, &Y1);
|
|
STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
|
|
}
|
|
for (; i < width; ++i, bgr += 3) { // left-over
|
|
y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF);
|
|
}
|
|
}
|
|
|
|
static void ConvertARGBToY(const uint32_t* argb, uint8_t* y, int width) {
|
|
const int max_width = width & ~15;
|
|
int i;
|
|
for (i = 0; i < max_width; i += 16) {
|
|
__m128i r, g, b, Y0, Y1;
|
|
RGB32PackedToPlanar(&argb[i + 0], &r, &g, &b);
|
|
ConvertRGBToY(&r, &g, &b, &Y0);
|
|
RGB32PackedToPlanar(&argb[i + 8], &r, &g, &b);
|
|
ConvertRGBToY(&r, &g, &b, &Y1);
|
|
STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
|
|
}
|
|
for (; i < width; ++i) { // left-over
|
|
const uint32_t p = argb[i];
|
|
y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff,
|
|
YUV_HALF);
|
|
}
|
|
}
|
|
|
|
// Horizontal add (doubled) of two 16b values, result is 16b.
|
|
// in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ...
|
|
static void HorizontalAddPack(const __m128i* const A, const __m128i* const B,
|
|
__m128i* const out) {
|
|
const __m128i k2 = _mm_set1_epi16(2);
|
|
const __m128i C = _mm_madd_epi16(*A, k2);
|
|
const __m128i D = _mm_madd_epi16(*B, k2);
|
|
*out = _mm_packs_epi32(C, D);
|
|
}
|
|
|
|
static void ConvertARGBToUV(const uint32_t* argb, uint8_t* u, uint8_t* v,
|
|
int src_width, int do_store) {
|
|
const int max_width = src_width & ~31;
|
|
int i;
|
|
for (i = 0; i < max_width; i += 32, u += 16, v += 16) {
|
|
__m128i r0, g0, b0, r1, g1, b1, U0, V0, U1, V1;
|
|
RGB32PackedToPlanar(&argb[i + 0], &r0, &g0, &b0);
|
|
RGB32PackedToPlanar(&argb[i + 8], &r1, &g1, &b1);
|
|
HorizontalAddPack(&r0, &r1, &r0);
|
|
HorizontalAddPack(&g0, &g1, &g0);
|
|
HorizontalAddPack(&b0, &b1, &b0);
|
|
ConvertRGBToUV(&r0, &g0, &b0, &U0, &V0);
|
|
|
|
RGB32PackedToPlanar(&argb[i + 16], &r0, &g0, &b0);
|
|
RGB32PackedToPlanar(&argb[i + 24], &r1, &g1, &b1);
|
|
HorizontalAddPack(&r0, &r1, &r0);
|
|
HorizontalAddPack(&g0, &g1, &g0);
|
|
HorizontalAddPack(&b0, &b1, &b0);
|
|
ConvertRGBToUV(&r0, &g0, &b0, &U1, &V1);
|
|
|
|
U0 = _mm_packus_epi16(U0, U1);
|
|
V0 = _mm_packus_epi16(V0, V1);
|
|
if (!do_store) {
|
|
const __m128i prev_u = LOAD_16(u);
|
|
const __m128i prev_v = LOAD_16(v);
|
|
U0 = _mm_avg_epu8(U0, prev_u);
|
|
V0 = _mm_avg_epu8(V0, prev_v);
|
|
}
|
|
STORE_16(U0, u);
|
|
STORE_16(V0, v);
|
|
}
|
|
if (i < src_width) { // left-over
|
|
WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store);
|
|
}
|
|
}
|
|
|
|
// Convert 16 packed ARGB 16b-values to r[], g[], b[]
|
|
static WEBP_INLINE void RGBA32PackedToPlanar_16b(const uint16_t* const rgbx,
|
|
__m128i* const r,
|
|
__m128i* const g,
|
|
__m128i* const b) {
|
|
const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x
|
|
const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x
|
|
const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ...
|
|
const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ...
|
|
// column-wise transpose
|
|
const __m128i A0 = _mm_unpacklo_epi16(in0, in1);
|
|
const __m128i A1 = _mm_unpackhi_epi16(in0, in1);
|
|
const __m128i A2 = _mm_unpacklo_epi16(in2, in3);
|
|
const __m128i A3 = _mm_unpackhi_epi16(in2, in3);
|
|
const __m128i B0 = _mm_unpacklo_epi16(A0, A1); // r0 r1 r2 r3 | g0 g1 ..
|
|
const __m128i B1 = _mm_unpackhi_epi16(A0, A1); // b0 b1 b2 b3 | x x x x
|
|
const __m128i B2 = _mm_unpacklo_epi16(A2, A3); // r4 r5 r6 r7 | g4 g5 ..
|
|
const __m128i B3 = _mm_unpackhi_epi16(A2, A3); // b4 b5 b6 b7 | x x x x
|
|
*r = _mm_unpacklo_epi64(B0, B2);
|
|
*g = _mm_unpackhi_epi64(B0, B2);
|
|
*b = _mm_unpacklo_epi64(B1, B3);
|
|
}
|
|
|
|
static void ConvertRGBA32ToUV(const uint16_t* rgb,
|
|
uint8_t* u, uint8_t* v, int width) {
|
|
const int max_width = width & ~15;
|
|
const uint16_t* const last_rgb = rgb + 4 * max_width;
|
|
while (rgb < last_rgb) {
|
|
__m128i r, g, b, U0, V0, U1, V1;
|
|
RGBA32PackedToPlanar_16b(rgb + 0, &r, &g, &b);
|
|
ConvertRGBToUV(&r, &g, &b, &U0, &V0);
|
|
RGBA32PackedToPlanar_16b(rgb + 32, &r, &g, &b);
|
|
ConvertRGBToUV(&r, &g, &b, &U1, &V1);
|
|
STORE_16(_mm_packus_epi16(U0, U1), u);
|
|
STORE_16(_mm_packus_epi16(V0, V1), v);
|
|
u += 16;
|
|
v += 16;
|
|
rgb += 2 * 32;
|
|
}
|
|
if (max_width < width) { // left-over
|
|
WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width);
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
extern void WebPInitConvertARGBToYUVSSE2(void);
|
|
|
|
WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE2(void) {
|
|
WebPConvertARGBToY = ConvertARGBToY;
|
|
WebPConvertARGBToUV = ConvertARGBToUV;
|
|
|
|
WebPConvertRGB24ToY = ConvertRGB24ToY;
|
|
WebPConvertBGR24ToY = ConvertBGR24ToY;
|
|
|
|
WebPConvertRGBA32ToUV = ConvertRGBA32ToUV;
|
|
}
|
|
|
|
#else // !WEBP_USE_SSE2
|
|
|
|
WEBP_DSP_INIT_STUB(WebPInitSamplersSSE2)
|
|
WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE2)
|
|
|
|
#endif // WEBP_USE_SSE2
|