virtualx-engine/drivers/webpold/dec/io.c
Juan Linietsky da113fe40d -Upgraded webp to a MUCH newer version. Hoping it fixes some bugs in the process. Keeping old version just in case for now.
-Added ability to convert xml and tscn scenes to binary on export, makes loading of larger scenes faster
2015-12-04 10:18:28 -03:00

633 lines
21 KiB
C

// Copyright 2011 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// functions for sample output.
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include <stdlib.h>
#include "../dec/vp8i.h"
#include "./webpi.h"
#include "../dsp/dsp.h"
#include "../dsp/yuv.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// Main YUV<->RGB conversion functions
static int EmitYUV(const VP8Io* const io, WebPDecParams* const p) {
WebPDecBuffer* output = p->output;
const WebPYUVABuffer* const buf = &output->u.YUVA;
uint8_t* const y_dst = buf->y + io->mb_y * buf->y_stride;
uint8_t* const u_dst = buf->u + (io->mb_y >> 1) * buf->u_stride;
uint8_t* const v_dst = buf->v + (io->mb_y >> 1) * buf->v_stride;
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
const int uv_w = (mb_w + 1) / 2;
const int uv_h = (mb_h + 1) / 2;
int j;
for (j = 0; j < mb_h; ++j) {
memcpy(y_dst + j * buf->y_stride, io->y + j * io->y_stride, mb_w);
}
for (j = 0; j < uv_h; ++j) {
memcpy(u_dst + j * buf->u_stride, io->u + j * io->uv_stride, uv_w);
memcpy(v_dst + j * buf->v_stride, io->v + j * io->uv_stride, uv_w);
}
return io->mb_h;
}
// Point-sampling U/V sampler.
static int EmitSampledRGB(const VP8Io* const io, WebPDecParams* const p) {
WebPDecBuffer* output = p->output;
const WebPRGBABuffer* const buf = &output->u.RGBA;
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
const uint8_t* y_src = io->y;
const uint8_t* u_src = io->u;
const uint8_t* v_src = io->v;
const WebPSampleLinePairFunc sample = WebPSamplers[output->colorspace];
const int mb_w = io->mb_w;
const int last = io->mb_h - 1;
int j;
for (j = 0; j < last; j += 2) {
sample(y_src, y_src + io->y_stride, u_src, v_src,
dst, dst + buf->stride, mb_w);
y_src += 2 * io->y_stride;
u_src += io->uv_stride;
v_src += io->uv_stride;
dst += 2 * buf->stride;
}
if (j == last) { // Just do the last line twice
sample(y_src, y_src, u_src, v_src, dst, dst, mb_w);
}
return io->mb_h;
}
//------------------------------------------------------------------------------
// YUV444 -> RGB conversion
#if 0 // TODO(skal): this is for future rescaling.
static int EmitRGB(const VP8Io* const io, WebPDecParams* const p) {
WebPDecBuffer* output = p->output;
const WebPRGBABuffer* const buf = &output->u.RGBA;
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
const uint8_t* y_src = io->y;
const uint8_t* u_src = io->u;
const uint8_t* v_src = io->v;
const WebPYUV444Converter convert = WebPYUV444Converters[output->colorspace];
const int mb_w = io->mb_w;
const int last = io->mb_h;
int j;
for (j = 0; j < last; ++j) {
convert(y_src, u_src, v_src, dst, mb_w);
y_src += io->y_stride;
u_src += io->uv_stride;
v_src += io->uv_stride;
dst += buf->stride;
}
return io->mb_h;
}
#endif
//------------------------------------------------------------------------------
// Fancy upsampling
#ifdef FANCY_UPSAMPLING
static int EmitFancyRGB(const VP8Io* const io, WebPDecParams* const p) {
int num_lines_out = io->mb_h; // a priori guess
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* dst = buf->rgba + io->mb_y * buf->stride;
WebPUpsampleLinePairFunc upsample = WebPUpsamplers[p->output->colorspace];
const uint8_t* cur_y = io->y;
const uint8_t* cur_u = io->u;
const uint8_t* cur_v = io->v;
const uint8_t* top_u = p->tmp_u;
const uint8_t* top_v = p->tmp_v;
int y = io->mb_y;
const int y_end = io->mb_y + io->mb_h;
const int mb_w = io->mb_w;
const int uv_w = (mb_w + 1) / 2;
if (y == 0) {
// First line is special cased. We mirror the u/v samples at boundary.
upsample(NULL, cur_y, cur_u, cur_v, cur_u, cur_v, NULL, dst, mb_w);
} else {
// We can finish the left-over line from previous call.
upsample(p->tmp_y, cur_y, top_u, top_v, cur_u, cur_v,
dst - buf->stride, dst, mb_w);
++num_lines_out;
}
// Loop over each output pairs of row.
for (; y + 2 < y_end; y += 2) {
top_u = cur_u;
top_v = cur_v;
cur_u += io->uv_stride;
cur_v += io->uv_stride;
dst += 2 * buf->stride;
cur_y += 2 * io->y_stride;
upsample(cur_y - io->y_stride, cur_y,
top_u, top_v, cur_u, cur_v,
dst - buf->stride, dst, mb_w);
}
// move to last row
cur_y += io->y_stride;
if (io->crop_top + y_end < io->crop_bottom) {
// Save the unfinished samples for next call (as we're not done yet).
memcpy(p->tmp_y, cur_y, mb_w * sizeof(*p->tmp_y));
memcpy(p->tmp_u, cur_u, uv_w * sizeof(*p->tmp_u));
memcpy(p->tmp_v, cur_v, uv_w * sizeof(*p->tmp_v));
// The fancy upsampler leaves a row unfinished behind
// (except for the very last row)
num_lines_out--;
} else {
// Process the very last row of even-sized picture
if (!(y_end & 1)) {
upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v,
dst + buf->stride, NULL, mb_w);
}
}
return num_lines_out;
}
#endif /* FANCY_UPSAMPLING */
//------------------------------------------------------------------------------
static int EmitAlphaYUV(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* alpha = io->a;
const WebPYUVABuffer* const buf = &p->output->u.YUVA;
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
uint8_t* dst = buf->a + io->mb_y * buf->a_stride;
int j;
if (alpha != NULL) {
for (j = 0; j < mb_h; ++j) {
memcpy(dst, alpha, mb_w * sizeof(*dst));
alpha += io->width;
dst += buf->a_stride;
}
} else if (buf->a != NULL) {
// the user requested alpha, but there is none, set it to opaque.
for (j = 0; j < mb_h; ++j) {
memset(dst, 0xff, mb_w * sizeof(*dst));
dst += buf->a_stride;
}
}
return 0;
}
static int GetAlphaSourceRow(const VP8Io* const io,
const uint8_t** alpha, int* const num_rows) {
int start_y = io->mb_y;
*num_rows = io->mb_h;
// Compensate for the 1-line delay of the fancy upscaler.
// This is similar to EmitFancyRGB().
if (io->fancy_upsampling) {
if (start_y == 0) {
// We don't process the last row yet. It'll be done during the next call.
--*num_rows;
} else {
--start_y;
// Fortunately, *alpha data is persistent, so we can go back
// one row and finish alpha blending, now that the fancy upscaler
// completed the YUV->RGB interpolation.
*alpha -= io->width;
}
if (io->crop_top + io->mb_y + io->mb_h == io->crop_bottom) {
// If it's the very last call, we process all the remaining rows!
*num_rows = io->crop_bottom - io->crop_top - start_y;
}
}
return start_y;
}
static int EmitAlphaRGB(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* alpha = io->a;
if (alpha != NULL) {
const int mb_w = io->mb_w;
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const int alpha_first =
(colorspace == MODE_ARGB || colorspace == MODE_Argb);
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
int num_rows;
const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows);
uint8_t* const base_rgba = buf->rgba + start_y * buf->stride;
uint8_t* dst = base_rgba + (alpha_first ? 0 : 3);
uint32_t alpha_mask = 0xff;
int i, j;
for (j = 0; j < num_rows; ++j) {
for (i = 0; i < mb_w; ++i) {
const uint32_t alpha_value = alpha[i];
dst[4 * i] = alpha_value;
alpha_mask &= alpha_value;
}
alpha += io->width;
dst += buf->stride;
}
// alpha_mask is < 0xff if there's non-trivial alpha to premultiply with.
if (alpha_mask != 0xff && WebPIsPremultipliedMode(colorspace)) {
WebPApplyAlphaMultiply(base_rgba, alpha_first,
mb_w, num_rows, buf->stride);
}
}
return 0;
}
static int EmitAlphaRGBA4444(const VP8Io* const io, WebPDecParams* const p) {
const uint8_t* alpha = io->a;
if (alpha != NULL) {
const int mb_w = io->mb_w;
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
int num_rows;
const int start_y = GetAlphaSourceRow(io, &alpha, &num_rows);
uint8_t* const base_rgba = buf->rgba + start_y * buf->stride;
uint8_t* alpha_dst = base_rgba + 1;
uint32_t alpha_mask = 0x0f;
int i, j;
for (j = 0; j < num_rows; ++j) {
for (i = 0; i < mb_w; ++i) {
// Fill in the alpha value (converted to 4 bits).
const uint32_t alpha_value = alpha[i] >> 4;
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value;
alpha_mask &= alpha_value;
}
alpha += io->width;
alpha_dst += buf->stride;
}
if (alpha_mask != 0x0f && WebPIsPremultipliedMode(colorspace)) {
WebPApplyAlphaMultiply4444(base_rgba, mb_w, num_rows, buf->stride);
}
}
return 0;
}
//------------------------------------------------------------------------------
// YUV rescaling (no final RGB conversion needed)
static int Rescale(const uint8_t* src, int src_stride,
int new_lines, WebPRescaler* const wrk) {
int num_lines_out = 0;
while (new_lines > 0) { // import new contributions of source rows.
const int lines_in = WebPRescalerImport(wrk, new_lines, src, src_stride);
src += lines_in * src_stride;
new_lines -= lines_in;
num_lines_out += WebPRescalerExport(wrk); // emit output row(s)
}
return num_lines_out;
}
static int EmitRescaledYUV(const VP8Io* const io, WebPDecParams* const p) {
const int mb_h = io->mb_h;
const int uv_mb_h = (mb_h + 1) >> 1;
const int num_lines_out = Rescale(io->y, io->y_stride, mb_h, &p->scaler_y);
Rescale(io->u, io->uv_stride, uv_mb_h, &p->scaler_u);
Rescale(io->v, io->uv_stride, uv_mb_h, &p->scaler_v);
return num_lines_out;
}
static int EmitRescaledAlphaYUV(const VP8Io* const io, WebPDecParams* const p) {
if (io->a != NULL) {
Rescale(io->a, io->width, io->mb_h, &p->scaler_a);
}
return 0;
}
static int InitYUVRescaler(const VP8Io* const io, WebPDecParams* const p) {
const int has_alpha = WebPIsAlphaMode(p->output->colorspace);
const WebPYUVABuffer* const buf = &p->output->u.YUVA;
const int out_width = io->scaled_width;
const int out_height = io->scaled_height;
const int uv_out_width = (out_width + 1) >> 1;
const int uv_out_height = (out_height + 1) >> 1;
const int uv_in_width = (io->mb_w + 1) >> 1;
const int uv_in_height = (io->mb_h + 1) >> 1;
const size_t work_size = 2 * out_width; // scratch memory for luma rescaler
const size_t uv_work_size = 2 * uv_out_width; // and for each u/v ones
size_t tmp_size;
int32_t* work;
tmp_size = work_size + 2 * uv_work_size;
if (has_alpha) {
tmp_size += work_size;
}
p->memory = calloc(1, tmp_size * sizeof(*work));
if (p->memory == NULL) {
return 0; // memory error
}
work = (int32_t*)p->memory;
WebPRescalerInit(&p->scaler_y, io->mb_w, io->mb_h,
buf->y, out_width, out_height, buf->y_stride, 1,
io->mb_w, out_width, io->mb_h, out_height,
work);
WebPRescalerInit(&p->scaler_u, uv_in_width, uv_in_height,
buf->u, uv_out_width, uv_out_height, buf->u_stride, 1,
uv_in_width, uv_out_width,
uv_in_height, uv_out_height,
work + work_size);
WebPRescalerInit(&p->scaler_v, uv_in_width, uv_in_height,
buf->v, uv_out_width, uv_out_height, buf->v_stride, 1,
uv_in_width, uv_out_width,
uv_in_height, uv_out_height,
work + work_size + uv_work_size);
p->emit = EmitRescaledYUV;
if (has_alpha) {
WebPRescalerInit(&p->scaler_a, io->mb_w, io->mb_h,
buf->a, out_width, out_height, buf->a_stride, 1,
io->mb_w, out_width, io->mb_h, out_height,
work + work_size + 2 * uv_work_size);
p->emit_alpha = EmitRescaledAlphaYUV;
}
return 1;
}
//------------------------------------------------------------------------------
// RGBA rescaling
static int ExportRGB(WebPDecParams* const p, int y_pos) {
const WebPYUV444Converter convert =
WebPYUV444Converters[p->output->colorspace];
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* dst = buf->rgba + (p->last_y + y_pos) * buf->stride;
int num_lines_out = 0;
// For RGB rescaling, because of the YUV420, current scan position
// U/V can be +1/-1 line from the Y one. Hence the double test.
while (WebPRescalerHasPendingOutput(&p->scaler_y) &&
WebPRescalerHasPendingOutput(&p->scaler_u)) {
assert(p->last_y + y_pos + num_lines_out < p->output->height);
assert(p->scaler_u.y_accum == p->scaler_v.y_accum);
WebPRescalerExportRow(&p->scaler_y);
WebPRescalerExportRow(&p->scaler_u);
WebPRescalerExportRow(&p->scaler_v);
convert(p->scaler_y.dst, p->scaler_u.dst, p->scaler_v.dst,
dst, p->scaler_y.dst_width);
dst += buf->stride;
++num_lines_out;
}
return num_lines_out;
}
static int EmitRescaledRGB(const VP8Io* const io, WebPDecParams* const p) {
const int mb_h = io->mb_h;
const int uv_mb_h = (mb_h + 1) >> 1;
int j = 0, uv_j = 0;
int num_lines_out = 0;
while (j < mb_h) {
const int y_lines_in =
WebPRescalerImport(&p->scaler_y, mb_h - j,
io->y + j * io->y_stride, io->y_stride);
const int u_lines_in =
WebPRescalerImport(&p->scaler_u, uv_mb_h - uv_j,
io->u + uv_j * io->uv_stride, io->uv_stride);
const int v_lines_in =
WebPRescalerImport(&p->scaler_v, uv_mb_h - uv_j,
io->v + uv_j * io->uv_stride, io->uv_stride);
(void)v_lines_in; // remove a gcc warning
assert(u_lines_in == v_lines_in);
j += y_lines_in;
uv_j += u_lines_in;
num_lines_out += ExportRGB(p, num_lines_out);
}
return num_lines_out;
}
static int ExportAlpha(WebPDecParams* const p, int y_pos) {
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* const base_rgba = buf->rgba + (p->last_y + y_pos) * buf->stride;
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const int alpha_first =
(colorspace == MODE_ARGB || colorspace == MODE_Argb);
uint8_t* dst = base_rgba + (alpha_first ? 0 : 3);
int num_lines_out = 0;
const int is_premult_alpha = WebPIsPremultipliedMode(colorspace);
uint32_t alpha_mask = 0xff;
const int width = p->scaler_a.dst_width;
while (WebPRescalerHasPendingOutput(&p->scaler_a)) {
int i;
assert(p->last_y + y_pos + num_lines_out < p->output->height);
WebPRescalerExportRow(&p->scaler_a);
for (i = 0; i < width; ++i) {
const uint32_t alpha_value = p->scaler_a.dst[i];
dst[4 * i] = alpha_value;
alpha_mask &= alpha_value;
}
dst += buf->stride;
++num_lines_out;
}
if (is_premult_alpha && alpha_mask != 0xff) {
WebPApplyAlphaMultiply(base_rgba, alpha_first,
width, num_lines_out, buf->stride);
}
return num_lines_out;
}
static int ExportAlphaRGBA4444(WebPDecParams* const p, int y_pos) {
const WebPRGBABuffer* const buf = &p->output->u.RGBA;
uint8_t* const base_rgba = buf->rgba + (p->last_y + y_pos) * buf->stride;
uint8_t* alpha_dst = base_rgba + 1;
int num_lines_out = 0;
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const int width = p->scaler_a.dst_width;
const int is_premult_alpha = WebPIsPremultipliedMode(colorspace);
uint32_t alpha_mask = 0x0f;
while (WebPRescalerHasPendingOutput(&p->scaler_a)) {
int i;
assert(p->last_y + y_pos + num_lines_out < p->output->height);
WebPRescalerExportRow(&p->scaler_a);
for (i = 0; i < width; ++i) {
// Fill in the alpha value (converted to 4 bits).
const uint32_t alpha_value = p->scaler_a.dst[i] >> 4;
alpha_dst[2 * i] = (alpha_dst[2 * i] & 0xf0) | alpha_value;
alpha_mask &= alpha_value;
}
alpha_dst += buf->stride;
++num_lines_out;
}
if (is_premult_alpha && alpha_mask != 0x0f) {
WebPApplyAlphaMultiply4444(base_rgba, width, num_lines_out, buf->stride);
}
return num_lines_out;
}
static int EmitRescaledAlphaRGB(const VP8Io* const io, WebPDecParams* const p) {
if (io->a != NULL) {
WebPRescaler* const scaler = &p->scaler_a;
int j = 0;
int pos = 0;
while (j < io->mb_h) {
j += WebPRescalerImport(scaler, io->mb_h - j,
io->a + j * io->width, io->width);
pos += p->emit_alpha_row(p, pos);
}
}
return 0;
}
static int InitRGBRescaler(const VP8Io* const io, WebPDecParams* const p) {
const int has_alpha = WebPIsAlphaMode(p->output->colorspace);
const int out_width = io->scaled_width;
const int out_height = io->scaled_height;
const int uv_in_width = (io->mb_w + 1) >> 1;
const int uv_in_height = (io->mb_h + 1) >> 1;
const size_t work_size = 2 * out_width; // scratch memory for one rescaler
int32_t* work; // rescalers work area
uint8_t* tmp; // tmp storage for scaled YUV444 samples before RGB conversion
size_t tmp_size1, tmp_size2;
tmp_size1 = 3 * work_size;
tmp_size2 = 3 * out_width;
if (has_alpha) {
tmp_size1 += work_size;
tmp_size2 += out_width;
}
p->memory = calloc(1, tmp_size1 * sizeof(*work) + tmp_size2 * sizeof(*tmp));
if (p->memory == NULL) {
return 0; // memory error
}
work = (int32_t*)p->memory;
tmp = (uint8_t*)(work + tmp_size1);
WebPRescalerInit(&p->scaler_y, io->mb_w, io->mb_h,
tmp + 0 * out_width, out_width, out_height, 0, 1,
io->mb_w, out_width, io->mb_h, out_height,
work + 0 * work_size);
WebPRescalerInit(&p->scaler_u, uv_in_width, uv_in_height,
tmp + 1 * out_width, out_width, out_height, 0, 1,
io->mb_w, 2 * out_width, io->mb_h, 2 * out_height,
work + 1 * work_size);
WebPRescalerInit(&p->scaler_v, uv_in_width, uv_in_height,
tmp + 2 * out_width, out_width, out_height, 0, 1,
io->mb_w, 2 * out_width, io->mb_h, 2 * out_height,
work + 2 * work_size);
p->emit = EmitRescaledRGB;
if (has_alpha) {
WebPRescalerInit(&p->scaler_a, io->mb_w, io->mb_h,
tmp + 3 * out_width, out_width, out_height, 0, 1,
io->mb_w, out_width, io->mb_h, out_height,
work + 3 * work_size);
p->emit_alpha = EmitRescaledAlphaRGB;
if (p->output->colorspace == MODE_RGBA_4444 ||
p->output->colorspace == MODE_rgbA_4444) {
p->emit_alpha_row = ExportAlphaRGBA4444;
} else {
p->emit_alpha_row = ExportAlpha;
}
}
return 1;
}
//------------------------------------------------------------------------------
// Default custom functions
static int CustomSetup(VP8Io* io) {
WebPDecParams* const p = (WebPDecParams*)io->opaque;
const WEBP_CSP_MODE colorspace = p->output->colorspace;
const int is_rgb = WebPIsRGBMode(colorspace);
const int is_alpha = WebPIsAlphaMode(colorspace);
p->memory = NULL;
p->emit = NULL;
p->emit_alpha = NULL;
p->emit_alpha_row = NULL;
if (!WebPIoInitFromOptions(p->options, io, is_alpha ? MODE_YUV : MODE_YUVA)) {
return 0;
}
if (io->use_scaling) {
const int ok = is_rgb ? InitRGBRescaler(io, p) : InitYUVRescaler(io, p);
if (!ok) {
return 0; // memory error
}
} else {
if (is_rgb) {
p->emit = EmitSampledRGB; // default
#ifdef FANCY_UPSAMPLING
if (io->fancy_upsampling) {
const int uv_width = (io->mb_w + 1) >> 1;
p->memory = malloc(io->mb_w + 2 * uv_width);
if (p->memory == NULL) {
return 0; // memory error.
}
p->tmp_y = (uint8_t*)p->memory;
p->tmp_u = p->tmp_y + io->mb_w;
p->tmp_v = p->tmp_u + uv_width;
p->emit = EmitFancyRGB;
WebPInitUpsamplers();
}
#endif
} else {
p->emit = EmitYUV;
}
if (is_alpha) { // need transparency output
if (WebPIsPremultipliedMode(colorspace)) WebPInitPremultiply();
p->emit_alpha =
(colorspace == MODE_RGBA_4444 || colorspace == MODE_rgbA_4444) ?
EmitAlphaRGBA4444
: is_rgb ? EmitAlphaRGB
: EmitAlphaYUV;
}
}
if (is_rgb) {
VP8YUVInit();
}
return 1;
}
//------------------------------------------------------------------------------
static int CustomPut(const VP8Io* io) {
WebPDecParams* const p = (WebPDecParams*)io->opaque;
const int mb_w = io->mb_w;
const int mb_h = io->mb_h;
int num_lines_out;
assert(!(io->mb_y & 1));
if (mb_w <= 0 || mb_h <= 0) {
return 0;
}
num_lines_out = p->emit(io, p);
if (p->emit_alpha) {
p->emit_alpha(io, p);
}
p->last_y += num_lines_out;
return 1;
}
//------------------------------------------------------------------------------
static void CustomTeardown(const VP8Io* io) {
WebPDecParams* const p = (WebPDecParams*)io->opaque;
free(p->memory);
p->memory = NULL;
}
//------------------------------------------------------------------------------
// Main entry point
void WebPInitCustomIo(WebPDecParams* const params, VP8Io* const io) {
io->put = CustomPut;
io->setup = CustomSetup;
io->teardown = CustomTeardown;
io->opaque = params;
}
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif