virtualx-engine/core/io/marshalls.cpp
2023-10-29 18:06:21 +01:00

1840 lines
44 KiB
C++

/**************************************************************************/
/* marshalls.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "marshalls.h"
#include "core/object/ref_counted.h"
#include "core/os/keyboard.h"
#include "core/string/print_string.h"
#include <limits.h>
#include <stdio.h>
void EncodedObjectAsID::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id);
ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id);
ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id");
}
void EncodedObjectAsID::set_object_id(ObjectID p_id) {
id = p_id;
}
ObjectID EncodedObjectAsID::get_object_id() const {
return id;
}
#define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(b)) < 0 || ((int32_t)(a)) < 0 || ((int32_t)(a)) > INT_MAX - ((int32_t)(b)), err)
#define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(a)) < 0 || ((int32_t)(b)) <= 0 || ((int32_t)(a)) > INT_MAX / ((int32_t)(b)), err)
#define ENCODE_MASK 0xFF
#define ENCODE_FLAG_64 1 << 16
#define ENCODE_FLAG_OBJECT_AS_ID 1 << 16
static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t strlen = decode_uint32(buf);
int32_t pad = 0;
// Handle padding
if (strlen % 4) {
pad = 4 - strlen % 4;
}
buf += 4;
len -= 4;
// Ensure buffer is big enough
ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
String str;
ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen) != OK, ERR_INVALID_DATA);
r_string = str;
// Add padding
strlen += pad;
// Update buffer pos, left data count, and return size
buf += strlen;
len -= strlen;
if (r_len) {
(*r_len) += 4 + strlen;
}
return OK;
}
Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects, int p_depth) {
ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Variant is too deep. Bailing.");
const uint8_t *buf = p_buffer;
int len = p_len;
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
uint32_t type = decode_uint32(buf);
ERR_FAIL_COND_V((type & ENCODE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
buf += 4;
len -= 4;
if (r_len) {
*r_len = 4;
}
// Note: We cannot use sizeof(real_t) for decoding, in case a different size is encoded.
// Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
// This does lead to some code duplication for decoding, but compatibility is the priority.
switch (type & ENCODE_MASK) {
case Variant::NIL: {
r_variant = Variant();
} break;
case Variant::BOOL: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
bool val = decode_uint32(buf);
r_variant = val;
if (r_len) {
(*r_len) += 4;
}
} break;
case Variant::INT: {
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
int64_t val = decode_uint64(buf);
r_variant = val;
if (r_len) {
(*r_len) += 8;
}
} else {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t val = decode_uint32(buf);
r_variant = val;
if (r_len) {
(*r_len) += 4;
}
}
} break;
case Variant::FLOAT: {
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
double val = decode_double(buf);
r_variant = val;
if (r_len) {
(*r_len) += sizeof(double);
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
float val = decode_float(buf);
r_variant = val;
if (r_len) {
(*r_len) += sizeof(float);
}
}
} break;
case Variant::STRING: {
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err) {
return err;
}
r_variant = str;
} break;
// math types
case Variant::VECTOR2: {
Vector2 val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
val.x = decode_double(&buf[0]);
val.y = decode_double(&buf[sizeof(double)]);
if (r_len) {
(*r_len) += sizeof(double) * 2;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[sizeof(float)]);
if (r_len) {
(*r_len) += sizeof(float) * 2;
}
}
r_variant = val;
} break;
case Variant::VECTOR2I: {
ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
Vector2i val;
val.x = decode_uint32(&buf[0]);
val.y = decode_uint32(&buf[4]);
r_variant = val;
if (r_len) {
(*r_len) += 4 * 2;
}
} break;
case Variant::RECT2: {
Rect2 val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
val.position.x = decode_double(&buf[0]);
val.position.y = decode_double(&buf[sizeof(double)]);
val.size.x = decode_double(&buf[sizeof(double) * 2]);
val.size.y = decode_double(&buf[sizeof(double) * 3]);
if (r_len) {
(*r_len) += sizeof(double) * 4;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
val.position.x = decode_float(&buf[0]);
val.position.y = decode_float(&buf[sizeof(float)]);
val.size.x = decode_float(&buf[sizeof(float) * 2]);
val.size.y = decode_float(&buf[sizeof(float) * 3]);
if (r_len) {
(*r_len) += sizeof(float) * 4;
}
}
r_variant = val;
} break;
case Variant::RECT2I: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Rect2i val;
val.position.x = decode_uint32(&buf[0]);
val.position.y = decode_uint32(&buf[4]);
val.size.x = decode_uint32(&buf[8]);
val.size.y = decode_uint32(&buf[12]);
r_variant = val;
if (r_len) {
(*r_len) += 4 * 4;
}
} break;
case Variant::VECTOR3: {
Vector3 val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
val.x = decode_double(&buf[0]);
val.y = decode_double(&buf[sizeof(double)]);
val.z = decode_double(&buf[sizeof(double) * 2]);
if (r_len) {
(*r_len) += sizeof(double) * 3;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[sizeof(float)]);
val.z = decode_float(&buf[sizeof(float) * 2]);
if (r_len) {
(*r_len) += sizeof(float) * 3;
}
}
r_variant = val;
} break;
case Variant::VECTOR3I: {
ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
Vector3i val;
val.x = decode_uint32(&buf[0]);
val.y = decode_uint32(&buf[4]);
val.z = decode_uint32(&buf[8]);
r_variant = val;
if (r_len) {
(*r_len) += 4 * 3;
}
} break;
case Variant::VECTOR4: {
Vector4 val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
val.x = decode_double(&buf[0]);
val.y = decode_double(&buf[sizeof(double)]);
val.z = decode_double(&buf[sizeof(double) * 2]);
val.w = decode_double(&buf[sizeof(double) * 3]);
if (r_len) {
(*r_len) += sizeof(double) * 4;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[sizeof(float)]);
val.z = decode_float(&buf[sizeof(float) * 2]);
val.w = decode_float(&buf[sizeof(float) * 3]);
if (r_len) {
(*r_len) += sizeof(float) * 4;
}
}
r_variant = val;
} break;
case Variant::VECTOR4I: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Vector4i val;
val.x = decode_uint32(&buf[0]);
val.y = decode_uint32(&buf[4]);
val.z = decode_uint32(&buf[8]);
val.w = decode_uint32(&buf[12]);
r_variant = val;
if (r_len) {
(*r_len) += 4 * 4;
}
} break;
case Variant::TRANSFORM2D: {
Transform2D val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
val.columns[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
}
}
if (r_len) {
(*r_len) += sizeof(double) * 6;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
val.columns[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
}
}
if (r_len) {
(*r_len) += sizeof(float) * 6;
}
}
r_variant = val;
} break;
case Variant::PLANE: {
Plane val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
val.normal.x = decode_double(&buf[0]);
val.normal.y = decode_double(&buf[sizeof(double)]);
val.normal.z = decode_double(&buf[sizeof(double) * 2]);
val.d = decode_double(&buf[sizeof(double) * 3]);
if (r_len) {
(*r_len) += sizeof(double) * 4;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
val.normal.x = decode_float(&buf[0]);
val.normal.y = decode_float(&buf[sizeof(float)]);
val.normal.z = decode_float(&buf[sizeof(float) * 2]);
val.d = decode_float(&buf[sizeof(float) * 3]);
if (r_len) {
(*r_len) += sizeof(float) * 4;
}
}
r_variant = val;
} break;
case Variant::QUATERNION: {
Quaternion val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
val.x = decode_double(&buf[0]);
val.y = decode_double(&buf[sizeof(double)]);
val.z = decode_double(&buf[sizeof(double) * 2]);
val.w = decode_double(&buf[sizeof(double) * 3]);
if (r_len) {
(*r_len) += sizeof(double) * 4;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
val.x = decode_float(&buf[0]);
val.y = decode_float(&buf[sizeof(float)]);
val.z = decode_float(&buf[sizeof(float) * 2]);
val.w = decode_float(&buf[sizeof(float) * 3]);
if (r_len) {
(*r_len) += sizeof(float) * 4;
}
}
r_variant = val;
} break;
case Variant::AABB: {
AABB val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
val.position.x = decode_double(&buf[0]);
val.position.y = decode_double(&buf[sizeof(double)]);
val.position.z = decode_double(&buf[sizeof(double) * 2]);
val.size.x = decode_double(&buf[sizeof(double) * 3]);
val.size.y = decode_double(&buf[sizeof(double) * 4]);
val.size.z = decode_double(&buf[sizeof(double) * 5]);
if (r_len) {
(*r_len) += sizeof(double) * 6;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
val.position.x = decode_float(&buf[0]);
val.position.y = decode_float(&buf[sizeof(float)]);
val.position.z = decode_float(&buf[sizeof(float) * 2]);
val.size.x = decode_float(&buf[sizeof(float) * 3]);
val.size.y = decode_float(&buf[sizeof(float) * 4]);
val.size.z = decode_float(&buf[sizeof(float) * 5]);
if (r_len) {
(*r_len) += sizeof(float) * 6;
}
}
r_variant = val;
} break;
case Variant::BASIS: {
Basis val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
}
}
if (r_len) {
(*r_len) += sizeof(double) * 9;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
}
}
if (r_len) {
(*r_len) += sizeof(float) * 9;
}
}
r_variant = val;
} break;
case Variant::TRANSFORM3D: {
Transform3D val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.basis.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
}
}
val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
if (r_len) {
(*r_len) += sizeof(double) * 12;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
val.basis.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
}
}
val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
if (r_len) {
(*r_len) += sizeof(float) * 12;
}
}
r_variant = val;
} break;
case Variant::PROJECTION: {
Projection val;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_COND_V((size_t)len < sizeof(double) * 16, ERR_INVALID_DATA);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
val.columns[i][j] = decode_double(&buf[(i * 4 + j) * sizeof(double)]);
}
}
if (r_len) {
(*r_len) += sizeof(double) * 16;
}
} else {
ERR_FAIL_COND_V((size_t)len < sizeof(float) * 16, ERR_INVALID_DATA);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
val.columns[i][j] = decode_float(&buf[(i * 4 + j) * sizeof(float)]);
}
}
if (r_len) {
(*r_len) += sizeof(float) * 16;
}
}
r_variant = val;
} break;
// misc types
case Variant::COLOR: {
ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
Color val;
val.r = decode_float(&buf[0]);
val.g = decode_float(&buf[4]);
val.b = decode_float(&buf[8]);
val.a = decode_float(&buf[12]);
r_variant = val;
if (r_len) {
(*r_len) += 4 * 4; // Colors should always be in single-precision.
}
} break;
case Variant::STRING_NAME: {
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err) {
return err;
}
r_variant = StringName(str);
} break;
case Variant::NODE_PATH: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t strlen = decode_uint32(buf);
if (strlen & 0x80000000) {
//new format
ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
Vector<StringName> names;
Vector<StringName> subnames;
uint32_t namecount = strlen &= 0x7FFFFFFF;
uint32_t subnamecount = decode_uint32(buf + 4);
uint32_t flags = decode_uint32(buf + 8);
len -= 12;
buf += 12;
if (flags & 2) { // Obsolete format with property separate from subpath
subnamecount++;
}
uint32_t total = namecount + subnamecount;
if (r_len) {
(*r_len) += 12;
}
for (uint32_t i = 0; i < total; i++) {
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err) {
return err;
}
if (i < namecount) {
names.push_back(str);
} else {
subnames.push_back(str);
}
}
r_variant = NodePath(names, subnames, flags & 1);
} else {
//old format, just a string
ERR_FAIL_V(ERR_INVALID_DATA);
}
} break;
case Variant::RID: {
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
uint64_t id = decode_uint64(buf);
if (r_len) {
(*r_len) += 8;
}
r_variant = RID::from_uint64(id);
} break;
case Variant::OBJECT: {
if (type & ENCODE_FLAG_OBJECT_AS_ID) {
//this _is_ allowed
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
ObjectID val = ObjectID(decode_uint64(buf));
if (r_len) {
(*r_len) += 8;
}
if (val.is_null()) {
r_variant = (Object *)nullptr;
} else {
Ref<EncodedObjectAsID> obj_as_id;
obj_as_id.instantiate();
obj_as_id->set_object_id(val);
r_variant = obj_as_id;
}
} else {
ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED);
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err) {
return err;
}
if (str.is_empty()) {
r_variant = (Object *)nullptr;
} else {
Object *obj = ClassDB::instantiate(str);
ERR_FAIL_NULL_V(obj, ERR_UNAVAILABLE);
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
if (r_len) {
(*r_len) += 4; // Size of count number.
}
for (int i = 0; i < count; i++) {
str = String();
err = _decode_string(buf, len, r_len, str);
if (err) {
return err;
}
Variant value;
int used;
err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
if (err) {
return err;
}
buf += used;
len -= used;
if (r_len) {
(*r_len) += used;
}
obj->set(str, value);
}
if (Object::cast_to<RefCounted>(obj)) {
Ref<RefCounted> ref = Ref<RefCounted>(Object::cast_to<RefCounted>(obj));
r_variant = ref;
} else {
r_variant = obj;
}
}
}
} break;
case Variant::CALLABLE: {
r_variant = Callable();
} break;
case Variant::SIGNAL: {
String name;
Error err = _decode_string(buf, len, r_len, name);
if (err) {
return err;
}
ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
ObjectID id = ObjectID(decode_uint64(buf));
if (r_len) {
(*r_len) += 8;
}
r_variant = Signal(id, StringName(name));
} break;
case Variant::DICTIONARY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
// bool shared = count&0x80000000;
count &= 0x7FFFFFFF;
buf += 4;
len -= 4;
if (r_len) {
(*r_len) += 4; // Size of count number.
}
Dictionary d;
for (int i = 0; i < count; i++) {
Variant key, value;
int used;
Error err = decode_variant(key, buf, len, &used, p_allow_objects, p_depth + 1);
ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
buf += used;
len -= used;
if (r_len) {
(*r_len) += used;
}
err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
buf += used;
len -= used;
if (r_len) {
(*r_len) += used;
}
d[key] = value;
}
r_variant = d;
} break;
case Variant::ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
// bool shared = count&0x80000000;
count &= 0x7FFFFFFF;
buf += 4;
len -= 4;
if (r_len) {
(*r_len) += 4; // Size of count number.
}
Array varr;
for (int i = 0; i < count; i++) {
int used = 0;
Variant v;
Error err = decode_variant(v, buf, len, &used, p_allow_objects, p_depth + 1);
ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
buf += used;
len -= used;
varr.push_back(v);
if (r_len) {
(*r_len) += used;
}
}
r_variant = varr;
} break;
// arrays
case Variant::PACKED_BYTE_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
Vector<uint8_t> data;
if (count) {
data.resize(count);
uint8_t *w = data.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i] = buf[i];
}
}
r_variant = data;
if (r_len) {
if (count % 4) {
(*r_len) += 4 - count % 4;
}
(*r_len) += 4 + count;
}
} break;
case Variant::PACKED_INT32_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
Vector<int32_t> data;
if (count) {
//const int*rbuf=(const int*)buf;
data.resize(count);
int32_t *w = data.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i] = decode_uint32(&buf[i * 4]);
}
}
r_variant = Variant(data);
if (r_len) {
(*r_len) += 4 + count * sizeof(int32_t);
}
} break;
case Variant::PACKED_INT64_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
Vector<int64_t> data;
if (count) {
//const int*rbuf=(const int*)buf;
data.resize(count);
int64_t *w = data.ptrw();
for (int64_t i = 0; i < count; i++) {
w[i] = decode_uint64(&buf[i * 8]);
}
}
r_variant = Variant(data);
if (r_len) {
(*r_len) += 4 + count * sizeof(int64_t);
}
} break;
case Variant::PACKED_FLOAT32_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
Vector<float> data;
if (count) {
//const float*rbuf=(const float*)buf;
data.resize(count);
float *w = data.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i] = decode_float(&buf[i * 4]);
}
}
r_variant = data;
if (r_len) {
(*r_len) += 4 + count * sizeof(float);
}
} break;
case Variant::PACKED_FLOAT64_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
Vector<double> data;
if (count) {
data.resize(count);
double *w = data.ptrw();
for (int64_t i = 0; i < count; i++) {
w[i] = decode_double(&buf[i * 8]);
}
}
r_variant = data;
if (r_len) {
(*r_len) += 4 + count * sizeof(double);
}
} break;
case Variant::PACKED_STRING_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
Vector<String> strings;
buf += 4;
len -= 4;
if (r_len) {
(*r_len) += 4; // Size of count number.
}
for (int32_t i = 0; i < count; i++) {
String str;
Error err = _decode_string(buf, len, r_len, str);
if (err) {
return err;
}
strings.push_back(str);
}
r_variant = strings;
} break;
case Variant::PACKED_VECTOR2_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
Vector<Vector2> varray;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector2 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
}
int adv = sizeof(double) * 2 * count;
if (r_len) {
(*r_len) += adv;
}
len -= adv;
buf += adv;
}
} else {
ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector2 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
}
int adv = sizeof(float) * 2 * count;
if (r_len) {
(*r_len) += adv;
}
}
}
r_variant = varray;
} break;
case Variant::PACKED_VECTOR3_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
Vector<Vector3> varray;
if (type & ENCODE_FLAG_64) {
ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector3 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
}
int adv = sizeof(double) * 3 * count;
if (r_len) {
(*r_len) += adv;
}
len -= adv;
buf += adv;
}
} else {
ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
if (r_len) {
(*r_len) += 4; // Size of count number.
}
if (count) {
varray.resize(count);
Vector3 *w = varray.ptrw();
for (int32_t i = 0; i < count; i++) {
w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
}
int adv = sizeof(float) * 3 * count;
if (r_len) {
(*r_len) += adv;
}
len -= adv;
buf += adv;
}
}
r_variant = varray;
} break;
case Variant::PACKED_COLOR_ARRAY: {
ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
int32_t count = decode_uint32(buf);
buf += 4;
len -= 4;
ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
Vector<Color> carray;
if (r_len) {
(*r_len) += 4; // Size of count number.
}
if (count) {
carray.resize(count);
Color *w = carray.ptrw();
for (int32_t i = 0; i < count; i++) {
// Colors should always be in single-precision.
w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
}
int adv = 4 * 4 * count;
if (r_len) {
(*r_len) += adv;
}
}
r_variant = carray;
} break;
default: {
ERR_FAIL_V(ERR_BUG);
}
}
return OK;
}
static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) {
CharString utf8 = p_string.utf8();
if (buf) {
encode_uint32(utf8.length(), buf);
buf += 4;
memcpy(buf, utf8.get_data(), utf8.length());
buf += utf8.length();
}
r_len += 4 + utf8.length();
while (r_len % 4) {
r_len++; //pad
if (buf) {
*(buf++) = 0;
}
}
}
Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) {
ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential infinite recursion detected. Bailing.");
uint8_t *buf = r_buffer;
r_len = 0;
uint32_t flags = 0;
switch (p_variant.get_type()) {
case Variant::INT: {
int64_t val = p_variant;
if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) {
flags |= ENCODE_FLAG_64;
}
} break;
case Variant::FLOAT: {
double d = p_variant;
float f = d;
if (double(f) != d) {
flags |= ENCODE_FLAG_64;
}
} break;
case Variant::OBJECT: {
// Test for potential wrong values sent by the debugger when it breaks.
Object *obj = p_variant.get_validated_object();
if (!obj) {
// Object is invalid, send a nullptr instead.
if (buf) {
encode_uint32(Variant::NIL, buf);
}
r_len += 4;
return OK;
}
if (!p_full_objects) {
flags |= ENCODE_FLAG_OBJECT_AS_ID;
}
} break;
#ifdef REAL_T_IS_DOUBLE
case Variant::VECTOR2:
case Variant::VECTOR3:
case Variant::VECTOR4:
case Variant::PACKED_VECTOR2_ARRAY:
case Variant::PACKED_VECTOR3_ARRAY:
case Variant::TRANSFORM2D:
case Variant::TRANSFORM3D:
case Variant::PROJECTION:
case Variant::QUATERNION:
case Variant::PLANE:
case Variant::BASIS:
case Variant::RECT2:
case Variant::AABB: {
flags |= ENCODE_FLAG_64;
} break;
#endif // REAL_T_IS_DOUBLE
default: {
} // nothing to do at this stage
}
if (buf) {
encode_uint32(p_variant.get_type() | flags, buf);
buf += 4;
}
r_len += 4;
switch (p_variant.get_type()) {
case Variant::NIL: {
//nothing to do
} break;
case Variant::BOOL: {
if (buf) {
encode_uint32(p_variant.operator bool(), buf);
}
r_len += 4;
} break;
case Variant::INT: {
if (flags & ENCODE_FLAG_64) {
//64 bits
if (buf) {
encode_uint64(p_variant.operator int64_t(), buf);
}
r_len += 8;
} else {
if (buf) {
encode_uint32(p_variant.operator int32_t(), buf);
}
r_len += 4;
}
} break;
case Variant::FLOAT: {
if (flags & ENCODE_FLAG_64) {
if (buf) {
encode_double(p_variant.operator double(), buf);
}
r_len += 8;
} else {
if (buf) {
encode_float(p_variant.operator float(), buf);
}
r_len += 4;
}
} break;
case Variant::NODE_PATH: {
NodePath np = p_variant;
if (buf) {
encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format
encode_uint32(np.get_subname_count(), buf + 4);
uint32_t np_flags = 0;
if (np.is_absolute()) {
np_flags |= 1;
}
encode_uint32(np_flags, buf + 8);
buf += 12;
}
r_len += 12;
int total = np.get_name_count() + np.get_subname_count();
for (int i = 0; i < total; i++) {
String str;
if (i < np.get_name_count()) {
str = np.get_name(i);
} else {
str = np.get_subname(i - np.get_name_count());
}
CharString utf8 = str.utf8();
int pad = 0;
if (utf8.length() % 4) {
pad = 4 - utf8.length() % 4;
}
if (buf) {
encode_uint32(utf8.length(), buf);
buf += 4;
memcpy(buf, utf8.get_data(), utf8.length());
buf += pad + utf8.length();
}
r_len += 4 + utf8.length() + pad;
}
} break;
case Variant::STRING:
case Variant::STRING_NAME: {
_encode_string(p_variant, buf, r_len);
} break;
// math types
case Variant::VECTOR2: {
if (buf) {
Vector2 v2 = p_variant;
encode_real(v2.x, &buf[0]);
encode_real(v2.y, &buf[sizeof(real_t)]);
}
r_len += 2 * sizeof(real_t);
} break;
case Variant::VECTOR2I: {
if (buf) {
Vector2i v2 = p_variant;
encode_uint32(v2.x, &buf[0]);
encode_uint32(v2.y, &buf[4]);
}
r_len += 2 * 4;
} break;
case Variant::RECT2: {
if (buf) {
Rect2 r2 = p_variant;
encode_real(r2.position.x, &buf[0]);
encode_real(r2.position.y, &buf[sizeof(real_t)]);
encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
}
r_len += 4 * sizeof(real_t);
} break;
case Variant::RECT2I: {
if (buf) {
Rect2i r2 = p_variant;
encode_uint32(r2.position.x, &buf[0]);
encode_uint32(r2.position.y, &buf[4]);
encode_uint32(r2.size.x, &buf[8]);
encode_uint32(r2.size.y, &buf[12]);
}
r_len += 4 * 4;
} break;
case Variant::VECTOR3: {
if (buf) {
Vector3 v3 = p_variant;
encode_real(v3.x, &buf[0]);
encode_real(v3.y, &buf[sizeof(real_t)]);
encode_real(v3.z, &buf[sizeof(real_t) * 2]);
}
r_len += 3 * sizeof(real_t);
} break;
case Variant::VECTOR3I: {
if (buf) {
Vector3i v3 = p_variant;
encode_uint32(v3.x, &buf[0]);
encode_uint32(v3.y, &buf[4]);
encode_uint32(v3.z, &buf[8]);
}
r_len += 3 * 4;
} break;
case Variant::TRANSFORM2D: {
if (buf) {
Transform2D val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 2; j++) {
memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
}
}
}
r_len += 6 * sizeof(real_t);
} break;
case Variant::VECTOR4: {
if (buf) {
Vector4 v4 = p_variant;
encode_real(v4.x, &buf[0]);
encode_real(v4.y, &buf[sizeof(real_t)]);
encode_real(v4.z, &buf[sizeof(real_t) * 2]);
encode_real(v4.w, &buf[sizeof(real_t) * 3]);
}
r_len += 4 * sizeof(real_t);
} break;
case Variant::VECTOR4I: {
if (buf) {
Vector4i v4 = p_variant;
encode_uint32(v4.x, &buf[0]);
encode_uint32(v4.y, &buf[4]);
encode_uint32(v4.z, &buf[8]);
encode_uint32(v4.w, &buf[12]);
}
r_len += 4 * 4;
} break;
case Variant::PLANE: {
if (buf) {
Plane p = p_variant;
encode_real(p.normal.x, &buf[0]);
encode_real(p.normal.y, &buf[sizeof(real_t)]);
encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
encode_real(p.d, &buf[sizeof(real_t) * 3]);
}
r_len += 4 * sizeof(real_t);
} break;
case Variant::QUATERNION: {
if (buf) {
Quaternion q = p_variant;
encode_real(q.x, &buf[0]);
encode_real(q.y, &buf[sizeof(real_t)]);
encode_real(q.z, &buf[sizeof(real_t) * 2]);
encode_real(q.w, &buf[sizeof(real_t) * 3]);
}
r_len += 4 * sizeof(real_t);
} break;
case Variant::AABB: {
if (buf) {
AABB aabb = p_variant;
encode_real(aabb.position.x, &buf[0]);
encode_real(aabb.position.y, &buf[sizeof(real_t)]);
encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
}
r_len += 6 * sizeof(real_t);
} break;
case Variant::BASIS: {
if (buf) {
Basis val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.rows[i][j], sizeof(real_t));
}
}
}
r_len += 9 * sizeof(real_t);
} break;
case Variant::TRANSFORM3D: {
if (buf) {
Transform3D val = p_variant;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.rows[i][j], sizeof(real_t));
}
}
encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
}
r_len += 12 * sizeof(real_t);
} break;
case Variant::PROJECTION: {
if (buf) {
Projection val = p_variant;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
memcpy(&buf[(i * 4 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
}
}
}
r_len += 16 * sizeof(real_t);
} break;
// misc types
case Variant::COLOR: {
if (buf) {
Color c = p_variant;
encode_float(c.r, &buf[0]);
encode_float(c.g, &buf[4]);
encode_float(c.b, &buf[8]);
encode_float(c.a, &buf[12]);
}
r_len += 4 * 4; // Colors should always be in single-precision.
} break;
case Variant::RID: {
RID rid = p_variant;
if (buf) {
encode_uint64(rid.get_id(), buf);
}
r_len += 8;
} break;
case Variant::OBJECT: {
if (p_full_objects) {
Object *obj = p_variant;
if (!obj) {
if (buf) {
encode_uint32(0, buf);
}
r_len += 4;
} else {
_encode_string(obj->get_class(), buf, r_len);
List<PropertyInfo> props;
obj->get_property_list(&props);
int pc = 0;
for (const PropertyInfo &E : props) {
if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
continue;
}
pc++;
}
if (buf) {
encode_uint32(pc, buf);
buf += 4;
}
r_len += 4;
for (const PropertyInfo &E : props) {
if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
continue;
}
_encode_string(E.name, buf, r_len);
int len;
Error err = encode_variant(obj->get(E.name), buf, len, p_full_objects, p_depth + 1);
ERR_FAIL_COND_V(err, err);
ERR_FAIL_COND_V(len % 4, ERR_BUG);
r_len += len;
if (buf) {
buf += len;
}
}
}
} else {
if (buf) {
Object *obj = p_variant.get_validated_object();
ObjectID id;
if (obj) {
id = obj->get_instance_id();
}
encode_uint64(id, buf);
}
r_len += 8;
}
} break;
case Variant::CALLABLE: {
} break;
case Variant::SIGNAL: {
Signal signal = p_variant;
_encode_string(signal.get_name(), buf, r_len);
if (buf) {
encode_uint64(signal.get_object_id(), buf);
}
r_len += 8;
} break;
case Variant::DICTIONARY: {
Dictionary d = p_variant;
if (buf) {
encode_uint32(uint32_t(d.size()), buf);
buf += 4;
}
r_len += 4;
List<Variant> keys;
d.get_key_list(&keys);
for (const Variant &E : keys) {
int len;
Error err = encode_variant(E, buf, len, p_full_objects, p_depth + 1);
ERR_FAIL_COND_V(err, err);
ERR_FAIL_COND_V(len % 4, ERR_BUG);
r_len += len;
if (buf) {
buf += len;
}
Variant *v = d.getptr(E);
ERR_FAIL_NULL_V(v, ERR_BUG);
err = encode_variant(*v, buf, len, p_full_objects, p_depth + 1);
ERR_FAIL_COND_V(err, err);
ERR_FAIL_COND_V(len % 4, ERR_BUG);
r_len += len;
if (buf) {
buf += len;
}
}
} break;
case Variant::ARRAY: {
Array v = p_variant;
if (buf) {
encode_uint32(uint32_t(v.size()), buf);
buf += 4;
}
r_len += 4;
for (int i = 0; i < v.size(); i++) {
int len;
Error err = encode_variant(v.get(i), buf, len, p_full_objects, p_depth + 1);
ERR_FAIL_COND_V(err, err);
ERR_FAIL_COND_V(len % 4, ERR_BUG);
r_len += len;
if (buf) {
buf += len;
}
}
} break;
// arrays
case Variant::PACKED_BYTE_ARRAY: {
Vector<uint8_t> data = p_variant;
int datalen = data.size();
int datasize = sizeof(uint8_t);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
const uint8_t *r = data.ptr();
if (r) {
memcpy(buf, &r[0], datalen * datasize);
buf += datalen * datasize;
}
}
r_len += 4 + datalen * datasize;
while (r_len % 4) {
r_len++;
if (buf) {
*(buf++) = 0;
}
}
} break;
case Variant::PACKED_INT32_ARRAY: {
Vector<int32_t> data = p_variant;
int datalen = data.size();
int datasize = sizeof(int32_t);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
const int32_t *r = data.ptr();
for (int32_t i = 0; i < datalen; i++) {
encode_uint32(r[i], &buf[i * datasize]);
}
}
r_len += 4 + datalen * datasize;
} break;
case Variant::PACKED_INT64_ARRAY: {
Vector<int64_t> data = p_variant;
int datalen = data.size();
int datasize = sizeof(int64_t);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
const int64_t *r = data.ptr();
for (int64_t i = 0; i < datalen; i++) {
encode_uint64(r[i], &buf[i * datasize]);
}
}
r_len += 4 + datalen * datasize;
} break;
case Variant::PACKED_FLOAT32_ARRAY: {
Vector<float> data = p_variant;
int datalen = data.size();
int datasize = sizeof(float);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
const float *r = data.ptr();
for (int i = 0; i < datalen; i++) {
encode_float(r[i], &buf[i * datasize]);
}
}
r_len += 4 + datalen * datasize;
} break;
case Variant::PACKED_FLOAT64_ARRAY: {
Vector<double> data = p_variant;
int datalen = data.size();
int datasize = sizeof(double);
if (buf) {
encode_uint32(datalen, buf);
buf += 4;
const double *r = data.ptr();
for (int i = 0; i < datalen; i++) {
encode_double(r[i], &buf[i * datasize]);
}
}
r_len += 4 + datalen * datasize;
} break;
case Variant::PACKED_STRING_ARRAY: {
Vector<String> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
for (int i = 0; i < len; i++) {
CharString utf8 = data.get(i).utf8();
if (buf) {
encode_uint32(utf8.length() + 1, buf);
buf += 4;
memcpy(buf, utf8.get_data(), utf8.length() + 1);
buf += utf8.length() + 1;
}
r_len += 4 + utf8.length() + 1;
while (r_len % 4) {
r_len++; //pad
if (buf) {
*(buf++) = 0;
}
}
}
} break;
case Variant::PACKED_VECTOR2_ARRAY: {
Vector<Vector2> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
if (buf) {
for (int i = 0; i < len; i++) {
Vector2 v = data.get(i);
encode_real(v.x, &buf[0]);
encode_real(v.y, &buf[sizeof(real_t)]);
buf += sizeof(real_t) * 2;
}
}
r_len += sizeof(real_t) * 2 * len;
} break;
case Variant::PACKED_VECTOR3_ARRAY: {
Vector<Vector3> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
if (buf) {
for (int i = 0; i < len; i++) {
Vector3 v = data.get(i);
encode_real(v.x, &buf[0]);
encode_real(v.y, &buf[sizeof(real_t)]);
encode_real(v.z, &buf[sizeof(real_t) * 2]);
buf += sizeof(real_t) * 3;
}
}
r_len += sizeof(real_t) * 3 * len;
} break;
case Variant::PACKED_COLOR_ARRAY: {
Vector<Color> data = p_variant;
int len = data.size();
if (buf) {
encode_uint32(len, buf);
buf += 4;
}
r_len += 4;
if (buf) {
for (int i = 0; i < len; i++) {
Color c = data.get(i);
encode_float(c.r, &buf[0]);
encode_float(c.g, &buf[4]);
encode_float(c.b, &buf[8]);
encode_float(c.a, &buf[12]);
buf += 4 * 4; // Colors should always be in single-precision.
}
}
r_len += 4 * 4 * len;
} break;
default: {
ERR_FAIL_V(ERR_BUG);
}
}
return OK;
}
Vector<float> vector3_to_float32_array(const Vector3 *vecs, size_t count) {
// We always allocate a new array, and we don't memcpy.
// We also don't consider returning a pointer to the passed vectors when sizeof(real_t) == 4.
// One reason is that we could decide to put a 4th component in Vector3 for SIMD/mobile performance,
// which would cause trouble with these optimizations.
Vector<float> floats;
if (count == 0) {
return floats;
}
floats.resize(count * 3);
float *floats_w = floats.ptrw();
for (size_t i = 0; i < count; ++i) {
const Vector3 v = vecs[i];
floats_w[0] = v.x;
floats_w[1] = v.y;
floats_w[2] = v.z;
floats_w += 3;
}
return floats;
}