d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
529 lines
22 KiB
C++
529 lines
22 KiB
C++
/**************************************************************************/
|
|
/* test_vector3.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef TEST_VECTOR3_H
|
|
#define TEST_VECTOR3_H
|
|
|
|
#include "core/math/vector3.h"
|
|
#include "tests/test_macros.h"
|
|
|
|
#define Math_SQRT13 0.57735026918962576450914878050196
|
|
#define Math_SQRT3 1.7320508075688772935274463415059
|
|
|
|
namespace TestVector3 {
|
|
|
|
TEST_CASE("[Vector3] Constructor methods") {
|
|
const Vector3 vector_empty = Vector3();
|
|
const Vector3 vector_zero = Vector3(0.0, 0.0, 0.0);
|
|
CHECK_MESSAGE(
|
|
vector_empty == vector_zero,
|
|
"Vector3 Constructor with no inputs should return a zero Vector3.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Angle methods") {
|
|
const Vector3 vector_x = Vector3(1, 0, 0);
|
|
const Vector3 vector_y = Vector3(0, 1, 0);
|
|
const Vector3 vector_yz = Vector3(0, 1, 1);
|
|
CHECK_MESSAGE(
|
|
vector_x.angle_to(vector_y) == doctest::Approx((real_t)Math_TAU / 4),
|
|
"Vector3 angle_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector_x.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 4),
|
|
"Vector3 angle_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector_yz.angle_to(vector_x) == doctest::Approx((real_t)Math_TAU / 4),
|
|
"Vector3 angle_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector_y.angle_to(vector_yz) == doctest::Approx((real_t)Math_TAU / 8),
|
|
"Vector3 angle_to should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector_x.signed_angle_to(vector_y, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
|
|
"Vector3 signed_angle_to edge case should be positive.");
|
|
CHECK_MESSAGE(
|
|
vector_x.signed_angle_to(vector_yz, vector_y) == doctest::Approx((real_t)Math_TAU / -4),
|
|
"Vector3 signed_angle_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector_yz.signed_angle_to(vector_x, vector_y) == doctest::Approx((real_t)Math_TAU / 4),
|
|
"Vector3 signed_angle_to should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Axis methods") {
|
|
Vector3 vector = Vector3(1.2, 3.4, 5.6);
|
|
CHECK_MESSAGE(
|
|
vector.max_axis_index() == Vector3::Axis::AXIS_Z,
|
|
"Vector3 max_axis_index should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.min_axis_index() == Vector3::Axis::AXIS_X,
|
|
"Vector3 min_axis_index should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector[vector.max_axis_index()] == (real_t)5.6,
|
|
"Vector3 array operator should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector[vector.min_axis_index()] == (real_t)1.2,
|
|
"Vector3 array operator should work as expected.");
|
|
|
|
vector[Vector3::Axis::AXIS_Y] = 3.7;
|
|
CHECK_MESSAGE(
|
|
vector[Vector3::Axis::AXIS_Y] == (real_t)3.7,
|
|
"Vector3 array operator setter should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Interpolation methods") {
|
|
const Vector3 vector1 = Vector3(1, 2, 3);
|
|
const Vector3 vector2 = Vector3(4, 5, 6);
|
|
CHECK_MESSAGE(
|
|
vector1.lerp(vector2, 0.5) == Vector3(2.5, 3.5, 4.5),
|
|
"Vector3 lerp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector3(2, 3, 4)),
|
|
"Vector3 lerp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.normalized().slerp(vector2.normalized(), 0.5).is_equal_approx(Vector3(0.363866806030273438, 0.555698215961456299, 0.747529566287994385)),
|
|
"Vector3 slerp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.normalized().slerp(vector2.normalized(), 1.0 / 3.0).is_equal_approx(Vector3(0.332119762897491455, 0.549413740634918213, 0.766707837581634521)),
|
|
"Vector3 slerp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector3(5, 0, 0).slerp(Vector3(0, 3, 4), 0.5).is_equal_approx(Vector3(3.535533905029296875, 2.121320486068725586, 2.828427314758300781)),
|
|
"Vector3 slerp with non-normalized values should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 1, 1).slerp(Vector3(2, 2, 2), 0.5).is_equal_approx(Vector3(1.5, 1.5, 1.5)),
|
|
"Vector3 slerp with colinear inputs should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector3().slerp(Vector3(), 0.5) == Vector3(),
|
|
"Vector3 slerp with both inputs as zero vectors should return a zero vector.");
|
|
CHECK_MESSAGE(
|
|
Vector3().slerp(Vector3(1, 1, 1), 0.5) == Vector3(0.5, 0.5, 0.5),
|
|
"Vector3 slerp with one input as zero should behave like a regular lerp.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 1, 1).slerp(Vector3(), 0.5) == Vector3(0.5, 0.5, 0.5),
|
|
"Vector3 slerp with one input as zero should behave like a regular lerp.");
|
|
CHECK_MESSAGE(
|
|
Vector3(4, 6, 2).slerp(Vector3(8, 10, 3), 0.5).is_equal_approx(Vector3(5.90194219811429941053, 8.06758688849378394534, 2.558307894718317120038)),
|
|
"Vector3 slerp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.slerp(vector2, 0.5).length() == doctest::Approx((real_t)6.25831088708303172),
|
|
"Vector3 slerp with different length input should return a vector with an interpolated length.");
|
|
CHECK_MESSAGE(
|
|
vector1.angle_to(vector1.slerp(vector2, 0.5)) * 2 == doctest::Approx(vector1.angle_to(vector2)),
|
|
"Vector3 slerp with different length input should return a vector with an interpolated angle.");
|
|
CHECK_MESSAGE(
|
|
vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 0.5) == Vector3(2.375, 3.5, 4.625),
|
|
"Vector3 cubic_interpolate should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.cubic_interpolate(vector2, Vector3(), Vector3(7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector3(1.851851940155029297, 2.962963104248046875, 4.074074268341064453)),
|
|
"Vector3 cubic_interpolate should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 0, 0).move_toward(Vector3(10, 0, 0), 3) == Vector3(4, 0, 0),
|
|
"Vector3 move_toward should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Length methods") {
|
|
const Vector3 vector1 = Vector3(10, 10, 10);
|
|
const Vector3 vector2 = Vector3(20, 30, 40);
|
|
CHECK_MESSAGE(
|
|
vector1.length_squared() == 300,
|
|
"Vector3 length_squared should work as expected and return exact result.");
|
|
CHECK_MESSAGE(
|
|
vector1.length() == doctest::Approx(10 * (real_t)Math_SQRT3),
|
|
"Vector3 length should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.length_squared() == 2900,
|
|
"Vector3 length_squared should work as expected and return exact result.");
|
|
CHECK_MESSAGE(
|
|
vector2.length() == doctest::Approx((real_t)53.8516480713450403125),
|
|
"Vector3 length should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector1.distance_squared_to(vector2) == 1400,
|
|
"Vector3 distance_squared_to should work as expected and return exact result.");
|
|
CHECK_MESSAGE(
|
|
vector1.distance_to(vector2) == doctest::Approx((real_t)37.41657386773941385584),
|
|
"Vector3 distance_to should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Limiting methods") {
|
|
const Vector3 vector = Vector3(10, 10, 10);
|
|
CHECK_MESSAGE(
|
|
vector.limit_length().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
|
|
"Vector3 limit_length should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.limit_length(5).is_equal_approx(5 * Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
|
|
"Vector3 limit_length should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
Vector3(-5, 5, 15).clamp(Vector3(), vector) == Vector3(0, 5, 10),
|
|
"Vector3 clamp should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.clamp(Vector3(0, 10, 15), Vector3(5, 10, 20)) == Vector3(5, 10, 15),
|
|
"Vector3 clamp should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Normalization methods") {
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 0, 0).is_normalized() == true,
|
|
"Vector3 is_normalized should return true for a normalized vector.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 1, 1).is_normalized() == false,
|
|
"Vector3 is_normalized should return false for a non-normalized vector.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 0, 0).normalized() == Vector3(1, 0, 0),
|
|
"Vector3 normalized should return the same vector for a normalized vector.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 1, 0).normalized().is_equal_approx(Vector3(Math_SQRT12, Math_SQRT12, 0)),
|
|
"Vector3 normalized should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 1, 1).normalized().is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
|
|
"Vector3 normalized should work as expected.");
|
|
|
|
Vector3 vector = Vector3(3.2, -5.4, 6);
|
|
vector.normalize();
|
|
CHECK_MESSAGE(
|
|
vector == Vector3(3.2, -5.4, 6).normalized(),
|
|
"Vector3 normalize should convert same way as Vector3 normalized.");
|
|
CHECK_MESSAGE(
|
|
vector.is_equal_approx(Vector3(0.368522751763902980457, -0.621882143601586279522, 0.6909801595573180883585)),
|
|
"Vector3 normalize should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Operators") {
|
|
const Vector3 decimal1 = Vector3(2.3, 4.9, 7.8);
|
|
const Vector3 decimal2 = Vector3(1.2, 3.4, 5.6);
|
|
const Vector3 power1 = Vector3(0.75, 1.5, 0.625);
|
|
const Vector3 power2 = Vector3(0.5, 0.125, 0.25);
|
|
const Vector3 int1 = Vector3(4, 5, 9);
|
|
const Vector3 int2 = Vector3(1, 2, 3);
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 + decimal2).is_equal_approx(Vector3(3.5, 8.3, 13.4)),
|
|
"Vector3 addition should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 + power2) == Vector3(1.25, 1.625, 0.875),
|
|
"Vector3 addition with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 + int2) == Vector3(5, 7, 12),
|
|
"Vector3 addition with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 - decimal2).is_equal_approx(Vector3(1.1, 1.5, 2.2)),
|
|
"Vector3 subtraction should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 - power2) == Vector3(0.25, 1.375, 0.375),
|
|
"Vector3 subtraction with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 - int2) == Vector3(3, 3, 6),
|
|
"Vector3 subtraction with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 * decimal2).is_equal_approx(Vector3(2.76, 16.66, 43.68)),
|
|
"Vector3 multiplication should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 * power2) == Vector3(0.375, 0.1875, 0.15625),
|
|
"Vector3 multiplication with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 * int2) == Vector3(4, 10, 27),
|
|
"Vector3 multiplication with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 / decimal2).is_equal_approx(Vector3(1.91666666666666666, 1.44117647058823529, 1.39285714285714286)),
|
|
"Vector3 division should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 / power2) == Vector3(1.5, 12.0, 2.5),
|
|
"Vector3 division with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 / int2) == Vector3(4, 2.5, 3),
|
|
"Vector3 division with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 * 2).is_equal_approx(Vector3(4.6, 9.8, 15.6)),
|
|
"Vector3 multiplication should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 * 2) == Vector3(1.5, 3, 1.25),
|
|
"Vector3 multiplication with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 * 2) == Vector3(8, 10, 18),
|
|
"Vector3 multiplication with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
(decimal1 / 2).is_equal_approx(Vector3(1.15, 2.45, 3.9)),
|
|
"Vector3 division should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
(power1 / 2) == Vector3(0.375, 0.75, 0.3125),
|
|
"Vector3 division with powers of two should give exact results.");
|
|
CHECK_MESSAGE(
|
|
(int1 / 2) == Vector3(2, 2.5, 4.5),
|
|
"Vector3 division with integers should give exact results.");
|
|
|
|
CHECK_MESSAGE(
|
|
((Vector3i)decimal1) == Vector3i(2, 4, 7),
|
|
"Vector3 cast to Vector3i should work as expected.");
|
|
CHECK_MESSAGE(
|
|
((Vector3i)decimal2) == Vector3i(1, 3, 5),
|
|
"Vector3 cast to Vector3i should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector3(Vector3i(1, 2, 3)) == Vector3(1, 2, 3),
|
|
"Vector3 constructed from Vector3i should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
((String)decimal1) == "(2.3, 4.9, 7.8)",
|
|
"Vector3 cast to String should work as expected.");
|
|
CHECK_MESSAGE(
|
|
((String)decimal2) == "(1.2, 3.4, 5.6)",
|
|
"Vector3 cast to String should work as expected.");
|
|
CHECK_MESSAGE(
|
|
((String)Vector3(9.7, 9.8, 9.9)) == "(9.7, 9.8, 9.9)",
|
|
"Vector3 cast to String should work as expected.");
|
|
#ifdef REAL_T_IS_DOUBLE
|
|
CHECK_MESSAGE(
|
|
((String)Vector3(Math_E, Math_SQRT2, Math_SQRT3)) == "(2.71828182845905, 1.4142135623731, 1.73205080756888)",
|
|
"Vector3 cast to String should print the correct amount of digits for real_t = double.");
|
|
#else
|
|
CHECK_MESSAGE(
|
|
((String)Vector3(Math_E, Math_SQRT2, Math_SQRT3)) == "(2.718282, 1.414214, 1.732051)",
|
|
"Vector3 cast to String should print the correct amount of digits for real_t = float.");
|
|
#endif // REAL_T_IS_DOUBLE
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Other methods") {
|
|
const Vector3 vector = Vector3(1.2, 3.4, 5.6);
|
|
CHECK_MESSAGE(
|
|
vector.direction_to(Vector3()).is_equal_approx(-vector.normalized()),
|
|
"Vector3 direction_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
Vector3(1, 1, 1).direction_to(Vector3(2, 2, 2)).is_equal_approx(Vector3(Math_SQRT13, Math_SQRT13, Math_SQRT13)),
|
|
"Vector3 direction_to should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.inverse().is_equal_approx(Vector3(1 / 1.2, 1 / 3.4, 1 / 5.6)),
|
|
"Vector3 inverse should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.posmod(2).is_equal_approx(Vector3(1.2, 1.4, 1.6)),
|
|
"Vector3 posmod should work as expected.");
|
|
CHECK_MESSAGE(
|
|
(-vector).posmod(2).is_equal_approx(Vector3(0.8, 0.6, 0.4)),
|
|
"Vector3 posmod should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.posmodv(Vector3(1, 2, 3)).is_equal_approx(Vector3(0.2, 1.4, 2.6)),
|
|
"Vector3 posmodv should work as expected.");
|
|
CHECK_MESSAGE(
|
|
(-vector).posmodv(Vector3(2, 3, 4)).is_equal_approx(Vector3(0.8, 2.6, 2.4)),
|
|
"Vector3 posmodv should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector.rotated(Vector3(0, 1, 0), Math_TAU).is_equal_approx(vector),
|
|
"Vector3 rotated should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.rotated(Vector3(0, 1, 0), Math_TAU / 4).is_equal_approx(Vector3(5.6, 3.4, -1.2)),
|
|
"Vector3 rotated should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.rotated(Vector3(1, 0, 0), Math_TAU / 3).is_equal_approx(Vector3(1.2, -6.54974226119285642, 0.1444863728670914)),
|
|
"Vector3 rotated should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector.rotated(Vector3(0, 0, 1), Math_TAU / 2).is_equal_approx(vector.rotated(Vector3(0, 0, 1), Math_TAU / -2)),
|
|
"Vector3 rotated should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector.snapped(Vector3(1, 1, 1)) == Vector3(1, 3, 6),
|
|
"Vector3 snapped to integers should be the same as rounding.");
|
|
CHECK_MESSAGE(
|
|
vector.snapped(Vector3(0.25, 0.25, 0.25)) == Vector3(1.25, 3.5, 5.5),
|
|
"Vector3 snapped to 0.25 should give exact results.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Plane methods") {
|
|
const Vector3 vector = Vector3(1.2, 3.4, 5.6);
|
|
const Vector3 vector_y = Vector3(0, 1, 0);
|
|
const Vector3 vector_normal = Vector3(0.88763458893247992491, 0.26300284116517923701, 0.37806658417494515320);
|
|
const Vector3 vector_non_normal = Vector3(5.4, 1.6, 2.3);
|
|
CHECK_MESSAGE(
|
|
vector.bounce(vector_y) == Vector3(1.2, -3.4, 5.6),
|
|
"Vector3 bounce on a plane with normal of the Y axis should.");
|
|
CHECK_MESSAGE(
|
|
vector.bounce(vector_normal).is_equal_approx(Vector3(-6.0369629829775736287, 1.25571467171034855444, 2.517589840583626047)),
|
|
"Vector3 bounce with normal should return expected value.");
|
|
CHECK_MESSAGE(
|
|
vector.reflect(vector_y) == Vector3(-1.2, 3.4, -5.6),
|
|
"Vector3 reflect on a plane with normal of the Y axis should.");
|
|
CHECK_MESSAGE(
|
|
vector.reflect(vector_normal).is_equal_approx(Vector3(6.0369629829775736287, -1.25571467171034855444, -2.517589840583626047)),
|
|
"Vector3 reflect with normal should return expected value.");
|
|
CHECK_MESSAGE(
|
|
vector.project(vector_y) == Vector3(0, 3.4, 0),
|
|
"Vector3 projected on the Y axis should only give the Y component.");
|
|
CHECK_MESSAGE(
|
|
vector.project(vector_normal).is_equal_approx(Vector3(3.61848149148878681437, 1.0721426641448257227776, 1.54120507970818697649)),
|
|
"Vector3 projected on a normal should return expected value.");
|
|
CHECK_MESSAGE(
|
|
vector.slide(vector_y) == Vector3(1.2, 0, 5.6),
|
|
"Vector3 slide on a plane with normal of the Y axis should set the Y to zero.");
|
|
CHECK_MESSAGE(
|
|
vector.slide(vector_normal).is_equal_approx(Vector3(-2.41848149148878681437, 2.32785733585517427722237, 4.0587949202918130235)),
|
|
"Vector3 slide with normal should return expected value.");
|
|
// There's probably a better way to test these ones?
|
|
ERR_PRINT_OFF;
|
|
CHECK_MESSAGE(
|
|
vector.bounce(vector_non_normal).is_equal_approx(Vector3()),
|
|
"Vector3 bounce should return empty Vector3 with non-normalized input.");
|
|
CHECK_MESSAGE(
|
|
vector.reflect(vector_non_normal).is_equal_approx(Vector3()),
|
|
"Vector3 reflect should return empty Vector3 with non-normalized input.");
|
|
CHECK_MESSAGE(
|
|
vector.slide(vector_non_normal).is_equal_approx(Vector3()),
|
|
"Vector3 slide should return empty Vector3 with non-normalized input.");
|
|
ERR_PRINT_ON;
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Rounding methods") {
|
|
const Vector3 vector1 = Vector3(1.2, 3.4, 5.6);
|
|
const Vector3 vector2 = Vector3(1.2, -3.4, -5.6);
|
|
CHECK_MESSAGE(
|
|
vector1.abs() == vector1,
|
|
"Vector3 abs should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.abs() == vector1,
|
|
"Vector3 abs should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector1.ceil() == Vector3(2, 4, 6),
|
|
"Vector3 ceil should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.ceil() == Vector3(2, -3, -5),
|
|
"Vector3 ceil should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector1.floor() == Vector3(1, 3, 5),
|
|
"Vector3 floor should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.floor() == Vector3(1, -4, -6),
|
|
"Vector3 floor should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector1.round() == Vector3(1, 3, 6),
|
|
"Vector3 round should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.round() == Vector3(1, -3, -6),
|
|
"Vector3 round should work as expected.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector1.sign() == Vector3(1, 1, 1),
|
|
"Vector3 sign should work as expected.");
|
|
CHECK_MESSAGE(
|
|
vector2.sign() == Vector3(1, -1, -1),
|
|
"Vector3 sign should work as expected.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Linear algebra methods") {
|
|
const Vector3 vector_x = Vector3(1, 0, 0);
|
|
const Vector3 vector_y = Vector3(0, 1, 0);
|
|
const Vector3 vector_z = Vector3(0, 0, 1);
|
|
const Vector3 a = Vector3(3.5, 8.5, 2.3);
|
|
const Vector3 b = Vector3(5.2, 4.6, 7.8);
|
|
CHECK_MESSAGE(
|
|
vector_x.cross(vector_y) == vector_z,
|
|
"Vector3 cross product of X and Y should give Z.");
|
|
CHECK_MESSAGE(
|
|
vector_y.cross(vector_x) == -vector_z,
|
|
"Vector3 cross product of Y and X should give negative Z.");
|
|
CHECK_MESSAGE(
|
|
vector_y.cross(vector_z) == vector_x,
|
|
"Vector3 cross product of Y and Z should give X.");
|
|
CHECK_MESSAGE(
|
|
vector_z.cross(vector_x) == vector_y,
|
|
"Vector3 cross product of Z and X should give Y.");
|
|
CHECK_MESSAGE(
|
|
a.cross(b).is_equal_approx(Vector3(55.72, -15.34, -28.1)),
|
|
"Vector3 cross should return expected value.");
|
|
CHECK_MESSAGE(
|
|
Vector3(-a.x, a.y, -a.z).cross(Vector3(b.x, -b.y, b.z)).is_equal_approx(Vector3(55.72, 15.34, -28.1)),
|
|
"Vector2 cross should return expected value.");
|
|
|
|
CHECK_MESSAGE(
|
|
vector_x.dot(vector_y) == 0.0,
|
|
"Vector3 dot product of perpendicular vectors should be zero.");
|
|
CHECK_MESSAGE(
|
|
vector_x.dot(vector_x) == 1.0,
|
|
"Vector3 dot product of identical unit vectors should be one.");
|
|
CHECK_MESSAGE(
|
|
(vector_x * 10).dot(vector_x * 10) == 100.0,
|
|
"Vector3 dot product of same direction vectors should behave as expected.");
|
|
CHECK_MESSAGE(
|
|
a.dot(b) == doctest::Approx((real_t)75.24),
|
|
"Vector3 dot should return expected value.");
|
|
CHECK_MESSAGE(
|
|
Vector3(-a.x, a.y, -a.z).dot(Vector3(b.x, -b.y, b.z)) == doctest::Approx((real_t)-75.24),
|
|
"Vector3 dot should return expected value.");
|
|
}
|
|
|
|
TEST_CASE("[Vector3] Finite number checks") {
|
|
const double infinite[] = { NAN, INFINITY, -INFINITY };
|
|
|
|
CHECK_MESSAGE(
|
|
Vector3(0, 1, 2).is_finite(),
|
|
"Vector3(0, 1, 2) should be finite");
|
|
|
|
for (double x : infinite) {
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector3(x, 1, 2).is_finite(),
|
|
"Vector3 with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector3(0, x, 2).is_finite(),
|
|
"Vector3 with one component infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector3(0, 1, x).is_finite(),
|
|
"Vector3 with one component infinite should not be finite.");
|
|
}
|
|
|
|
for (double x : infinite) {
|
|
for (double y : infinite) {
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector3(x, y, 2).is_finite(),
|
|
"Vector3 with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector3(x, 1, y).is_finite(),
|
|
"Vector3 with two components infinite should not be finite.");
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector3(0, x, y).is_finite(),
|
|
"Vector3 with two components infinite should not be finite.");
|
|
}
|
|
}
|
|
|
|
for (double x : infinite) {
|
|
for (double y : infinite) {
|
|
for (double z : infinite) {
|
|
CHECK_FALSE_MESSAGE(
|
|
Vector3(x, y, z).is_finite(),
|
|
"Vector3 with three components infinite should not be finite.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace TestVector3
|
|
|
|
#endif // TEST_VECTOR3_H
|