199 lines
4.7 KiB
GLSL
199 lines
4.7 KiB
GLSL
[vertex]
|
|
|
|
layout(location = 0) in highp vec4 vertex_attrib;
|
|
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
|
|
layout(location = 4) in vec3 cube_in;
|
|
#else
|
|
layout(location = 4) in vec2 uv_in;
|
|
#endif
|
|
layout(location = 5) in vec2 uv2_in;
|
|
|
|
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
|
|
out vec3 cube_interp;
|
|
#else
|
|
out vec2 uv_interp;
|
|
#endif
|
|
|
|
out vec2 uv2_interp;
|
|
|
|
#ifdef USE_COPY_SECTION
|
|
|
|
uniform vec4 copy_section;
|
|
|
|
#endif
|
|
|
|
void main() {
|
|
|
|
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
|
|
cube_interp = cube_in;
|
|
#elif defined(USE_ASYM_PANO)
|
|
uv_interp = vertex_attrib.xy;
|
|
#else
|
|
uv_interp = uv_in;
|
|
#ifdef V_FLIP
|
|
uv_interp.y = 1.0 - uv_interp.y;
|
|
#endif
|
|
|
|
#endif
|
|
uv2_interp = uv2_in;
|
|
gl_Position = vertex_attrib;
|
|
|
|
#ifdef USE_COPY_SECTION
|
|
|
|
uv_interp = copy_section.xy + uv_interp * copy_section.zw;
|
|
gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
|
|
#endif
|
|
}
|
|
|
|
[fragment]
|
|
|
|
#define M_PI 3.14159265359
|
|
|
|
#if !defined(USE_GLES_OVER_GL)
|
|
precision mediump float;
|
|
#endif
|
|
|
|
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
|
|
in vec3 cube_interp;
|
|
#else
|
|
in vec2 uv_interp;
|
|
#endif
|
|
|
|
#ifdef USE_ASYM_PANO
|
|
uniform highp mat4 pano_transform;
|
|
uniform highp vec4 asym_proj;
|
|
#endif
|
|
|
|
#ifdef USE_CUBEMAP
|
|
uniform samplerCube source_cube; //texunit:0
|
|
#else
|
|
uniform sampler2D source; //texunit:0
|
|
#endif
|
|
|
|
#ifdef USE_MULTIPLIER
|
|
uniform float multiplier;
|
|
#endif
|
|
|
|
#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
|
|
|
|
vec4 texturePanorama(vec3 normal, sampler2D pano) {
|
|
|
|
vec2 st = vec2(
|
|
atan(normal.x, normal.z),
|
|
acos(normal.y));
|
|
|
|
if (st.x < 0.0)
|
|
st.x += M_PI * 2.0;
|
|
|
|
st /= vec2(M_PI * 2.0, M_PI);
|
|
|
|
return textureLod(pano, st, 0.0);
|
|
}
|
|
|
|
#endif
|
|
|
|
uniform float stuff;
|
|
uniform vec2 pixel_size;
|
|
|
|
in vec2 uv2_interp;
|
|
|
|
#ifdef USE_BCS
|
|
|
|
uniform vec3 bcs;
|
|
|
|
#endif
|
|
|
|
#ifdef USE_COLOR_CORRECTION
|
|
|
|
uniform sampler2D color_correction; //texunit:1
|
|
|
|
#endif
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
|
|
void main() {
|
|
|
|
//vec4 color = color_interp;
|
|
|
|
#ifdef USE_PANORAMA
|
|
|
|
vec4 color = texturePanorama(normalize(cube_interp), source);
|
|
|
|
#elif defined(USE_ASYM_PANO)
|
|
|
|
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
|
|
// Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
|
|
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
|
|
|
|
vec3 cube_normal;
|
|
cube_normal.z = -1000000.0;
|
|
cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
|
|
cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
|
|
cube_normal = mat3(pano_transform) * cube_normal;
|
|
cube_normal.z = -cube_normal.z;
|
|
|
|
vec4 color = texturePanorama(normalize(cube_normal.xyz), source);
|
|
|
|
#elif defined(USE_CUBEMAP)
|
|
vec4 color = texture(source_cube, normalize(cube_interp));
|
|
|
|
#else
|
|
vec4 color = textureLod(source, uv_interp, 0.0);
|
|
#endif
|
|
|
|
#ifdef LINEAR_TO_SRGB
|
|
//regular Linear -> SRGB conversion
|
|
vec3 a = vec3(0.055);
|
|
color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
|
|
#endif
|
|
|
|
#ifdef SRGB_TO_LINEAR
|
|
|
|
color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
|
|
#endif
|
|
|
|
#ifdef DEBUG_GRADIENT
|
|
color.rg = uv_interp;
|
|
color.b = 0.0;
|
|
#endif
|
|
|
|
#ifdef DISABLE_ALPHA
|
|
color.a = 1.0;
|
|
#endif
|
|
|
|
#ifdef GAUSSIAN_HORIZONTAL
|
|
color *= 0.38774;
|
|
color += texture(source, uv_interp + vec2(1.0, 0.0) * pixel_size) * 0.24477;
|
|
color += texture(source, uv_interp + vec2(2.0, 0.0) * pixel_size) * 0.06136;
|
|
color += texture(source, uv_interp + vec2(-1.0, 0.0) * pixel_size) * 0.24477;
|
|
color += texture(source, uv_interp + vec2(-2.0, 0.0) * pixel_size) * 0.06136;
|
|
#endif
|
|
|
|
#ifdef GAUSSIAN_VERTICAL
|
|
color *= 0.38774;
|
|
color += texture(source, uv_interp + vec2(0.0, 1.0) * pixel_size) * 0.24477;
|
|
color += texture(source, uv_interp + vec2(0.0, 2.0) * pixel_size) * 0.06136;
|
|
color += texture(source, uv_interp + vec2(0.0, -1.0) * pixel_size) * 0.24477;
|
|
color += texture(source, uv_interp + vec2(0.0, -2.0) * pixel_size) * 0.06136;
|
|
#endif
|
|
|
|
#ifdef USE_BCS
|
|
|
|
color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
|
|
color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
|
|
color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);
|
|
|
|
#endif
|
|
|
|
#ifdef USE_COLOR_CORRECTION
|
|
|
|
color.r = texture(color_correction, vec2(color.r, 0.0)).r;
|
|
color.g = texture(color_correction, vec2(color.g, 0.0)).g;
|
|
color.b = texture(color_correction, vec2(color.b, 0.0)).b;
|
|
#endif
|
|
|
|
#ifdef USE_MULTIPLIER
|
|
color.rgb *= multiplier;
|
|
#endif
|
|
frag_color = color;
|
|
}
|