virtualx-engine/drivers/gles3/storage/light_storage.cpp
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

722 lines
22 KiB
C++

/**************************************************************************/
/* light_storage.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifdef GLES3_ENABLED
#include "light_storage.h"
#include "config.h"
#include "texture_storage.h"
using namespace GLES3;
LightStorage *LightStorage::singleton = nullptr;
LightStorage *LightStorage::get_singleton() {
return singleton;
}
LightStorage::LightStorage() {
singleton = this;
}
LightStorage::~LightStorage() {
singleton = nullptr;
}
/* Light API */
void LightStorage::_light_initialize(RID p_light, RS::LightType p_type) {
Light light;
light.type = p_type;
light.param[RS::LIGHT_PARAM_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY] = 1.0;
light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5;
light.param[RS::LIGHT_PARAM_RANGE] = 1.0;
light.param[RS::LIGHT_PARAM_SIZE] = 0.0;
light.param[RS::LIGHT_PARAM_ATTENUATION] = 1.0;
light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45;
light.param[RS::LIGHT_PARAM_SPOT_ATTENUATION] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3;
light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6;
light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8;
light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_OPACITY] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02;
light.param[RS::LIGHT_PARAM_SHADOW_BLUR] = 0;
light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0;
light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05;
light_owner.initialize_rid(p_light, light);
}
RID LightStorage::directional_light_allocate() {
return light_owner.allocate_rid();
}
void LightStorage::directional_light_initialize(RID p_rid) {
_light_initialize(p_rid, RS::LIGHT_DIRECTIONAL);
}
RID LightStorage::omni_light_allocate() {
return light_owner.allocate_rid();
}
void LightStorage::omni_light_initialize(RID p_rid) {
_light_initialize(p_rid, RS::LIGHT_OMNI);
}
RID LightStorage::spot_light_allocate() {
return light_owner.allocate_rid();
}
void LightStorage::spot_light_initialize(RID p_rid) {
_light_initialize(p_rid, RS::LIGHT_SPOT);
}
void LightStorage::light_free(RID p_rid) {
light_set_projector(p_rid, RID()); //clear projector
// delete the texture
Light *light = light_owner.get_or_null(p_rid);
light->dependency.deleted_notify(p_rid);
light_owner.free(p_rid);
}
void LightStorage::light_set_color(RID p_light, const Color &p_color) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->color = p_color;
}
void LightStorage::light_set_param(RID p_light, RS::LightParam p_param, float p_value) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX);
if (light->param[p_param] == p_value) {
return;
}
switch (p_param) {
case RS::LIGHT_PARAM_RANGE:
case RS::LIGHT_PARAM_SPOT_ANGLE:
case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE:
case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET:
case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET:
case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET:
case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS:
case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE:
case RS::LIGHT_PARAM_SHADOW_BIAS: {
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
} break;
case RS::LIGHT_PARAM_SIZE: {
if ((light->param[p_param] > CMP_EPSILON) != (p_value > CMP_EPSILON)) {
//changing from no size to size and the opposite
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR);
}
} break;
default: {
}
}
light->param[p_param] = p_value;
}
void LightStorage::light_set_shadow(RID p_light, bool p_enabled) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->shadow = p_enabled;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_projector(RID p_light, RID p_texture) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
if (light->projector == p_texture) {
return;
}
if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) {
texture_storage->texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
}
light->projector = p_texture;
if (light->type != RS::LIGHT_DIRECTIONAL) {
if (light->projector.is_valid()) {
texture_storage->texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI);
}
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR);
}
}
void LightStorage::light_set_negative(RID p_light, bool p_enable) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->negative = p_enable;
}
void LightStorage::light_set_cull_mask(RID p_light, uint32_t p_mask) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->cull_mask = p_mask;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->distance_fade = p_enabled;
light->distance_fade_begin = p_begin;
light->distance_fade_shadow = p_shadow;
light->distance_fade_length = p_length;
}
void LightStorage::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->reverse_cull = p_enabled;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->bake_mode = p_bake_mode;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->omni_shadow_mode = p_mode;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
RS::LightOmniShadowMode LightStorage::light_omni_get_shadow_mode(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_OMNI_SHADOW_CUBE);
return light->omni_shadow_mode;
}
void LightStorage::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->directional_shadow_mode = p_mode;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
void LightStorage::light_directional_set_blend_splits(RID p_light, bool p_enable) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->directional_blend_splits = p_enable;
light->version++;
light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT);
}
bool LightStorage::light_directional_get_blend_splits(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, false);
return light->directional_blend_splits;
}
void LightStorage::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) {
Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND(!light);
light->directional_sky_mode = p_mode;
}
RS::LightDirectionalSkyMode LightStorage::light_directional_get_sky_mode(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY);
return light->directional_sky_mode;
}
RS::LightDirectionalShadowMode LightStorage::light_directional_get_shadow_mode(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL);
return light->directional_shadow_mode;
}
RS::LightBakeMode LightStorage::light_get_bake_mode(RID p_light) {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, RS::LIGHT_BAKE_DISABLED);
return light->bake_mode;
}
uint64_t LightStorage::light_get_version(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, 0);
return light->version;
}
AABB LightStorage::light_get_aabb(RID p_light) const {
const Light *light = light_owner.get_or_null(p_light);
ERR_FAIL_COND_V(!light, AABB());
switch (light->type) {
case RS::LIGHT_SPOT: {
float len = light->param[RS::LIGHT_PARAM_RANGE];
float size = Math::tan(Math::deg_to_rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len;
return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
};
case RS::LIGHT_OMNI: {
float r = light->param[RS::LIGHT_PARAM_RANGE];
return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
};
case RS::LIGHT_DIRECTIONAL: {
return AABB();
};
}
ERR_FAIL_V(AABB());
}
/* LIGHT INSTANCE API */
RID LightStorage::light_instance_create(RID p_light) {
RID li = light_instance_owner.make_rid(LightInstance());
LightInstance *light_instance = light_instance_owner.get_or_null(li);
light_instance->self = li;
light_instance->light = p_light;
light_instance->light_type = light_get_type(p_light);
return li;
}
void LightStorage::light_instance_free(RID p_light_instance) {
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance_owner.free(p_light_instance);
}
void LightStorage::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->transform = p_transform;
}
void LightStorage::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
ERR_FAIL_COND(!light_instance);
light_instance->aabb = p_aabb;
}
void LightStorage::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
}
void LightStorage::light_instance_mark_visible(RID p_light_instance) {
}
/* PROBE API */
RID LightStorage::reflection_probe_allocate() {
return RID();
}
void LightStorage::reflection_probe_initialize(RID p_rid) {
}
void LightStorage::reflection_probe_free(RID p_rid) {
}
void LightStorage::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) {
}
void LightStorage::reflection_probe_set_intensity(RID p_probe, float p_intensity) {
}
void LightStorage::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) {
}
void LightStorage::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) {
}
void LightStorage::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) {
}
void LightStorage::reflection_probe_set_max_distance(RID p_probe, float p_distance) {
}
void LightStorage::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {
}
void LightStorage::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {
}
void LightStorage::reflection_probe_set_as_interior(RID p_probe, bool p_enable) {
}
void LightStorage::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {
}
void LightStorage::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {
}
void LightStorage::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {
}
void LightStorage::reflection_probe_set_resolution(RID p_probe, int p_resolution) {
}
AABB LightStorage::reflection_probe_get_aabb(RID p_probe) const {
return AABB();
}
RS::ReflectionProbeUpdateMode LightStorage::reflection_probe_get_update_mode(RID p_probe) const {
return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE;
}
uint32_t LightStorage::reflection_probe_get_cull_mask(RID p_probe) const {
return 0;
}
Vector3 LightStorage::reflection_probe_get_extents(RID p_probe) const {
return Vector3();
}
Vector3 LightStorage::reflection_probe_get_origin_offset(RID p_probe) const {
return Vector3();
}
float LightStorage::reflection_probe_get_origin_max_distance(RID p_probe) const {
return 0.0;
}
bool LightStorage::reflection_probe_renders_shadows(RID p_probe) const {
return false;
}
void LightStorage::reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) {
}
float LightStorage::reflection_probe_get_mesh_lod_threshold(RID p_probe) const {
return 0.0;
}
/* REFLECTION ATLAS */
RID LightStorage::reflection_atlas_create() {
return RID();
}
void LightStorage::reflection_atlas_free(RID p_ref_atlas) {
}
int LightStorage::reflection_atlas_get_size(RID p_ref_atlas) const {
return 0;
}
void LightStorage::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
}
/* REFLECTION PROBE INSTANCE */
RID LightStorage::reflection_probe_instance_create(RID p_probe) {
return RID();
}
void LightStorage::reflection_probe_instance_free(RID p_instance) {
}
void LightStorage::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) {
}
void LightStorage::reflection_probe_release_atlas_index(RID p_instance) {
}
bool LightStorage::reflection_probe_instance_needs_redraw(RID p_instance) {
return false;
}
bool LightStorage::reflection_probe_instance_has_reflection(RID p_instance) {
return false;
}
bool LightStorage::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
return false;
}
Ref<RenderSceneBuffers> LightStorage::reflection_probe_atlas_get_render_buffers(RID p_reflection_atlas) {
return Ref<RenderSceneBuffers>();
}
bool LightStorage::reflection_probe_instance_postprocess_step(RID p_instance) {
return true;
}
/* LIGHTMAP CAPTURE */
RID LightStorage::lightmap_allocate() {
return lightmap_owner.allocate_rid();
}
void LightStorage::lightmap_initialize(RID p_rid) {
lightmap_owner.initialize_rid(p_rid, Lightmap());
}
void LightStorage::lightmap_free(RID p_rid) {
Lightmap *lightmap = lightmap_owner.get_or_null(p_rid);
lightmap->dependency.deleted_notify(p_rid);
lightmap_owner.free(p_rid);
}
void LightStorage::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) {
}
void LightStorage::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) {
}
void LightStorage::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) {
}
void LightStorage::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
}
void LightStorage::lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) {
}
PackedVector3Array LightStorage::lightmap_get_probe_capture_points(RID p_lightmap) const {
return PackedVector3Array();
}
PackedColorArray LightStorage::lightmap_get_probe_capture_sh(RID p_lightmap) const {
return PackedColorArray();
}
PackedInt32Array LightStorage::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const {
return PackedInt32Array();
}
PackedInt32Array LightStorage::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const {
return PackedInt32Array();
}
AABB LightStorage::lightmap_get_aabb(RID p_lightmap) const {
return AABB();
}
void LightStorage::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) {
}
bool LightStorage::lightmap_is_interior(RID p_lightmap) const {
return false;
}
void LightStorage::lightmap_set_probe_capture_update_speed(float p_speed) {
}
float LightStorage::lightmap_get_probe_capture_update_speed() const {
return 0;
}
/* LIGHTMAP INSTANCE */
RID LightStorage::lightmap_instance_create(RID p_lightmap) {
return RID();
}
void LightStorage::lightmap_instance_free(RID p_lightmap) {
}
void LightStorage::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) {
}
/* LIGHT SHADOW MAPPING */
/*
RID LightStorage::canvas_light_occluder_create() {
CanvasOccluder *co = memnew(CanvasOccluder);
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
return canvas_occluder_owner.make_rid(co);
}
void LightStorage::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector<Vector2> &p_lines) {
CanvasOccluder *co = canvas_occluder_owner.get(p_occluder);
ERR_FAIL_COND(!co);
co->lines = p_lines;
if (p_lines.size() != co->len) {
if (co->index_id) {
glDeleteBuffers(1, &co->index_id);
} if (co->vertex_id) {
glDeleteBuffers(1, &co->vertex_id);
}
co->index_id = 0;
co->vertex_id = 0;
co->len = 0;
}
if (p_lines.size()) {
PoolVector<float> geometry;
PoolVector<uint16_t> indices;
int lc = p_lines.size();
geometry.resize(lc * 6);
indices.resize(lc * 3);
PoolVector<float>::Write vw = geometry.write();
PoolVector<uint16_t>::Write iw = indices.write();
PoolVector<Vector2>::Read lr = p_lines.read();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vw[i * 12 + 0] = lr[i * 2 + 0].x;
vw[i * 12 + 1] = lr[i * 2 + 0].y;
vw[i * 12 + 2] = POLY_HEIGHT;
vw[i * 12 + 3] = lr[i * 2 + 1].x;
vw[i * 12 + 4] = lr[i * 2 + 1].y;
vw[i * 12 + 5] = POLY_HEIGHT;
vw[i * 12 + 6] = lr[i * 2 + 1].x;
vw[i * 12 + 7] = lr[i * 2 + 1].y;
vw[i * 12 + 8] = -POLY_HEIGHT;
vw[i * 12 + 9] = lr[i * 2 + 0].x;
vw[i * 12 + 10] = lr[i * 2 + 0].y;
vw[i * 12 + 11] = -POLY_HEIGHT;
iw[i * 6 + 0] = i * 4 + 0;
iw[i * 6 + 1] = i * 4 + 1;
iw[i * 6 + 2] = i * 4 + 2;
iw[i * 6 + 3] = i * 4 + 2;
iw[i * 6 + 4] = i * 4 + 3;
iw[i * 6 + 5] = i * 4 + 0;
}
//if same buffer len is being set, just use BufferSubData to avoid a pipeline flush
if (!co->vertex_id) {
glGenBuffers(1, &co->vertex_id);
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW);
} else {
glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id);
glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr());
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
if (!co->index_id) {
glGenBuffers(1, &co->index_id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr());
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
co->len = lc;
}
}
*/
/* SHADOW ATLAS API */
RID LightStorage::shadow_atlas_create() {
return RID();
}
void LightStorage::shadow_atlas_free(RID p_atlas) {
}
void LightStorage::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
}
void LightStorage::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
}
bool LightStorage::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
return false;
}
void LightStorage::shadow_atlas_update(RID p_atlas) {
}
void LightStorage::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
}
int LightStorage::get_directional_light_shadow_size(RID p_light_intance) {
return 0;
}
void LightStorage::set_directional_shadow_count(int p_count) {
}
#endif // !GLES3_ENABLED