virtualx-engine/core/math/vector3.cpp
Rémi Verschelde 9e37599f36 Core: Rename math 'phi' arguments to 'angle'
(cherry picked from commit e7a58a7eb6)
2022-05-05 15:02:46 +02:00

156 lines
5 KiB
C++

/*************************************************************************/
/* vector3.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "vector3.h"
#include "core/math/basis.h"
void Vector3::rotate(const Vector3 &p_axis, real_t p_angle) {
*this = Basis(p_axis, p_angle).xform(*this);
}
Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_angle) const {
Vector3 r = *this;
r.rotate(p_axis, p_angle);
return r;
}
void Vector3::set_axis(int p_axis, real_t p_value) {
ERR_FAIL_INDEX(p_axis, 3);
coord[p_axis] = p_value;
}
real_t Vector3::get_axis(int p_axis) const {
ERR_FAIL_INDEX_V(p_axis, 3, 0);
return operator[](p_axis);
}
void Vector3::snap(Vector3 p_val) {
x = Math::stepify(x, p_val.x);
y = Math::stepify(y, p_val.y);
z = Math::stepify(z, p_val.z);
}
Vector3 Vector3::snapped(Vector3 p_val) const {
Vector3 v = *this;
v.snap(p_val);
return v;
}
Vector3 Vector3::limit_length(const real_t p_len) const {
const real_t l = length();
Vector3 v = *this;
if (l > 0 && p_len < l) {
v /= l;
v *= p_len;
}
return v;
}
Vector3 Vector3::cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const {
Vector3 p0 = p_pre_a;
Vector3 p1 = *this;
Vector3 p2 = p_b;
Vector3 p3 = p_post_b;
{
//normalize
real_t ab = p0.distance_to(p1);
real_t bc = p1.distance_to(p2);
real_t cd = p2.distance_to(p3);
if (ab > 0) {
p0 = p1 + (p0 - p1) * (bc / ab);
}
if (cd > 0) {
p3 = p2 + (p3 - p2) * (bc / cd);
}
}
real_t t = p_weight;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector3 out;
out = 0.5f *
((p1 * 2) +
(-p0 + p2) * t +
(2 * p0 - 5 * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3 * p1 - 3 * p2 + p3) * t3);
return out;
}
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const {
Vector3 p0 = p_pre_a;
Vector3 p1 = *this;
Vector3 p2 = p_b;
Vector3 p3 = p_post_b;
real_t t = p_weight;
real_t t2 = t * t;
real_t t3 = t2 * t;
Vector3 out;
out = 0.5f *
((p1 * 2) +
(-p0 + p2) * t +
(2 * p0 - 5 * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3 * p1 - 3 * p2 + p3) * t3);
return out;
}
Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const {
Vector3 v = *this;
Vector3 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
Basis Vector3::outer(const Vector3 &p_b) const {
Vector3 row0(x * p_b.x, x * p_b.y, x * p_b.z);
Vector3 row1(y * p_b.x, y * p_b.y, y * p_b.z);
Vector3 row2(z * p_b.x, z * p_b.y, z * p_b.z);
return Basis(row0, row1, row2);
}
Basis Vector3::to_diagonal_matrix() const {
return Basis(x, 0, 0,
0, y, 0,
0, 0, z);
}
bool Vector3::is_equal_approx(const Vector3 &p_v) const {
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z);
}
Vector3::operator String() const {
return (rtos(x) + ", " + rtos(y) + ", " + rtos(z));
}