virtualx-engine/thirdparty/basis_universal/encoder/basisu_gpu_texture.cpp
2024-10-12 18:02:44 +02:00

2129 lines
63 KiB
C++

// basisu_gpu_texture.cpp
// Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basisu_gpu_texture.h"
#include "basisu_enc.h"
#include "basisu_pvrtc1_4.h"
#include "3rdparty/android_astc_decomp.h"
#include "basisu_bc7enc.h"
#include "../transcoder/basisu_astc_hdr_core.h"
namespace basisu
{
//------------------------------------------------------------------------------------------------
// ETC2 EAC
void unpack_etc2_eac(const void *pBlock_bits, color_rgba *pPixels)
{
static_assert(sizeof(eac_a8_block) == 8, "sizeof(eac_a8_block) == 8");
const eac_a8_block *pBlock = static_cast<const eac_a8_block *>(pBlock_bits);
const int8_t *pTable = g_etc2_eac_tables[pBlock->m_table];
const uint64_t selector_bits = pBlock->get_selector_bits();
const int32_t base = pBlock->m_base;
const int32_t mul = pBlock->m_multiplier;
pPixels[0].a = clamp255(base + pTable[pBlock->get_selector(0, 0, selector_bits)] * mul);
pPixels[1].a = clamp255(base + pTable[pBlock->get_selector(1, 0, selector_bits)] * mul);
pPixels[2].a = clamp255(base + pTable[pBlock->get_selector(2, 0, selector_bits)] * mul);
pPixels[3].a = clamp255(base + pTable[pBlock->get_selector(3, 0, selector_bits)] * mul);
pPixels[4].a = clamp255(base + pTable[pBlock->get_selector(0, 1, selector_bits)] * mul);
pPixels[5].a = clamp255(base + pTable[pBlock->get_selector(1, 1, selector_bits)] * mul);
pPixels[6].a = clamp255(base + pTable[pBlock->get_selector(2, 1, selector_bits)] * mul);
pPixels[7].a = clamp255(base + pTable[pBlock->get_selector(3, 1, selector_bits)] * mul);
pPixels[8].a = clamp255(base + pTable[pBlock->get_selector(0, 2, selector_bits)] * mul);
pPixels[9].a = clamp255(base + pTable[pBlock->get_selector(1, 2, selector_bits)] * mul);
pPixels[10].a = clamp255(base + pTable[pBlock->get_selector(2, 2, selector_bits)] * mul);
pPixels[11].a = clamp255(base + pTable[pBlock->get_selector(3, 2, selector_bits)] * mul);
pPixels[12].a = clamp255(base + pTable[pBlock->get_selector(0, 3, selector_bits)] * mul);
pPixels[13].a = clamp255(base + pTable[pBlock->get_selector(1, 3, selector_bits)] * mul);
pPixels[14].a = clamp255(base + pTable[pBlock->get_selector(2, 3, selector_bits)] * mul);
pPixels[15].a = clamp255(base + pTable[pBlock->get_selector(3, 3, selector_bits)] * mul);
}
//------------------------------------------------------------------------------------------------
// BC1
struct bc1_block
{
enum { cTotalEndpointBytes = 2, cTotalSelectorBytes = 4 };
uint8_t m_low_color[cTotalEndpointBytes];
uint8_t m_high_color[cTotalEndpointBytes];
uint8_t m_selectors[cTotalSelectorBytes];
inline uint32_t get_high_color() const { return m_high_color[0] | (m_high_color[1] << 8U); }
inline uint32_t get_low_color() const { return m_low_color[0] | (m_low_color[1] << 8U); }
static void unpack_color(uint32_t c, uint32_t &r, uint32_t &g, uint32_t &b)
{
r = (c >> 11) & 31;
g = (c >> 5) & 63;
b = c & 31;
r = (r << 3) | (r >> 2);
g = (g << 2) | (g >> 4);
b = (b << 3) | (b >> 2);
}
inline uint32_t get_selector(uint32_t x, uint32_t y) const { assert((x < 4U) && (y < 4U)); return (m_selectors[y] >> (x * 2)) & 3; }
};
// Returns true if the block uses 3 color punchthrough alpha mode.
bool unpack_bc1(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha)
{
static_assert(sizeof(bc1_block) == 8, "sizeof(bc1_block) == 8");
const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits);
const uint32_t l = pBlock->get_low_color();
const uint32_t h = pBlock->get_high_color();
color_rgba c[4];
uint32_t r0, g0, b0, r1, g1, b1;
bc1_block::unpack_color(l, r0, g0, b0);
bc1_block::unpack_color(h, r1, g1, b1);
c[0].set_noclamp_rgba(r0, g0, b0, 255);
c[1].set_noclamp_rgba(r1, g1, b1, 255);
bool used_punchthrough = false;
if (l > h)
{
c[2].set_noclamp_rgba((r0 * 2 + r1) / 3, (g0 * 2 + g1) / 3, (b0 * 2 + b1) / 3, 255);
c[3].set_noclamp_rgba((r1 * 2 + r0) / 3, (g1 * 2 + g0) / 3, (b1 * 2 + b0) / 3, 255);
}
else
{
c[2].set_noclamp_rgba((r0 + r1) / 2, (g0 + g1) / 2, (b0 + b1) / 2, 255);
c[3].set_noclamp_rgba(0, 0, 0, 0);
used_punchthrough = true;
}
if (set_alpha)
{
for (uint32_t y = 0; y < 4; y++, pPixels += 4)
{
pPixels[0] = c[pBlock->get_selector(0, y)];
pPixels[1] = c[pBlock->get_selector(1, y)];
pPixels[2] = c[pBlock->get_selector(2, y)];
pPixels[3] = c[pBlock->get_selector(3, y)];
}
}
else
{
for (uint32_t y = 0; y < 4; y++, pPixels += 4)
{
pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]);
pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]);
pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]);
pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]);
}
}
return used_punchthrough;
}
bool unpack_bc1_nv(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha)
{
static_assert(sizeof(bc1_block) == 8, "sizeof(bc1_block) == 8");
const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits);
const uint32_t l = pBlock->get_low_color();
const uint32_t h = pBlock->get_high_color();
color_rgba c[4];
int r0 = (l >> 11) & 31;
int g0 = (l >> 5) & 63;
int b0 = l & 31;
int r1 = (h >> 11) & 31;
int g1 = (h >> 5) & 63;
int b1 = h & 31;
c[0].b = (uint8_t)((3 * b0 * 22) / 8);
c[0].g = (uint8_t)((g0 << 2) | (g0 >> 4));
c[0].r = (uint8_t)((3 * r0 * 22) / 8);
c[0].a = 0xFF;
c[1].r = (uint8_t)((3 * r1 * 22) / 8);
c[1].g = (uint8_t)((g1 << 2) | (g1 >> 4));
c[1].b = (uint8_t)((3 * b1 * 22) / 8);
c[1].a = 0xFF;
int gdiff = c[1].g - c[0].g;
bool used_punchthrough = false;
if (l > h)
{
c[2].r = (uint8_t)(((2 * r0 + r1) * 22) / 8);
c[2].g = (uint8_t)(((256 * c[0].g + gdiff/4 + 128 + gdiff * 80) / 256));
c[2].b = (uint8_t)(((2 * b0 + b1) * 22) / 8);
c[2].a = 0xFF;
c[3].r = (uint8_t)(((2 * r1 + r0) * 22) / 8);
c[3].g = (uint8_t)((256 * c[1].g - gdiff/4 + 128 - gdiff * 80) / 256);
c[3].b = (uint8_t)(((2 * b1 + b0) * 22) / 8);
c[3].a = 0xFF;
}
else
{
c[2].r = (uint8_t)(((r0 + r1) * 33) / 8);
c[2].g = (uint8_t)((256 * c[0].g + gdiff/4 + 128 + gdiff * 128) / 256);
c[2].b = (uint8_t)(((b0 + b1) * 33) / 8);
c[2].a = 0xFF;
c[3].set_noclamp_rgba(0, 0, 0, 0);
used_punchthrough = true;
}
if (set_alpha)
{
for (uint32_t y = 0; y < 4; y++, pPixels += 4)
{
pPixels[0] = c[pBlock->get_selector(0, y)];
pPixels[1] = c[pBlock->get_selector(1, y)];
pPixels[2] = c[pBlock->get_selector(2, y)];
pPixels[3] = c[pBlock->get_selector(3, y)];
}
}
else
{
for (uint32_t y = 0; y < 4; y++, pPixels += 4)
{
pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]);
pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]);
pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]);
pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]);
}
}
return used_punchthrough;
}
static inline int interp_5_6_amd(int c0, int c1) { assert(c0 < 256 && c1 < 256); return (c0 * 43 + c1 * 21 + 32) >> 6; }
static inline int interp_half_5_6_amd(int c0, int c1) { assert(c0 < 256 && c1 < 256); return (c0 + c1 + 1) >> 1; }
bool unpack_bc1_amd(const void *pBlock_bits, color_rgba *pPixels, bool set_alpha)
{
const bc1_block *pBlock = static_cast<const bc1_block *>(pBlock_bits);
const uint32_t l = pBlock->get_low_color();
const uint32_t h = pBlock->get_high_color();
color_rgba c[4];
uint32_t r0, g0, b0, r1, g1, b1;
bc1_block::unpack_color(l, r0, g0, b0);
bc1_block::unpack_color(h, r1, g1, b1);
c[0].set_noclamp_rgba(r0, g0, b0, 255);
c[1].set_noclamp_rgba(r1, g1, b1, 255);
bool used_punchthrough = false;
if (l > h)
{
c[2].set_noclamp_rgba(interp_5_6_amd(r0, r1), interp_5_6_amd(g0, g1), interp_5_6_amd(b0, b1), 255);
c[3].set_noclamp_rgba(interp_5_6_amd(r1, r0), interp_5_6_amd(g1, g0), interp_5_6_amd(b1, b0), 255);
}
else
{
c[2].set_noclamp_rgba(interp_half_5_6_amd(r0, r1), interp_half_5_6_amd(g0, g1), interp_half_5_6_amd(b0, b1), 255);
c[3].set_noclamp_rgba(0, 0, 0, 0);
used_punchthrough = true;
}
if (set_alpha)
{
for (uint32_t y = 0; y < 4; y++, pPixels += 4)
{
pPixels[0] = c[pBlock->get_selector(0, y)];
pPixels[1] = c[pBlock->get_selector(1, y)];
pPixels[2] = c[pBlock->get_selector(2, y)];
pPixels[3] = c[pBlock->get_selector(3, y)];
}
}
else
{
for (uint32_t y = 0; y < 4; y++, pPixels += 4)
{
pPixels[0].set_rgb(c[pBlock->get_selector(0, y)]);
pPixels[1].set_rgb(c[pBlock->get_selector(1, y)]);
pPixels[2].set_rgb(c[pBlock->get_selector(2, y)]);
pPixels[3].set_rgb(c[pBlock->get_selector(3, y)]);
}
}
return used_punchthrough;
}
//------------------------------------------------------------------------------------------------
// BC3-5
struct bc4_block
{
enum { cBC4SelectorBits = 3, cTotalSelectorBytes = 6, cMaxSelectorValues = 8 };
uint8_t m_endpoints[2];
uint8_t m_selectors[cTotalSelectorBytes];
inline uint32_t get_low_alpha() const { return m_endpoints[0]; }
inline uint32_t get_high_alpha() const { return m_endpoints[1]; }
inline bool is_alpha6_block() const { return get_low_alpha() <= get_high_alpha(); }
inline uint64_t get_selector_bits() const
{
return ((uint64_t)((uint32_t)m_selectors[0] | ((uint32_t)m_selectors[1] << 8U) | ((uint32_t)m_selectors[2] << 16U) | ((uint32_t)m_selectors[3] << 24U))) |
(((uint64_t)m_selectors[4]) << 32U) |
(((uint64_t)m_selectors[5]) << 40U);
}
inline uint32_t get_selector(uint32_t x, uint32_t y, uint64_t selector_bits) const
{
assert((x < 4U) && (y < 4U));
return (selector_bits >> (((y * 4) + x) * cBC4SelectorBits)) & (cMaxSelectorValues - 1);
}
static inline uint32_t get_block_values6(uint8_t *pDst, uint32_t l, uint32_t h)
{
pDst[0] = static_cast<uint8_t>(l);
pDst[1] = static_cast<uint8_t>(h);
pDst[2] = static_cast<uint8_t>((l * 4 + h) / 5);
pDst[3] = static_cast<uint8_t>((l * 3 + h * 2) / 5);
pDst[4] = static_cast<uint8_t>((l * 2 + h * 3) / 5);
pDst[5] = static_cast<uint8_t>((l + h * 4) / 5);
pDst[6] = 0;
pDst[7] = 255;
return 6;
}
static inline uint32_t get_block_values8(uint8_t *pDst, uint32_t l, uint32_t h)
{
pDst[0] = static_cast<uint8_t>(l);
pDst[1] = static_cast<uint8_t>(h);
pDst[2] = static_cast<uint8_t>((l * 6 + h) / 7);
pDst[3] = static_cast<uint8_t>((l * 5 + h * 2) / 7);
pDst[4] = static_cast<uint8_t>((l * 4 + h * 3) / 7);
pDst[5] = static_cast<uint8_t>((l * 3 + h * 4) / 7);
pDst[6] = static_cast<uint8_t>((l * 2 + h * 5) / 7);
pDst[7] = static_cast<uint8_t>((l + h * 6) / 7);
return 8;
}
static inline uint32_t get_block_values(uint8_t *pDst, uint32_t l, uint32_t h)
{
if (l > h)
return get_block_values8(pDst, l, h);
else
return get_block_values6(pDst, l, h);
}
};
void unpack_bc4(const void *pBlock_bits, uint8_t *pPixels, uint32_t stride)
{
static_assert(sizeof(bc4_block) == 8, "sizeof(bc4_block) == 8");
const bc4_block *pBlock = static_cast<const bc4_block *>(pBlock_bits);
uint8_t sel_values[8];
bc4_block::get_block_values(sel_values, pBlock->get_low_alpha(), pBlock->get_high_alpha());
const uint64_t selector_bits = pBlock->get_selector_bits();
for (uint32_t y = 0; y < 4; y++, pPixels += (stride * 4U))
{
pPixels[0] = sel_values[pBlock->get_selector(0, y, selector_bits)];
pPixels[stride * 1] = sel_values[pBlock->get_selector(1, y, selector_bits)];
pPixels[stride * 2] = sel_values[pBlock->get_selector(2, y, selector_bits)];
pPixels[stride * 3] = sel_values[pBlock->get_selector(3, y, selector_bits)];
}
}
// Returns false if the block uses 3-color punchthrough alpha mode, which isn't supported on some GPU's for BC3.
bool unpack_bc3(const void *pBlock_bits, color_rgba *pPixels)
{
bool success = true;
if (unpack_bc1((const uint8_t *)pBlock_bits + sizeof(bc4_block), pPixels, true))
success = false;
unpack_bc4(pBlock_bits, &pPixels[0].a, sizeof(color_rgba));
return success;
}
// writes RG
void unpack_bc5(const void *pBlock_bits, color_rgba *pPixels)
{
unpack_bc4(pBlock_bits, &pPixels[0].r, sizeof(color_rgba));
unpack_bc4((const uint8_t *)pBlock_bits + sizeof(bc4_block), &pPixels[0].g, sizeof(color_rgba));
}
//------------------------------------------------------------------------------------------------
// ATC isn't officially documented, so I'm assuming these references:
// http://www.guildsoftware.com/papers/2012.Converting.DXTC.to.ATC.pdf
// https://github.com/Triang3l/S3TConv/blob/master/s3tconv_atitc.c
// The paper incorrectly says the ATC lerp factors are 1/3 and 2/3, but they are actually 3/8 and 5/8.
void unpack_atc(const void* pBlock_bits, color_rgba* pPixels)
{
const uint8_t* pBytes = static_cast<const uint8_t*>(pBlock_bits);
const uint16_t color0 = pBytes[0] | (pBytes[1] << 8U);
const uint16_t color1 = pBytes[2] | (pBytes[3] << 8U);
uint32_t sels = pBytes[4] | (pBytes[5] << 8U) | (pBytes[6] << 16U) | (pBytes[7] << 24U);
const bool mode = (color0 & 0x8000) != 0;
color_rgba c[4];
c[0].set((color0 >> 10) & 31, (color0 >> 5) & 31, color0 & 31, 255);
c[0].r = (c[0].r << 3) | (c[0].r >> 2);
c[0].g = (c[0].g << 3) | (c[0].g >> 2);
c[0].b = (c[0].b << 3) | (c[0].b >> 2);
c[3].set((color1 >> 11) & 31, (color1 >> 5) & 63, color1 & 31, 255);
c[3].r = (c[3].r << 3) | (c[3].r >> 2);
c[3].g = (c[3].g << 2) | (c[3].g >> 4);
c[3].b = (c[3].b << 3) | (c[3].b >> 2);
if (mode)
{
c[1].set(basisu::maximum(0, c[0].r - (c[3].r >> 2)), basisu::maximum(0, c[0].g - (c[3].g >> 2)), basisu::maximum(0, c[0].b - (c[3].b >> 2)), 255);
c[2] = c[0];
c[0].set(0, 0, 0, 255);
}
else
{
c[1].r = (c[0].r * 5 + c[3].r * 3) >> 3;
c[1].g = (c[0].g * 5 + c[3].g * 3) >> 3;
c[1].b = (c[0].b * 5 + c[3].b * 3) >> 3;
c[2].r = (c[0].r * 3 + c[3].r * 5) >> 3;
c[2].g = (c[0].g * 3 + c[3].g * 5) >> 3;
c[2].b = (c[0].b * 3 + c[3].b * 5) >> 3;
}
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t s = sels & 3;
pPixels[i] = c[s];
sels >>= 2;
}
}
//------------------------------------------------------------------------------------------------
// BC7 mode 0-7 decompression.
// Instead of one monster routine to unpack all the BC7 modes, we're lumping the 3 subset, 2 subset, 1 subset, and dual plane modes together into simple shared routines.
static inline uint32_t bc7_dequant(uint32_t val, uint32_t pbit, uint32_t val_bits) { assert(val < (1U << val_bits)); assert(pbit < 2); assert(val_bits >= 4 && val_bits <= 8); const uint32_t total_bits = val_bits + 1; val = (val << 1) | pbit; val <<= (8 - total_bits); val |= (val >> total_bits); assert(val <= 255); return val; }
static inline uint32_t bc7_dequant(uint32_t val, uint32_t val_bits) { assert(val < (1U << val_bits)); assert(val_bits >= 4 && val_bits <= 8); val <<= (8 - val_bits); val |= (val >> val_bits); assert(val <= 255); return val; }
static inline uint32_t bc7_interp2(uint32_t l, uint32_t h, uint32_t w) { assert(w < 4); return (l * (64 - basist::g_bc7_weights2[w]) + h * basist::g_bc7_weights2[w] + 32) >> 6; }
static inline uint32_t bc7_interp3(uint32_t l, uint32_t h, uint32_t w) { assert(w < 8); return (l * (64 - basist::g_bc7_weights3[w]) + h * basist::g_bc7_weights3[w] + 32) >> 6; }
static inline uint32_t bc7_interp4(uint32_t l, uint32_t h, uint32_t w) { assert(w < 16); return (l * (64 - basist::g_bc7_weights4[w]) + h * basist::g_bc7_weights4[w] + 32) >> 6; }
static inline uint32_t bc7_interp(uint32_t l, uint32_t h, uint32_t w, uint32_t bits)
{
assert(l <= 255 && h <= 255);
switch (bits)
{
case 2: return bc7_interp2(l, h, w);
case 3: return bc7_interp3(l, h, w);
case 4: return bc7_interp4(l, h, w);
default:
break;
}
return 0;
}
bool unpack_bc7_mode0_2(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels)
{
//const uint32_t SUBSETS = 3;
const uint32_t ENDPOINTS = 6;
const uint32_t COMPS = 3;
const uint32_t WEIGHT_BITS = (mode == 0) ? 3 : 2;
const uint32_t ENDPOINT_BITS = (mode == 0) ? 4 : 5;
const uint32_t PBITS = (mode == 0) ? 6 : 0;
const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS;
uint32_t bit_offset = 0;
const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits);
if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false;
const uint32_t part = read_bits32(pBuf, bit_offset, (mode == 0) ? 4 : 6);
color_rgba endpoints[ENDPOINTS];
for (uint32_t c = 0; c < COMPS; c++)
for (uint32_t e = 0; e < ENDPOINTS; e++)
endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, ENDPOINT_BITS);
uint32_t pbits[6];
for (uint32_t p = 0; p < PBITS; p++)
pbits[p] = read_bits32(pBuf, bit_offset, 1);
uint32_t weights[16];
for (uint32_t i = 0; i < 16; i++)
weights[i] = read_bits32(pBuf, bit_offset, ((!i) || (i == basist::g_bc7_table_anchor_index_third_subset_1[part]) || (i == basist::g_bc7_table_anchor_index_third_subset_2[part])) ? (WEIGHT_BITS - 1) : WEIGHT_BITS);
assert(bit_offset == 128);
for (uint32_t e = 0; e < ENDPOINTS; e++)
for (uint32_t c = 0; c < 4; c++)
endpoints[e][c] = (uint8_t)((c == 3) ? 255 : (PBITS ? bc7_dequant(endpoints[e][c], pbits[e], ENDPOINT_BITS) : bc7_dequant(endpoints[e][c], ENDPOINT_BITS)));
color_rgba block_colors[3][8];
for (uint32_t s = 0; s < 3; s++)
for (uint32_t i = 0; i < WEIGHT_VALS; i++)
{
for (uint32_t c = 0; c < 3; c++)
block_colors[s][i][c] = (uint8_t)bc7_interp(endpoints[s * 2 + 0][c], endpoints[s * 2 + 1][c], i, WEIGHT_BITS);
block_colors[s][i][3] = 255;
}
for (uint32_t i = 0; i < 16; i++)
pPixels[i] = block_colors[basist::g_bc7_partition3[part * 16 + i]][weights[i]];
return true;
}
bool unpack_bc7_mode1_3_7(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels)
{
//const uint32_t SUBSETS = 2;
const uint32_t ENDPOINTS = 4;
const uint32_t COMPS = (mode == 7) ? 4 : 3;
const uint32_t WEIGHT_BITS = (mode == 1) ? 3 : 2;
const uint32_t ENDPOINT_BITS = (mode == 7) ? 5 : ((mode == 1) ? 6 : 7);
const uint32_t PBITS = (mode == 1) ? 2 : 4;
const uint32_t SHARED_PBITS = (mode == 1) ? true : false;
const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS;
uint32_t bit_offset = 0;
const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits);
if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false;
const uint32_t part = read_bits32(pBuf, bit_offset, 6);
color_rgba endpoints[ENDPOINTS];
for (uint32_t c = 0; c < COMPS; c++)
for (uint32_t e = 0; e < ENDPOINTS; e++)
endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, ENDPOINT_BITS);
uint32_t pbits[4];
for (uint32_t p = 0; p < PBITS; p++)
pbits[p] = read_bits32(pBuf, bit_offset, 1);
uint32_t weights[16];
for (uint32_t i = 0; i < 16; i++)
weights[i] = read_bits32(pBuf, bit_offset, ((!i) || (i == basist::g_bc7_table_anchor_index_second_subset[part])) ? (WEIGHT_BITS - 1) : WEIGHT_BITS);
assert(bit_offset == 128);
for (uint32_t e = 0; e < ENDPOINTS; e++)
for (uint32_t c = 0; c < 4; c++)
endpoints[e][c] = (uint8_t)((c == ((mode == 7U) ? 4U : 3U)) ? 255 : bc7_dequant(endpoints[e][c], pbits[SHARED_PBITS ? (e >> 1) : e], ENDPOINT_BITS));
color_rgba block_colors[2][8];
for (uint32_t s = 0; s < 2; s++)
for (uint32_t i = 0; i < WEIGHT_VALS; i++)
{
for (uint32_t c = 0; c < COMPS; c++)
block_colors[s][i][c] = (uint8_t)bc7_interp(endpoints[s * 2 + 0][c], endpoints[s * 2 + 1][c], i, WEIGHT_BITS);
block_colors[s][i][3] = (COMPS == 3) ? 255 : block_colors[s][i][3];
}
for (uint32_t i = 0; i < 16; i++)
pPixels[i] = block_colors[basist::g_bc7_partition2[part * 16 + i]][weights[i]];
return true;
}
bool unpack_bc7_mode4_5(uint32_t mode, const void* pBlock_bits, color_rgba* pPixels)
{
const uint32_t ENDPOINTS = 2;
const uint32_t COMPS = 4;
const uint32_t WEIGHT_BITS = 2;
const uint32_t A_WEIGHT_BITS = (mode == 4) ? 3 : 2;
const uint32_t ENDPOINT_BITS = (mode == 4) ? 5 : 7;
const uint32_t A_ENDPOINT_BITS = (mode == 4) ? 6 : 8;
//const uint32_t WEIGHT_VALS = 1 << WEIGHT_BITS;
//const uint32_t A_WEIGHT_VALS = 1 << A_WEIGHT_BITS;
uint32_t bit_offset = 0;
const uint8_t* pBuf = static_cast<const uint8_t*>(pBlock_bits);
if (read_bits32(pBuf, bit_offset, mode + 1) != (1U << mode)) return false;
const uint32_t comp_rot = read_bits32(pBuf, bit_offset, 2);
const uint32_t index_mode = (mode == 4) ? read_bits32(pBuf, bit_offset, 1) : 0;
color_rgba endpoints[ENDPOINTS];
for (uint32_t c = 0; c < COMPS; c++)
for (uint32_t e = 0; e < ENDPOINTS; e++)
endpoints[e][c] = (uint8_t)read_bits32(pBuf, bit_offset, (c == 3) ? A_ENDPOINT_BITS : ENDPOINT_BITS);
const uint32_t weight_bits[2] = { index_mode ? A_WEIGHT_BITS : WEIGHT_BITS, index_mode ? WEIGHT_BITS : A_WEIGHT_BITS };
uint32_t weights[16], a_weights[16];
for (uint32_t i = 0; i < 16; i++)
(index_mode ? a_weights : weights)[i] = read_bits32(pBuf, bit_offset, weight_bits[index_mode] - ((!i) ? 1 : 0));
for (uint32_t i = 0; i < 16; i++)
(index_mode ? weights : a_weights)[i] = read_bits32(pBuf, bit_offset, weight_bits[1 - index_mode] - ((!i) ? 1 : 0));
assert(bit_offset == 128);
for (uint32_t e = 0; e < ENDPOINTS; e++)
for (uint32_t c = 0; c < 4; c++)
endpoints[e][c] = (uint8_t)bc7_dequant(endpoints[e][c], (c == 3) ? A_ENDPOINT_BITS : ENDPOINT_BITS);
color_rgba block_colors[8];
for (uint32_t i = 0; i < (1U << weight_bits[0]); i++)
for (uint32_t c = 0; c < 3; c++)
block_colors[i][c] = (uint8_t)bc7_interp(endpoints[0][c], endpoints[1][c], i, weight_bits[0]);
for (uint32_t i = 0; i < (1U << weight_bits[1]); i++)
block_colors[i][3] = (uint8_t)bc7_interp(endpoints[0][3], endpoints[1][3], i, weight_bits[1]);
for (uint32_t i = 0; i < 16; i++)
{
pPixels[i] = block_colors[weights[i]];
pPixels[i].a = block_colors[a_weights[i]].a;
if (comp_rot >= 1)
std::swap(pPixels[i].a, pPixels[i].m_comps[comp_rot - 1]);
}
return true;
}
struct bc7_mode_6
{
struct
{
uint64_t m_mode : 7;
uint64_t m_r0 : 7;
uint64_t m_r1 : 7;
uint64_t m_g0 : 7;
uint64_t m_g1 : 7;
uint64_t m_b0 : 7;
uint64_t m_b1 : 7;
uint64_t m_a0 : 7;
uint64_t m_a1 : 7;
uint64_t m_p0 : 1;
} m_lo;
union
{
struct
{
uint64_t m_p1 : 1;
uint64_t m_s00 : 3;
uint64_t m_s10 : 4;
uint64_t m_s20 : 4;
uint64_t m_s30 : 4;
uint64_t m_s01 : 4;
uint64_t m_s11 : 4;
uint64_t m_s21 : 4;
uint64_t m_s31 : 4;
uint64_t m_s02 : 4;
uint64_t m_s12 : 4;
uint64_t m_s22 : 4;
uint64_t m_s32 : 4;
uint64_t m_s03 : 4;
uint64_t m_s13 : 4;
uint64_t m_s23 : 4;
uint64_t m_s33 : 4;
} m_hi;
uint64_t m_hi_bits;
};
};
bool unpack_bc7_mode6(const void *pBlock_bits, color_rgba *pPixels)
{
static_assert(sizeof(bc7_mode_6) == 16, "sizeof(bc7_mode_6) == 16");
const bc7_mode_6 &block = *static_cast<const bc7_mode_6 *>(pBlock_bits);
if (block.m_lo.m_mode != (1 << 6))
return false;
const uint32_t r0 = (uint32_t)((block.m_lo.m_r0 << 1) | block.m_lo.m_p0);
const uint32_t g0 = (uint32_t)((block.m_lo.m_g0 << 1) | block.m_lo.m_p0);
const uint32_t b0 = (uint32_t)((block.m_lo.m_b0 << 1) | block.m_lo.m_p0);
const uint32_t a0 = (uint32_t)((block.m_lo.m_a0 << 1) | block.m_lo.m_p0);
const uint32_t r1 = (uint32_t)((block.m_lo.m_r1 << 1) | block.m_hi.m_p1);
const uint32_t g1 = (uint32_t)((block.m_lo.m_g1 << 1) | block.m_hi.m_p1);
const uint32_t b1 = (uint32_t)((block.m_lo.m_b1 << 1) | block.m_hi.m_p1);
const uint32_t a1 = (uint32_t)((block.m_lo.m_a1 << 1) | block.m_hi.m_p1);
color_rgba vals[16];
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t w = basist::g_bc7_weights4[i];
const uint32_t iw = 64 - w;
vals[i].set_noclamp_rgba(
(r0 * iw + r1 * w + 32) >> 6,
(g0 * iw + g1 * w + 32) >> 6,
(b0 * iw + b1 * w + 32) >> 6,
(a0 * iw + a1 * w + 32) >> 6);
}
pPixels[0] = vals[block.m_hi.m_s00];
pPixels[1] = vals[block.m_hi.m_s10];
pPixels[2] = vals[block.m_hi.m_s20];
pPixels[3] = vals[block.m_hi.m_s30];
pPixels[4] = vals[block.m_hi.m_s01];
pPixels[5] = vals[block.m_hi.m_s11];
pPixels[6] = vals[block.m_hi.m_s21];
pPixels[7] = vals[block.m_hi.m_s31];
pPixels[8] = vals[block.m_hi.m_s02];
pPixels[9] = vals[block.m_hi.m_s12];
pPixels[10] = vals[block.m_hi.m_s22];
pPixels[11] = vals[block.m_hi.m_s32];
pPixels[12] = vals[block.m_hi.m_s03];
pPixels[13] = vals[block.m_hi.m_s13];
pPixels[14] = vals[block.m_hi.m_s23];
pPixels[15] = vals[block.m_hi.m_s33];
return true;
}
bool unpack_bc7(const void *pBlock, color_rgba *pPixels)
{
const uint32_t first_byte = static_cast<const uint8_t*>(pBlock)[0];
for (uint32_t mode = 0; mode <= 7; mode++)
{
if (first_byte & (1U << mode))
{
switch (mode)
{
case 0:
case 2:
return unpack_bc7_mode0_2(mode, pBlock, pPixels);
case 1:
case 3:
case 7:
return unpack_bc7_mode1_3_7(mode, pBlock, pPixels);
case 4:
case 5:
return unpack_bc7_mode4_5(mode, pBlock, pPixels);
case 6:
return unpack_bc7_mode6(pBlock, pPixels);
default:
break;
}
}
}
return false;
}
static inline int bc6h_sign_extend(int val, int bits)
{
assert((bits >= 1) && (bits < 32));
assert((val >= 0) && (val < (1 << bits)));
return (val << (32 - bits)) >> (32 - bits);
}
static inline int bc6h_apply_delta(int base, int delta, int num_bits, int is_signed)
{
int bitmask = ((1 << num_bits) - 1);
int v = (base + delta) & bitmask;
return is_signed ? bc6h_sign_extend(v, num_bits) : v;
}
static int bc6h_dequantize(int val, int bits, int is_signed)
{
int result;
if (is_signed)
{
if (bits >= 16)
result = val;
else
{
int s_flag = 0;
if (val < 0)
{
s_flag = 1;
val = -val;
}
if (val == 0)
result = 0;
else if (val >= ((1 << (bits - 1)) - 1))
result = 0x7FFF;
else
result = ((val << 15) + 0x4000) >> (bits - 1);
if (s_flag)
result = -result;
}
}
else
{
if (bits >= 15)
result = val;
else if (!val)
result = 0;
else if (val == ((1 << bits) - 1))
result = 0xFFFF;
else
result = ((val << 16) + 0x8000) >> bits;
}
return result;
}
static inline int bc6h_interpolate(int a, int b, const uint8_t* pWeights, int index)
{
return (a * (64 - (int)pWeights[index]) + b * (int)pWeights[index] + 32) >> 6;
}
static inline basist::half_float bc6h_convert_to_half(int val, int is_signed)
{
if (!is_signed)
{
// scale by 31/64
return (basist::half_float)((val * 31) >> 6);
}
// scale by 31/32
val = (val < 0) ? -(((-val) * 31) >> 5) : (val * 31) >> 5;
int s = 0;
if (val < 0)
{
s = 0x8000;
val = -val;
}
return (basist::half_float)(s | val);
}
static inline uint32_t bc6h_get_bits(uint32_t num_bits, uint64_t& l, uint64_t& h, uint32_t& total_bits)
{
assert((num_bits) && (num_bits <= 63));
uint32_t v = (uint32_t)(l & ((1U << num_bits) - 1U));
l >>= num_bits;
l |= (h << (64U - num_bits));
h >>= num_bits;
total_bits += num_bits;
assert(total_bits <= 128);
return v;
}
static inline uint32_t bc6h_reverse_bits(uint32_t v, uint32_t num_bits)
{
uint32_t res = 0;
for (uint32_t i = 0; i < num_bits; i++)
{
uint32_t bit = (v & (1u << i)) != 0u;
res |= (bit << (num_bits - 1u - i));
}
return res;
}
static inline uint64_t bc6h_read_le_qword(const void* p)
{
const uint8_t* pSrc = static_cast<const uint8_t*>(p);
return ((uint64_t)read_le_dword(pSrc)) | (((uint64_t)read_le_dword(pSrc + sizeof(uint32_t))) << 32U);
}
bool unpack_bc6h(const void* pSrc_block, void* pDst_block, bool is_signed, uint32_t dest_pitch_in_halfs)
{
assert(dest_pitch_in_halfs >= 4 * 3);
const uint32_t MAX_SUBSETS = 2, MAX_COMPS = 3;
const uint8_t* pSrc = static_cast<const uint8_t*>(pSrc_block);
basist::half_float* pDst = static_cast<basist::half_float*>(pDst_block);
uint64_t blo = bc6h_read_le_qword(pSrc), bhi = bc6h_read_le_qword(pSrc + sizeof(uint64_t));
// Unpack mode
const int mode = basist::g_bc6h_mode_lookup[blo & 31];
if (mode < 0)
{
for (int y = 0; y < 4; y++)
{
memset(pDst, 0, sizeof(basist::half_float) * 4);
pDst += dest_pitch_in_halfs;
}
return false;
}
// Skip mode bits
uint32_t total_bits_read = 0;
bc6h_get_bits((mode < 2) ? 2 : 5, blo, bhi, total_bits_read);
assert(mode < (int)basist::NUM_BC6H_MODES);
const uint32_t num_subsets = (mode >= 10) ? 1 : 2;
const bool is_mode_9_or_10 = (mode == 9) || (mode == 10);
// Unpack endpoint components
int comps[MAX_SUBSETS][MAX_COMPS][2] = { { { 0 } } }; // [subset][comp][l/h]
int part_index = 0;
uint32_t layout_index = 0;
while (layout_index < basist::MAX_BC6H_LAYOUT_INDEX)
{
const basist::bc6h_bit_layout& layout = basist::g_bc6h_bit_layouts[mode][layout_index];
if (layout.m_comp < 0)
break;
const int subset = layout.m_index >> 1, lh_index = layout.m_index & 1;
assert((layout.m_comp == 3) || ((subset >= 0) && (subset < (int)MAX_SUBSETS)));
const int last_bit = layout.m_last_bit, first_bit = layout.m_first_bit;
assert(last_bit >= 0);
int& res = (layout.m_comp == 3) ? part_index : comps[subset][layout.m_comp][lh_index];
if (first_bit < 0)
{
res |= (bc6h_get_bits(1, blo, bhi, total_bits_read) << last_bit);
}
else
{
const int total_bits = iabs(last_bit - first_bit) + 1;
const int bit_shift = basisu::minimum(first_bit, last_bit);
int b = bc6h_get_bits(total_bits, blo, bhi, total_bits_read);
if (last_bit < first_bit)
b = bc6h_reverse_bits(b, total_bits);
res |= (b << bit_shift);
}
layout_index++;
}
assert(layout_index != basist::MAX_BC6H_LAYOUT_INDEX);
// Sign extend/dequantize endpoints
const int num_sig_bits = basist::g_bc6h_mode_sig_bits[mode][0];
if (is_signed)
{
for (uint32_t comp = 0; comp < 3; comp++)
comps[0][comp][0] = bc6h_sign_extend(comps[0][comp][0], num_sig_bits);
}
if (is_signed || !is_mode_9_or_10)
{
for (uint32_t subset = 0; subset < num_subsets; subset++)
for (uint32_t comp = 0; comp < 3; comp++)
for (uint32_t lh = (subset ? 0 : 1); lh < 2; lh++)
comps[subset][comp][lh] = bc6h_sign_extend(comps[subset][comp][lh], basist::g_bc6h_mode_sig_bits[mode][1 + comp]);
}
if (!is_mode_9_or_10)
{
for (uint32_t subset = 0; subset < num_subsets; subset++)
for (uint32_t comp = 0; comp < 3; comp++)
for (uint32_t lh = (subset ? 0 : 1); lh < 2; lh++)
comps[subset][comp][lh] = bc6h_apply_delta(comps[0][comp][0], comps[subset][comp][lh], num_sig_bits, is_signed);
}
for (uint32_t subset = 0; subset < num_subsets; subset++)
for (uint32_t comp = 0; comp < 3; comp++)
for (uint32_t lh = 0; lh < 2; lh++)
comps[subset][comp][lh] = bc6h_dequantize(comps[subset][comp][lh], num_sig_bits, is_signed);
// Now unpack weights and output texels
const int weight_bits = (mode >= 10) ? 4 : 3;
const uint8_t* pWeights = (mode >= 10) ? basist::g_bc6h_weight4 : basist::g_bc6h_weight3;
dest_pitch_in_halfs -= 4 * 3;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
int subset = (num_subsets == 1) ? ((x | y) ? 0 : 0x80) : basist::g_bc6h_2subset_patterns[part_index][y][x];
const int num_bits = weight_bits + ((subset & 0x80) ? -1 : 0);
subset &= 1;
const int weight_index = bc6h_get_bits(num_bits, blo, bhi, total_bits_read);
pDst[0] = bc6h_convert_to_half(bc6h_interpolate(comps[subset][0][0], comps[subset][0][1], pWeights, weight_index), is_signed);
pDst[1] = bc6h_convert_to_half(bc6h_interpolate(comps[subset][1][0], comps[subset][1][1], pWeights, weight_index), is_signed);
pDst[2] = bc6h_convert_to_half(bc6h_interpolate(comps[subset][2][0], comps[subset][2][1], pWeights, weight_index), is_signed);
pDst += 3;
}
pDst += dest_pitch_in_halfs;
}
assert(total_bits_read == 128);
return true;
}
//------------------------------------------------------------------------------------------------
// FXT1 (for fun, and because some modern Intel parts support it, and because a subset is like BC1)
struct fxt1_block
{
union
{
struct
{
uint64_t m_t00 : 2;
uint64_t m_t01 : 2;
uint64_t m_t02 : 2;
uint64_t m_t03 : 2;
uint64_t m_t04 : 2;
uint64_t m_t05 : 2;
uint64_t m_t06 : 2;
uint64_t m_t07 : 2;
uint64_t m_t08 : 2;
uint64_t m_t09 : 2;
uint64_t m_t10 : 2;
uint64_t m_t11 : 2;
uint64_t m_t12 : 2;
uint64_t m_t13 : 2;
uint64_t m_t14 : 2;
uint64_t m_t15 : 2;
uint64_t m_t16 : 2;
uint64_t m_t17 : 2;
uint64_t m_t18 : 2;
uint64_t m_t19 : 2;
uint64_t m_t20 : 2;
uint64_t m_t21 : 2;
uint64_t m_t22 : 2;
uint64_t m_t23 : 2;
uint64_t m_t24 : 2;
uint64_t m_t25 : 2;
uint64_t m_t26 : 2;
uint64_t m_t27 : 2;
uint64_t m_t28 : 2;
uint64_t m_t29 : 2;
uint64_t m_t30 : 2;
uint64_t m_t31 : 2;
} m_lo;
uint64_t m_lo_bits;
uint8_t m_sels[8];
};
union
{
struct
{
#ifdef BASISU_USE_ORIGINAL_3DFX_FXT1_ENCODING
// This is the format that 3DFX's DECOMP.EXE tool expects, which I'm assuming is what the actual 3DFX hardware wanted.
// Unfortunately, color0/color1 and color2/color3 are flipped relative to the official OpenGL extension and Intel's documentation!
uint64_t m_b1 : 5;
uint64_t m_g1 : 5;
uint64_t m_r1 : 5;
uint64_t m_b0 : 5;
uint64_t m_g0 : 5;
uint64_t m_r0 : 5;
uint64_t m_b3 : 5;
uint64_t m_g3 : 5;
uint64_t m_r3 : 5;
uint64_t m_b2 : 5;
uint64_t m_g2 : 5;
uint64_t m_r2 : 5;
#else
// Intel's encoding, and the encoding in the OpenGL FXT1 spec.
uint64_t m_b0 : 5;
uint64_t m_g0 : 5;
uint64_t m_r0 : 5;
uint64_t m_b1 : 5;
uint64_t m_g1 : 5;
uint64_t m_r1 : 5;
uint64_t m_b2 : 5;
uint64_t m_g2 : 5;
uint64_t m_r2 : 5;
uint64_t m_b3 : 5;
uint64_t m_g3 : 5;
uint64_t m_r3 : 5;
#endif
uint64_t m_alpha : 1;
uint64_t m_glsb : 2;
uint64_t m_mode : 1;
} m_hi;
uint64_t m_hi_bits;
};
};
static color_rgba expand_565(const color_rgba& c)
{
return color_rgba((c.r << 3) | (c.r >> 2), (c.g << 2) | (c.g >> 4), (c.b << 3) | (c.b >> 2), 255);
}
// We only support CC_MIXED non-alpha blocks here because that's the only mode the transcoder uses at the moment.
bool unpack_fxt1(const void *p, color_rgba *pPixels)
{
const fxt1_block* pBlock = static_cast<const fxt1_block*>(p);
if (pBlock->m_hi.m_mode == 0)
return false;
if (pBlock->m_hi.m_alpha == 1)
return false;
color_rgba colors[4];
colors[0].r = pBlock->m_hi.m_r0;
colors[0].g = (uint8_t)((pBlock->m_hi.m_g0 << 1) | ((pBlock->m_lo.m_t00 >> 1) ^ (pBlock->m_hi.m_glsb & 1)));
colors[0].b = pBlock->m_hi.m_b0;
colors[0].a = 255;
colors[1].r = pBlock->m_hi.m_r1;
colors[1].g = (uint8_t)((pBlock->m_hi.m_g1 << 1) | (pBlock->m_hi.m_glsb & 1));
colors[1].b = pBlock->m_hi.m_b1;
colors[1].a = 255;
colors[2].r = pBlock->m_hi.m_r2;
colors[2].g = (uint8_t)((pBlock->m_hi.m_g2 << 1) | ((pBlock->m_lo.m_t16 >> 1) ^ (pBlock->m_hi.m_glsb >> 1)));
colors[2].b = pBlock->m_hi.m_b2;
colors[2].a = 255;
colors[3].r = pBlock->m_hi.m_r3;
colors[3].g = (uint8_t)((pBlock->m_hi.m_g3 << 1) | (pBlock->m_hi.m_glsb >> 1));
colors[3].b = pBlock->m_hi.m_b3;
colors[3].a = 255;
for (uint32_t i = 0; i < 4; i++)
colors[i] = expand_565(colors[i]);
color_rgba block0_colors[4];
block0_colors[0] = colors[0];
block0_colors[1] = color_rgba((colors[0].r * 2 + colors[1].r + 1) / 3, (colors[0].g * 2 + colors[1].g + 1) / 3, (colors[0].b * 2 + colors[1].b + 1) / 3, 255);
block0_colors[2] = color_rgba((colors[1].r * 2 + colors[0].r + 1) / 3, (colors[1].g * 2 + colors[0].g + 1) / 3, (colors[1].b * 2 + colors[0].b + 1) / 3, 255);
block0_colors[3] = colors[1];
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t sel = (pBlock->m_sels[i >> 2] >> ((i & 3) * 2)) & 3;
const uint32_t x = i & 3;
const uint32_t y = i >> 2;
pPixels[x + y * 8] = block0_colors[sel];
}
color_rgba block1_colors[4];
block1_colors[0] = colors[2];
block1_colors[1] = color_rgba((colors[2].r * 2 + colors[3].r + 1) / 3, (colors[2].g * 2 + colors[3].g + 1) / 3, (colors[2].b * 2 + colors[3].b + 1) / 3, 255);
block1_colors[2] = color_rgba((colors[3].r * 2 + colors[2].r + 1) / 3, (colors[3].g * 2 + colors[2].g + 1) / 3, (colors[3].b * 2 + colors[2].b + 1) / 3, 255);
block1_colors[3] = colors[3];
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t sel = (pBlock->m_sels[4 + (i >> 2)] >> ((i & 3) * 2)) & 3;
const uint32_t x = i & 3;
const uint32_t y = i >> 2;
pPixels[4 + x + y * 8] = block1_colors[sel];
}
return true;
}
//------------------------------------------------------------------------------------------------
// PVRTC2 (non-interpolated, hard_flag=1 modulation=0 subset only!)
struct pvrtc2_block
{
uint8_t m_modulation[4];
union
{
union
{
// Opaque mode: RGB colora=554 and colorb=555
struct
{
uint32_t m_mod_flag : 1;
uint32_t m_blue_a : 4;
uint32_t m_green_a : 5;
uint32_t m_red_a : 5;
uint32_t m_hard_flag : 1;
uint32_t m_blue_b : 5;
uint32_t m_green_b : 5;
uint32_t m_red_b : 5;
uint32_t m_opaque_flag : 1;
} m_opaque_color_data;
// Transparent mode: RGBA colora=4433 and colorb=4443
struct
{
uint32_t m_mod_flag : 1;
uint32_t m_blue_a : 3;
uint32_t m_green_a : 4;
uint32_t m_red_a : 4;
uint32_t m_alpha_a : 3;
uint32_t m_hard_flag : 1;
uint32_t m_blue_b : 4;
uint32_t m_green_b : 4;
uint32_t m_red_b : 4;
uint32_t m_alpha_b : 3;
uint32_t m_opaque_flag : 1;
} m_trans_color_data;
};
uint32_t m_color_data_bits;
};
};
static color_rgba convert_rgb_555_to_888(const color_rgba& col)
{
return color_rgba((col[0] << 3) | (col[0] >> 2), (col[1] << 3) | (col[1] >> 2), (col[2] << 3) | (col[2] >> 2), 255);
}
static color_rgba convert_rgba_5554_to_8888(const color_rgba& col)
{
return color_rgba((col[0] << 3) | (col[0] >> 2), (col[1] << 3) | (col[1] >> 2), (col[2] << 3) | (col[2] >> 2), (col[3] << 4) | col[3]);
}
// PVRTC2 is currently limited to only what our transcoder outputs (non-interpolated, hard_flag=1 modulation=0). In this mode, PVRTC2 looks much like BC1/ATC.
bool unpack_pvrtc2(const void *p, color_rgba *pPixels)
{
const pvrtc2_block* pBlock = static_cast<const pvrtc2_block*>(p);
if ((!pBlock->m_opaque_color_data.m_hard_flag) || (pBlock->m_opaque_color_data.m_mod_flag))
{
// This mode isn't supported by the transcoder, so we aren't bothering with it here.
return false;
}
color_rgba colors[4];
if (pBlock->m_opaque_color_data.m_opaque_flag)
{
// colora=554
color_rgba color_a(pBlock->m_opaque_color_data.m_red_a, pBlock->m_opaque_color_data.m_green_a, (pBlock->m_opaque_color_data.m_blue_a << 1) | (pBlock->m_opaque_color_data.m_blue_a >> 3), 255);
// colora=555
color_rgba color_b(pBlock->m_opaque_color_data.m_red_b, pBlock->m_opaque_color_data.m_green_b, pBlock->m_opaque_color_data.m_blue_b, 255);
colors[0] = convert_rgb_555_to_888(color_a);
colors[3] = convert_rgb_555_to_888(color_b);
colors[1].set((colors[0].r * 5 + colors[3].r * 3) / 8, (colors[0].g * 5 + colors[3].g * 3) / 8, (colors[0].b * 5 + colors[3].b * 3) / 8, 255);
colors[2].set((colors[0].r * 3 + colors[3].r * 5) / 8, (colors[0].g * 3 + colors[3].g * 5) / 8, (colors[0].b * 3 + colors[3].b * 5) / 8, 255);
}
else
{
// colora=4433
color_rgba color_a(
(pBlock->m_trans_color_data.m_red_a << 1) | (pBlock->m_trans_color_data.m_red_a >> 3),
(pBlock->m_trans_color_data.m_green_a << 1) | (pBlock->m_trans_color_data.m_green_a >> 3),
(pBlock->m_trans_color_data.m_blue_a << 2) | (pBlock->m_trans_color_data.m_blue_a >> 1),
pBlock->m_trans_color_data.m_alpha_a << 1);
//colorb=4443
color_rgba color_b(
(pBlock->m_trans_color_data.m_red_b << 1) | (pBlock->m_trans_color_data.m_red_b >> 3),
(pBlock->m_trans_color_data.m_green_b << 1) | (pBlock->m_trans_color_data.m_green_b >> 3),
(pBlock->m_trans_color_data.m_blue_b << 1) | (pBlock->m_trans_color_data.m_blue_b >> 3),
(pBlock->m_trans_color_data.m_alpha_b << 1) | 1);
colors[0] = convert_rgba_5554_to_8888(color_a);
colors[3] = convert_rgba_5554_to_8888(color_b);
}
colors[1].set((colors[0].r * 5 + colors[3].r * 3) / 8, (colors[0].g * 5 + colors[3].g * 3) / 8, (colors[0].b * 5 + colors[3].b * 3) / 8, (colors[0].a * 5 + colors[3].a * 3) / 8);
colors[2].set((colors[0].r * 3 + colors[3].r * 5) / 8, (colors[0].g * 3 + colors[3].g * 5) / 8, (colors[0].b * 3 + colors[3].b * 5) / 8, (colors[0].a * 3 + colors[3].a * 5) / 8);
for (uint32_t i = 0; i < 16; i++)
{
const uint32_t sel = (pBlock->m_modulation[i >> 2] >> ((i & 3) * 2)) & 3;
pPixels[i] = colors[sel];
}
return true;
}
//------------------------------------------------------------------------------------------------
// ETC2 EAC R11 or RG11
struct etc2_eac_r11
{
uint64_t m_base : 8;
uint64_t m_table : 4;
uint64_t m_mul : 4;
uint64_t m_sels_0 : 8;
uint64_t m_sels_1 : 8;
uint64_t m_sels_2 : 8;
uint64_t m_sels_3 : 8;
uint64_t m_sels_4 : 8;
uint64_t m_sels_5 : 8;
uint64_t get_sels() const
{
return ((uint64_t)m_sels_0 << 40U) | ((uint64_t)m_sels_1 << 32U) | ((uint64_t)m_sels_2 << 24U) | ((uint64_t)m_sels_3 << 16U) | ((uint64_t)m_sels_4 << 8U) | m_sels_5;
}
void set_sels(uint64_t v)
{
m_sels_0 = (v >> 40U) & 0xFF;
m_sels_1 = (v >> 32U) & 0xFF;
m_sels_2 = (v >> 24U) & 0xFF;
m_sels_3 = (v >> 16U) & 0xFF;
m_sels_4 = (v >> 8U) & 0xFF;
m_sels_5 = v & 0xFF;
}
};
struct etc2_eac_rg11
{
etc2_eac_r11 m_c[2];
};
void unpack_etc2_eac_r(const void *p, color_rgba* pPixels, uint32_t c)
{
const etc2_eac_r11* pBlock = static_cast<const etc2_eac_r11*>(p);
const uint64_t sels = pBlock->get_sels();
const int base = (int)pBlock->m_base * 8 + 4;
const int mul = pBlock->m_mul ? ((int)pBlock->m_mul * 8) : 1;
const int table = (int)pBlock->m_table;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t shift = 45 - ((y + x * 4) * 3);
const uint32_t sel = (uint32_t)((sels >> shift) & 7);
int val = base + g_etc2_eac_tables[table][sel] * mul;
val = clamp<int>(val, 0, 2047);
// Convert to 8-bits with rounding
//pPixels[x + y * 4].m_comps[c] = static_cast<uint8_t>((val * 255 + 1024) / 2047);
pPixels[x + y * 4].m_comps[c] = static_cast<uint8_t>((val * 255 + 1023) / 2047);
} // x
} // y
}
void unpack_etc2_eac_rg(const void* p, color_rgba* pPixels)
{
for (uint32_t c = 0; c < 2; c++)
{
const etc2_eac_r11* pBlock = &static_cast<const etc2_eac_rg11*>(p)->m_c[c];
unpack_etc2_eac_r(pBlock, pPixels, c);
}
}
//------------------------------------------------------------------------------------------------
// UASTC
void unpack_uastc(const void* p, color_rgba* pPixels)
{
basist::unpack_uastc(*static_cast<const basist::uastc_block*>(p), (basist::color32 *)pPixels, false);
}
// Unpacks to RGBA, R, RG, or A. LDR GPU texture formats only.
bool unpack_block(texture_format fmt, const void* pBlock, color_rgba* pPixels)
{
switch (fmt)
{
case texture_format::cBC1:
{
unpack_bc1(pBlock, pPixels, true);
break;
}
case texture_format::cBC1_NV:
{
unpack_bc1_nv(pBlock, pPixels, true);
break;
}
case texture_format::cBC1_AMD:
{
unpack_bc1_amd(pBlock, pPixels, true);
break;
}
case texture_format::cBC3:
{
return unpack_bc3(pBlock, pPixels);
}
case texture_format::cBC4:
{
// Unpack to R
unpack_bc4(pBlock, &pPixels[0].r, sizeof(color_rgba));
break;
}
case texture_format::cBC5:
{
unpack_bc5(pBlock, pPixels);
break;
}
case texture_format::cBC7:
{
return unpack_bc7(pBlock, pPixels);
}
// Full ETC2 color blocks (planar/T/H modes) is currently unsupported in basisu, but we do support ETC2 with alpha (using ETC1 for color)
case texture_format::cETC2_RGB:
case texture_format::cETC1:
case texture_format::cETC1S:
{
return unpack_etc1(*static_cast<const etc_block*>(pBlock), pPixels);
}
case texture_format::cETC2_RGBA:
{
if (!unpack_etc1(static_cast<const etc_block*>(pBlock)[1], pPixels))
return false;
unpack_etc2_eac(pBlock, pPixels);
break;
}
case texture_format::cETC2_ALPHA:
{
// Unpack to A
unpack_etc2_eac(pBlock, pPixels);
break;
}
case texture_format::cBC6HSigned:
case texture_format::cBC6HUnsigned:
case texture_format::cASTC_HDR_4x4:
case texture_format::cUASTC_HDR_4x4:
{
// Can't unpack HDR blocks in unpack_block() because it returns 32bpp pixel data.
assert(0);
return false;
}
case texture_format::cASTC_LDR_4x4:
{
const bool astc_srgb = false;
bool status = basisu_astc::astc::decompress_ldr(reinterpret_cast<uint8_t*>(pPixels), static_cast<const uint8_t*>(pBlock), astc_srgb, 4, 4);
assert(status);
if (!status)
return false;
break;
}
case texture_format::cATC_RGB:
{
unpack_atc(pBlock, pPixels);
break;
}
case texture_format::cATC_RGBA_INTERPOLATED_ALPHA:
{
unpack_atc(static_cast<const uint8_t*>(pBlock) + 8, pPixels);
unpack_bc4(pBlock, &pPixels[0].a, sizeof(color_rgba));
break;
}
case texture_format::cFXT1_RGB:
{
unpack_fxt1(pBlock, pPixels);
break;
}
case texture_format::cPVRTC2_4_RGBA:
{
unpack_pvrtc2(pBlock, pPixels);
break;
}
case texture_format::cETC2_R11_EAC:
{
unpack_etc2_eac_r(static_cast<const etc2_eac_r11 *>(pBlock), pPixels, 0);
break;
}
case texture_format::cETC2_RG11_EAC:
{
unpack_etc2_eac_rg(pBlock, pPixels);
break;
}
case texture_format::cUASTC4x4:
{
unpack_uastc(pBlock, pPixels);
break;
}
default:
{
assert(0);
// TODO
return false;
}
}
return true;
}
bool unpack_block_hdr(texture_format fmt, const void* pBlock, vec4F* pPixels)
{
switch (fmt)
{
case texture_format::cASTC_HDR_4x4:
case texture_format::cUASTC_HDR_4x4:
{
#if 1
bool status = basisu_astc::astc::decompress_hdr(&pPixels[0][0], (uint8_t*)pBlock, 4, 4);
assert(status);
if (!status)
return false;
#else
basist::half_float half_block[16][4];
astc_helpers::log_astc_block log_blk;
if (!astc_helpers::unpack_block(pBlock, log_blk, 4, 4))
return false;
if (!astc_helpers::decode_block(log_blk, half_block, 4, 4, astc_helpers::cDecodeModeHDR16))
return false;
for (uint32_t p = 0; p < 16; p++)
{
pPixels[p][0] = basist::half_to_float(half_block[p][0]);
pPixels[p][1] = basist::half_to_float(half_block[p][1]);
pPixels[p][2] = basist::half_to_float(half_block[p][2]);
pPixels[p][3] = basist::half_to_float(half_block[p][3]);
}
//memset(pPixels, 0, sizeof(vec4F) * 16);
#endif
return true;
}
case texture_format::cBC6HSigned:
case texture_format::cBC6HUnsigned:
{
basist::half_float half_block[16][3];
unpack_bc6h(pBlock, half_block, fmt == texture_format::cBC6HSigned);
for (uint32_t p = 0; p < 16; p++)
{
pPixels[p][0] = basist::half_to_float(half_block[p][0]);
pPixels[p][1] = basist::half_to_float(half_block[p][1]);
pPixels[p][2] = basist::half_to_float(half_block[p][2]);
pPixels[p][3] = 1.0f;
}
return true;
}
default:
{
break;
}
}
assert(0);
return false;
}
bool gpu_image::unpack(image& img) const
{
img.resize(get_pixel_width(), get_pixel_height());
img.set_all(g_black_color);
if (!img.get_width() || !img.get_height())
return true;
if ((m_fmt == texture_format::cPVRTC1_4_RGB) || (m_fmt == texture_format::cPVRTC1_4_RGBA))
{
pvrtc4_image pi(m_width, m_height);
if (get_total_blocks() != pi.get_total_blocks())
return false;
memcpy(&pi.get_blocks()[0], get_ptr(), get_size_in_bytes());
pi.deswizzle();
pi.unpack_all_pixels(img);
return true;
}
assert((m_block_width <= cMaxBlockSize) && (m_block_height <= cMaxBlockSize));
color_rgba pixels[cMaxBlockSize * cMaxBlockSize];
for (uint32_t i = 0; i < cMaxBlockSize * cMaxBlockSize; i++)
pixels[i] = g_black_color;
bool success = true;
for (uint32_t by = 0; by < m_blocks_y; by++)
{
for (uint32_t bx = 0; bx < m_blocks_x; bx++)
{
const void* pBlock = get_block_ptr(bx, by);
if (!unpack_block(m_fmt, pBlock, pixels))
success = false;
img.set_block_clipped(pixels, bx * m_block_width, by * m_block_height, m_block_width, m_block_height);
} // bx
} // by
return success;
}
bool gpu_image::unpack_hdr(imagef& img) const
{
if ((m_fmt != texture_format::cASTC_HDR_4x4) &&
(m_fmt != texture_format::cUASTC_HDR_4x4) &&
(m_fmt != texture_format::cBC6HUnsigned) &&
(m_fmt != texture_format::cBC6HSigned))
{
// Can't call on LDR images, at least currently. (Could unpack the LDR data and convert to float.)
assert(0);
return false;
}
img.resize(get_pixel_width(), get_pixel_height());
img.set_all(vec4F(0.0f));
if (!img.get_width() || !img.get_height())
return true;
assert((m_block_width <= cMaxBlockSize) && (m_block_height <= cMaxBlockSize));
vec4F pixels[cMaxBlockSize * cMaxBlockSize];
clear_obj(pixels);
bool success = true;
for (uint32_t by = 0; by < m_blocks_y; by++)
{
for (uint32_t bx = 0; bx < m_blocks_x; bx++)
{
const void* pBlock = get_block_ptr(bx, by);
if (!unpack_block_hdr(m_fmt, pBlock, pixels))
success = false;
img.set_block_clipped(pixels, bx * m_block_width, by * m_block_height, m_block_width, m_block_height);
} // bx
} // by
return success;
}
// KTX1 texture file writing
static const uint8_t g_ktx_file_id[12] = { 0xAB, 0x4B, 0x54, 0x58, 0x20, 0x31, 0x31, 0xBB, 0x0D, 0x0A, 0x1A, 0x0A };
// KTX/GL enums
enum
{
KTX_ENDIAN = 0x04030201,
KTX_OPPOSITE_ENDIAN = 0x01020304,
KTX_ETC1_RGB8_OES = 0x8D64,
KTX_RED = 0x1903,
KTX_RG = 0x8227,
KTX_RGB = 0x1907,
KTX_RGBA = 0x1908,
KTX_COMPRESSED_RGB_S3TC_DXT1_EXT = 0x83F0,
KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT = 0x83F3,
KTX_COMPRESSED_RED_RGTC1_EXT = 0x8DBB,
KTX_COMPRESSED_RED_GREEN_RGTC2_EXT = 0x8DBD,
KTX_COMPRESSED_RGB8_ETC2 = 0x9274,
KTX_COMPRESSED_RGBA8_ETC2_EAC = 0x9278,
KTX_COMPRESSED_RGBA_BPTC_UNORM = 0x8E8C,
KTX_COMPRESSED_SRGB_ALPHA_BPTC_UNORM = 0x8E8D,
KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT = 0x8E8E,
KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT = 0x8E8F,
KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG = 0x8C00,
KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG = 0x8C02,
KTX_COMPRESSED_RGBA_ASTC_4x4_KHR = 0x93B0,
KTX_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR = 0x93D0,
KTX_COMPRESSED_RGBA_UASTC_4x4_KHR = 0x94CC, // TODO - Use proper value!
KTX_ATC_RGB_AMD = 0x8C92,
KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD = 0x87EE,
KTX_COMPRESSED_RGB_FXT1_3DFX = 0x86B0,
KTX_COMPRESSED_RGBA_FXT1_3DFX = 0x86B1,
KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG = 0x9138,
KTX_COMPRESSED_R11_EAC = 0x9270,
KTX_COMPRESSED_RG11_EAC = 0x9272
};
struct ktx_header
{
uint8_t m_identifier[12];
packed_uint<4> m_endianness;
packed_uint<4> m_glType;
packed_uint<4> m_glTypeSize;
packed_uint<4> m_glFormat;
packed_uint<4> m_glInternalFormat;
packed_uint<4> m_glBaseInternalFormat;
packed_uint<4> m_pixelWidth;
packed_uint<4> m_pixelHeight;
packed_uint<4> m_pixelDepth;
packed_uint<4> m_numberOfArrayElements;
packed_uint<4> m_numberOfFaces;
packed_uint<4> m_numberOfMipmapLevels;
packed_uint<4> m_bytesOfKeyValueData;
void clear() { clear_obj(*this); }
};
// Input is a texture array of mipmapped gpu_image's: gpu_images[array_index][level_index]
bool create_ktx_texture_file(uint8_vec &ktx_data, const basisu::vector<gpu_image_vec>& gpu_images, bool cubemap_flag)
{
if (!gpu_images.size())
{
assert(0);
return false;
}
uint32_t width = 0, height = 0, total_levels = 0;
basisu::texture_format fmt = texture_format::cInvalidTextureFormat;
// Sanity check the input
if (cubemap_flag)
{
if ((gpu_images.size() % 6) != 0)
{
assert(0);
return false;
}
}
for (uint32_t array_index = 0; array_index < gpu_images.size(); array_index++)
{
const gpu_image_vec &levels = gpu_images[array_index];
if (!levels.size())
{
// Empty mip chain
assert(0);
return false;
}
if (!array_index)
{
width = levels[0].get_pixel_width();
height = levels[0].get_pixel_height();
total_levels = (uint32_t)levels.size();
fmt = levels[0].get_format();
}
else
{
if ((width != levels[0].get_pixel_width()) ||
(height != levels[0].get_pixel_height()) ||
(total_levels != levels.size()))
{
// All cubemap/texture array faces must be the same dimension
assert(0);
return false;
}
}
for (uint32_t level_index = 0; level_index < levels.size(); level_index++)
{
if (level_index)
{
if ( (levels[level_index].get_pixel_width() != maximum<uint32_t>(1, levels[0].get_pixel_width() >> level_index)) ||
(levels[level_index].get_pixel_height() != maximum<uint32_t>(1, levels[0].get_pixel_height() >> level_index)) )
{
// Malformed mipmap chain
assert(0);
return false;
}
}
if (fmt != levels[level_index].get_format())
{
// All input textures must use the same GPU format
assert(0);
return false;
}
}
}
uint32_t internal_fmt = KTX_ETC1_RGB8_OES, base_internal_fmt = KTX_RGB;
switch (fmt)
{
case texture_format::cBC1:
case texture_format::cBC1_NV:
case texture_format::cBC1_AMD:
{
internal_fmt = KTX_COMPRESSED_RGB_S3TC_DXT1_EXT;
break;
}
case texture_format::cBC3:
{
internal_fmt = KTX_COMPRESSED_RGBA_S3TC_DXT5_EXT;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cBC4:
{
internal_fmt = KTX_COMPRESSED_RED_RGTC1_EXT;// KTX_COMPRESSED_LUMINANCE_LATC1_EXT;
base_internal_fmt = KTX_RED;
break;
}
case texture_format::cBC5:
{
internal_fmt = KTX_COMPRESSED_RED_GREEN_RGTC2_EXT;
base_internal_fmt = KTX_RG;
break;
}
case texture_format::cETC1:
case texture_format::cETC1S:
{
internal_fmt = KTX_ETC1_RGB8_OES;
break;
}
case texture_format::cETC2_RGB:
{
internal_fmt = KTX_COMPRESSED_RGB8_ETC2;
break;
}
case texture_format::cETC2_RGBA:
{
internal_fmt = KTX_COMPRESSED_RGBA8_ETC2_EAC;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cBC6HSigned:
{
internal_fmt = KTX_COMPRESSED_RGB_BPTC_SIGNED_FLOAT;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cBC6HUnsigned:
{
internal_fmt = KTX_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cBC7:
{
internal_fmt = KTX_COMPRESSED_RGBA_BPTC_UNORM;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cPVRTC1_4_RGB:
{
internal_fmt = KTX_COMPRESSED_RGB_PVRTC_4BPPV1_IMG;
break;
}
case texture_format::cPVRTC1_4_RGBA:
{
internal_fmt = KTX_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG;
base_internal_fmt = KTX_RGBA;
break;
}
// We use different enums for HDR vs. LDR ASTC, but internally they are both just ASTC.
case texture_format::cASTC_LDR_4x4:
case texture_format::cASTC_HDR_4x4:
case texture_format::cUASTC_HDR_4x4: // UASTC_HDR is just HDR-only ASTC
{
internal_fmt = KTX_COMPRESSED_RGBA_ASTC_4x4_KHR;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cATC_RGB:
{
internal_fmt = KTX_ATC_RGB_AMD;
break;
}
case texture_format::cATC_RGBA_INTERPOLATED_ALPHA:
{
internal_fmt = KTX_ATC_RGBA_INTERPOLATED_ALPHA_AMD;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cETC2_R11_EAC:
{
internal_fmt = KTX_COMPRESSED_R11_EAC;
base_internal_fmt = KTX_RED;
break;
}
case texture_format::cETC2_RG11_EAC:
{
internal_fmt = KTX_COMPRESSED_RG11_EAC;
base_internal_fmt = KTX_RG;
break;
}
case texture_format::cUASTC4x4:
{
internal_fmt = KTX_COMPRESSED_RGBA_UASTC_4x4_KHR;
base_internal_fmt = KTX_RGBA;
break;
}
case texture_format::cFXT1_RGB:
{
internal_fmt = KTX_COMPRESSED_RGB_FXT1_3DFX;
break;
}
case texture_format::cPVRTC2_4_RGBA:
{
internal_fmt = KTX_COMPRESSED_RGBA_PVRTC_4BPPV2_IMG;
base_internal_fmt = KTX_RGBA;
break;
}
default:
{
// TODO
assert(0);
return false;
}
}
ktx_header header;
header.clear();
memcpy(&header.m_identifier, g_ktx_file_id, sizeof(g_ktx_file_id));
header.m_endianness = KTX_ENDIAN;
header.m_pixelWidth = width;
header.m_pixelHeight = height;
header.m_glTypeSize = 1;
header.m_glInternalFormat = internal_fmt;
header.m_glBaseInternalFormat = base_internal_fmt;
header.m_numberOfArrayElements = (uint32_t)(cubemap_flag ? (gpu_images.size() / 6) : gpu_images.size());
if (header.m_numberOfArrayElements == 1)
header.m_numberOfArrayElements = 0;
header.m_numberOfMipmapLevels = total_levels;
header.m_numberOfFaces = cubemap_flag ? 6 : 1;
append_vector(ktx_data, (uint8_t*)&header, sizeof(header));
for (uint32_t level_index = 0; level_index < total_levels; level_index++)
{
uint32_t img_size = gpu_images[0][level_index].get_size_in_bytes();
if ((header.m_numberOfFaces == 1) || (header.m_numberOfArrayElements > 1))
{
img_size = img_size * header.m_numberOfFaces * maximum<uint32_t>(1, header.m_numberOfArrayElements);
}
assert(img_size && ((img_size & 3) == 0));
packed_uint<4> packed_img_size(img_size);
append_vector(ktx_data, (uint8_t*)&packed_img_size, sizeof(packed_img_size));
uint32_t bytes_written = 0;
(void)bytes_written;
for (uint32_t array_index = 0; array_index < maximum<uint32_t>(1, header.m_numberOfArrayElements); array_index++)
{
for (uint32_t face_index = 0; face_index < header.m_numberOfFaces; face_index++)
{
const gpu_image& img = gpu_images[cubemap_flag ? (array_index * 6 + face_index) : array_index][level_index];
append_vector(ktx_data, (uint8_t*)img.get_ptr(), img.get_size_in_bytes());
bytes_written += img.get_size_in_bytes();
}
} // array_index
} // level_index
return true;
}
bool does_dds_support_format(texture_format fmt)
{
switch (fmt)
{
case texture_format::cBC1_NV:
case texture_format::cBC1_AMD:
case texture_format::cBC1:
case texture_format::cBC3:
case texture_format::cBC4:
case texture_format::cBC5:
case texture_format::cBC6HSigned:
case texture_format::cBC6HUnsigned:
case texture_format::cBC7:
return true;
default:
break;
}
return false;
}
// Only supports the basic DirectX BC texture formats.
// gpu_images array is: [face/layer][mipmap level]
// For cubemap arrays, # of face/layers must be a multiple of 6.
// Accepts 2D, 2D mipmapped, 2D array, 2D array mipmapped
// and cubemap, cubemap mipmapped, and cubemap array mipmapped.
bool write_dds_file(uint8_vec &dds_data, const basisu::vector<gpu_image_vec>& gpu_images, bool cubemap_flag, bool use_srgb_format)
{
return false;
}
bool write_dds_file(const char* pFilename, const basisu::vector<gpu_image_vec>& gpu_images, bool cubemap_flag, bool use_srgb_format)
{
uint8_vec dds_data;
if (!write_dds_file(dds_data, gpu_images, cubemap_flag, use_srgb_format))
return false;
if (!write_vec_to_file(pFilename, dds_data))
{
fprintf(stderr, "write_dds_file: Failed writing DDS file data\n");
return false;
}
return true;
}
bool read_uncompressed_dds_file(const char* pFilename, basisu::vector<image> &ldr_mips, basisu::vector<imagef>& hdr_mips)
{
return false;
}
bool write_compressed_texture_file(const char* pFilename, const basisu::vector<gpu_image_vec>& g, bool cubemap_flag, bool use_srgb_format)
{
std::string extension(string_tolower(string_get_extension(pFilename)));
uint8_vec filedata;
if (extension == "ktx")
{
if (!create_ktx_texture_file(filedata, g, cubemap_flag))
return false;
}
else if (extension == "pvr")
{
// TODO
return false;
}
else if (extension == "dds")
{
if (!write_dds_file(filedata, g, cubemap_flag, use_srgb_format))
return false;
}
else
{
// unsupported texture format
assert(0);
return false;
}
return basisu::write_vec_to_file(pFilename, filedata);
}
bool write_compressed_texture_file(const char* pFilename, const gpu_image_vec& g, bool use_srgb_format)
{
basisu::vector<gpu_image_vec> a;
a.push_back(g);
return write_compressed_texture_file(pFilename, a, false, use_srgb_format);
}
bool write_compressed_texture_file(const char* pFilename, const gpu_image& g, bool use_srgb_format)
{
basisu::vector<gpu_image_vec> v;
enlarge_vector(v, 1)->push_back(g);
return write_compressed_texture_file(pFilename, v, false, use_srgb_format);
}
//const uint32_t OUT_FILE_MAGIC = 'TEXC';
struct out_file_header
{
packed_uint<4> m_magic;
packed_uint<4> m_pad;
packed_uint<4> m_width;
packed_uint<4> m_height;
};
// As no modern tool supports FXT1 format .KTX files, let's write .OUT files and make sure 3DFX's original tools shipped in 1999 can decode our encoded output.
bool write_3dfx_out_file(const char* pFilename, const gpu_image& gi)
{
out_file_header hdr;
//hdr.m_magic = OUT_FILE_MAGIC;
hdr.m_magic.m_bytes[0] = 67;
hdr.m_magic.m_bytes[1] = 88;
hdr.m_magic.m_bytes[2] = 69;
hdr.m_magic.m_bytes[3] = 84;
hdr.m_pad = 0;
hdr.m_width = gi.get_blocks_x() * 8;
hdr.m_height = gi.get_blocks_y() * 4;
FILE* pFile = nullptr;
#ifdef _WIN32
fopen_s(&pFile, pFilename, "wb");
#else
pFile = fopen(pFilename, "wb");
#endif
if (!pFile)
return false;
fwrite(&hdr, sizeof(hdr), 1, pFile);
fwrite(gi.get_ptr(), gi.get_size_in_bytes(), 1, pFile);
return fclose(pFile) != EOF;
}
// The .astc texture format is readable using ARM's astcenc, AMD Compressonator, and other engines/tools. It oddly doesn't support mipmaps, limiting
// its usefulness/relevance.
// https://github.com/ARM-software/astc-encoder/blob/main/Docs/FileFormat.md
bool write_astc_file(const char* pFilename, const void* pBlocks, uint32_t block_width, uint32_t block_height, uint32_t dim_x, uint32_t dim_y)
{
assert(pBlocks && (block_width >= 4) && (block_height >= 4) && (dim_x > 0) && (dim_y > 0));
uint8_vec file_data;
file_data.push_back(0x13);
file_data.push_back(0xAB);
file_data.push_back(0xA1);
file_data.push_back(0x5C);
file_data.push_back((uint8_t)block_width);
file_data.push_back((uint8_t)block_height);
file_data.push_back(1);
file_data.push_back((uint8_t)dim_x);
file_data.push_back((uint8_t)(dim_x >> 8));
file_data.push_back((uint8_t)(dim_x >> 16));
file_data.push_back((uint8_t)dim_y);
file_data.push_back((uint8_t)(dim_y >> 8));
file_data.push_back((uint8_t)(dim_y >> 16));
file_data.push_back((uint8_t)1);
file_data.push_back((uint8_t)0);
file_data.push_back((uint8_t)0);
const uint32_t num_blocks_x = (dim_x + block_width - 1) / block_width;
const uint32_t num_blocks_y = (dim_y + block_height - 1) / block_height;
const uint32_t total_bytes = num_blocks_x * num_blocks_y * 16;
const size_t cur_size = file_data.size();
file_data.resize(cur_size + total_bytes);
memcpy(&file_data[cur_size], pBlocks, total_bytes);
return write_vec_to_file(pFilename, file_data);
}
} // basisu