virtualx-engine/thirdparty/basis_universal/transcoder/basisu_astc_helpers.h
2024-10-12 18:02:44 +02:00

3587 lines
104 KiB
C++

// basisu_astc_helpers.h
// Be sure to define ASTC_HELPERS_IMPLEMENTATION somewhere to get the implementation, otherwise you only get the header.
#pragma once
#ifndef BASISU_ASTC_HELPERS_HEADER
#define BASISU_ASTC_HELPERS_HEADER
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#include <fenv.h>
namespace astc_helpers
{
const uint32_t MAX_WEIGHT_VALUE = 64; // grid texel weights must range from [0,64]
const uint32_t MIN_GRID_DIM = 2; // the minimum dimension of a block's weight grid
const uint32_t MIN_BLOCK_DIM = 4, MAX_BLOCK_DIM = 12; // the valid block dimensions in texels
const uint32_t MAX_GRID_WEIGHTS = 64; // a block may have a maximum of 64 weight grid values
static const uint32_t NUM_ASTC_BLOCK_SIZES = 14;
extern const uint8_t g_astc_block_sizes[NUM_ASTC_BLOCK_SIZES][2];
// The Color Endpoint Modes (CEM's)
enum cems
{
CEM_LDR_LUM_DIRECT = 0,
CEM_LDR_LUM_BASE_PLUS_OFS = 1,
CEM_HDR_LUM_LARGE_RANGE = 2,
CEM_HDR_LUM_SMALL_RANGE = 3,
CEM_LDR_LUM_ALPHA_DIRECT = 4,
CEM_LDR_LUM_ALPHA_BASE_PLUS_OFS = 5,
CEM_LDR_RGB_BASE_SCALE = 6,
CEM_HDR_RGB_BASE_SCALE = 7,
CEM_LDR_RGB_DIRECT = 8,
CEM_LDR_RGB_BASE_PLUS_OFFSET = 9,
CEM_LDR_RGB_BASE_SCALE_PLUS_TWO_A = 10,
CEM_HDR_RGB = 11,
CEM_LDR_RGBA_DIRECT = 12,
CEM_LDR_RGBA_BASE_PLUS_OFFSET = 13,
CEM_HDR_RGB_LDR_ALPHA = 14,
CEM_HDR_RGB_HDR_ALPHA = 15
};
// All Bounded Integer Sequence Coding (BISE or ISE) ranges.
// Weights: Ranges [0,11] are valid.
// Endpoints: Ranges [4,20] are valid.
enum bise_levels
{
BISE_2_LEVELS = 0,
BISE_3_LEVELS = 1,
BISE_4_LEVELS = 2,
BISE_5_LEVELS = 3,
BISE_6_LEVELS = 4,
BISE_8_LEVELS = 5,
BISE_10_LEVELS = 6,
BISE_12_LEVELS = 7,
BISE_16_LEVELS = 8,
BISE_20_LEVELS = 9,
BISE_24_LEVELS = 10,
BISE_32_LEVELS = 11,
BISE_40_LEVELS = 12,
BISE_48_LEVELS = 13,
BISE_64_LEVELS = 14,
BISE_80_LEVELS = 15,
BISE_96_LEVELS = 16,
BISE_128_LEVELS = 17,
BISE_160_LEVELS = 18,
BISE_192_LEVELS = 19,
BISE_256_LEVELS = 20
};
const uint32_t TOTAL_ISE_RANGES = 21;
// Valid endpoint ISE ranges
const uint32_t FIRST_VALID_ENDPOINT_ISE_RANGE = BISE_6_LEVELS; // 4
const uint32_t LAST_VALID_ENDPOINT_ISE_RANGE = BISE_256_LEVELS; // 20
const uint32_t TOTAL_ENDPOINT_ISE_RANGES = LAST_VALID_ENDPOINT_ISE_RANGE - FIRST_VALID_ENDPOINT_ISE_RANGE + 1;
// Valid weight ISE ranges
const uint32_t FIRST_VALID_WEIGHT_ISE_RANGE = BISE_2_LEVELS; // 0
const uint32_t LAST_VALID_WEIGHT_ISE_RANGE = BISE_32_LEVELS; // 11
const uint32_t TOTAL_WEIGHT_ISE_RANGES = LAST_VALID_WEIGHT_ISE_RANGE - FIRST_VALID_WEIGHT_ISE_RANGE + 1;
// The ISE range table.
extern const int8_t g_ise_range_table[TOTAL_ISE_RANGES][3]; // 0=bits (0 to 8), 1=trits (0 or 1), 2=quints (0 or 1)
// Possible Color Component Select values, used in dual plane mode.
// The CCS component will be interpolated using the 2nd weight plane.
enum ccs
{
CCS_GBA_R = 0,
CCS_RBA_G = 1,
CCS_RGA_B = 2,
CCS_RGB_A = 3
};
struct astc_block
{
uint32_t m_vals[4];
};
const uint32_t MAX_PARTITIONS = 4; // Max # of partitions or subsets for single plane mode
const uint32_t MAX_DUAL_PLANE_PARTITIONS = 3; // Max # of partitions or subsets for dual plane mode
const uint32_t NUM_PARTITION_PATTERNS = 1024; // Total # of partition pattern seeds (10-bits)
const uint32_t MAX_ENDPOINTS = 18; // Maximum # of endpoint values in a block
struct log_astc_block
{
bool m_error_flag;
bool m_solid_color_flag_ldr, m_solid_color_flag_hdr;
uint16_t m_solid_color[4];
// Rest is only valid if !m_solid_color_flag_ldr && !m_solid_color_flag_hdr
uint32_t m_grid_width, m_grid_height; // weight grid dimensions, not the dimension of the block
bool m_dual_plane;
uint32_t m_weight_ise_range; // 0-11
uint32_t m_endpoint_ise_range; // 4-20, this is actually inferred from the size of the other config bits+weights, but this is here for checking
uint32_t m_color_component_selector; // 0-3, 0=GBA R, 1=RBA G, 2=RGA B, 3=RGB A, only used in dual plane mode
uint32_t m_num_partitions; // or the # of subsets, 1-4 (1-3 if dual plane mode)
uint32_t m_partition_id; // 10-bits, must be 0 if m_num_partitions==1
uint32_t m_color_endpoint_modes[MAX_PARTITIONS]; // each subset's CEM's
// ISE weight grid values. In dual plane mode, the order is p0,p1, p0,p1, etc.
uint8_t m_weights[MAX_GRID_WEIGHTS];
// ISE endpoint values
// Endpoint order examples:
// 1 subset LA : LL0 LH0 AL0 AH0
// 1 subset RGB : RL0 RH0 GL0 GH0 BL0 BH0
// 1 subset RGBA : RL0 RH0 GL0 GH0 BL0 BH0 AL0 AH0
// 2 subset LA : LL0 LH0 AL0 AH0 LL1 LH1 AL1 AH1
// 2 subset RGB : RL0 RH0 GL0 GH0 BL0 BH0 RL1 RH1 GL1 GH1 BL1 BH1
// 2 subset RGBA : RL0 RH0 GL0 GH0 BL0 BH0 AL0 AH0 RL1 RH1 GL1 GH1 BL1 BH1 AL1 AH1
uint8_t m_endpoints[MAX_ENDPOINTS];
void clear()
{
memset(this, 0, sizeof(*this));
}
};
// Open interval
inline int bounds_check(int v, int l, int h) { (void)v; (void)l; (void)h; assert(v >= l && v < h); return v; }
inline uint32_t bounds_check(uint32_t v, uint32_t l, uint32_t h) { (void)v; (void)l; (void)h; assert(v >= l && v < h); return v; }
inline uint32_t get_bits(uint32_t val, int low, int high)
{
const int num_bits = (high - low) + 1;
assert((num_bits >= 1) && (num_bits <= 32));
val >>= low;
if (num_bits != 32)
val &= ((1u << num_bits) - 1);
return val;
}
// Returns the number of levels in the given ISE range.
inline uint32_t get_ise_levels(uint32_t ise_range)
{
assert(ise_range < TOTAL_ISE_RANGES);
return (1 + 2 * g_ise_range_table[ise_range][1] + 4 * g_ise_range_table[ise_range][2]) << g_ise_range_table[ise_range][0];
}
inline int get_ise_sequence_bits(int count, int range)
{
// See 18.22 Data Size Determination
int total_bits = g_ise_range_table[range][0] * count;
total_bits += (g_ise_range_table[range][1] * 8 * count + 4) / 5;
total_bits += (g_ise_range_table[range][2] * 7 * count + 2) / 3;
return total_bits;
}
inline uint32_t weight_interpolate(uint32_t l, uint32_t h, uint32_t w)
{
assert(w <= MAX_WEIGHT_VALUE);
return (l * (64 - w) + h * w + 32) >> 6;
}
void encode_bise(uint32_t* pDst, const uint8_t* pSrc_vals, uint32_t bit_pos, int num_vals, int range);
// Packs a logical to physical ASTC block. Note this does not validate the block's dimensions (use is_valid_block_size()), just the grid dimensions.
bool pack_astc_block(astc_block &phys_block, const log_astc_block& log_block, int* pExpected_endpoint_range = nullptr);
// Pack LDR void extent (really solid color) blocks. For LDR, pass in (val | (val << 8)) for each component.
void pack_void_extent_ldr(astc_block& blk, uint16_t r, uint16_t g, uint16_t b, uint16_t a);
// Pack HDR void extent (16-bit values are FP16/half floats - no NaN/Inf's)
void pack_void_extent_hdr(astc_block& blk, uint16_t rh, uint16_t gh, uint16_t bh, uint16_t ah);
// These helpers are all quite slow, but are useful for table preparation.
// Dequantizes ISE encoded endpoint val to [0,255]
uint32_t dequant_bise_endpoint(uint32_t val, uint32_t ise_range); // ISE ranges 4-11
// Dequantizes ISE encoded weight val to [0,64]
uint32_t dequant_bise_weight(uint32_t val, uint32_t ise_range); // ISE ranges 0-10
uint32_t find_nearest_bise_endpoint(int v, uint32_t ise_range);
uint32_t find_nearest_bise_weight(int v, uint32_t ise_range);
void create_quant_tables(
uint8_t* pVal_to_ise, // [0-255] or [0-64] value to nearest ISE symbol, array size is [256] or [65]
uint8_t* pISE_to_val, // ASTC encoded ISE symbol to [0,255] or [0,64] value, [levels]
uint8_t* pISE_to_rank, // returns the level rank index given an ISE symbol, [levels]
uint8_t* pRank_to_ISE, // returns the ISE symbol given a level rank, inverse of pISE_to_rank, [levels]
uint32_t ise_range, // ise range, [4,20] for endpoints, [0,11] for weights
bool weight_flag); // false if block endpoints, true if weights
// True if the CEM is LDR.
bool is_cem_ldr(uint32_t mode);
inline bool is_cem_hdr(uint32_t mode) { return !is_cem_ldr(mode); }
// True if the passed in dimensions are a valid ASTC block size. There are 14 supported configs, from 4x4 (8bpp) to 12x12 (.89bpp).
bool is_valid_block_size(uint32_t w, uint32_t h);
bool block_has_any_hdr_cems(const log_astc_block& log_blk);
bool block_has_any_ldr_cems(const log_astc_block& log_blk);
// Returns the # of endpoint values for the given CEM.
inline uint32_t get_num_cem_values(uint32_t cem) { assert(cem <= 15); return 2 + 2 * (cem >> 2); }
struct dequant_table
{
basisu::vector<uint8_t> m_val_to_ise; // [0-255] or [0-64] value to nearest ISE symbol, array size is [256] or [65]
basisu::vector<uint8_t> m_ISE_to_val; // ASTC encoded ISE symbol to [0,255] or [0,64] value, [levels]
basisu::vector<uint8_t> m_ISE_to_rank; // returns the level rank index given an ISE symbol, [levels]
basisu::vector<uint8_t> m_rank_to_ISE; // returns the ISE symbol given a level rank, inverse of pISE_to_rank, [levels]
void init(bool weight_flag, uint32_t num_levels, bool init_rank_tabs)
{
m_val_to_ise.resize(weight_flag ? (MAX_WEIGHT_VALUE + 1) : 256);
m_ISE_to_val.resize(num_levels);
if (init_rank_tabs)
{
m_ISE_to_rank.resize(num_levels);
m_rank_to_ISE.resize(num_levels);
}
}
};
struct dequant_tables
{
dequant_table m_weights[TOTAL_WEIGHT_ISE_RANGES];
dequant_table m_endpoints[TOTAL_ENDPOINT_ISE_RANGES];
const dequant_table& get_weight_tab(uint32_t range) const
{
assert((range >= FIRST_VALID_WEIGHT_ISE_RANGE) && (range <= LAST_VALID_WEIGHT_ISE_RANGE));
return m_weights[range - FIRST_VALID_WEIGHT_ISE_RANGE];
}
dequant_table& get_weight_tab(uint32_t range)
{
assert((range >= FIRST_VALID_WEIGHT_ISE_RANGE) && (range <= LAST_VALID_WEIGHT_ISE_RANGE));
return m_weights[range - FIRST_VALID_WEIGHT_ISE_RANGE];
}
const dequant_table& get_endpoint_tab(uint32_t range) const
{
assert((range >= FIRST_VALID_ENDPOINT_ISE_RANGE) && (range <= LAST_VALID_ENDPOINT_ISE_RANGE));
return m_endpoints[range - FIRST_VALID_ENDPOINT_ISE_RANGE];
}
dequant_table& get_endpoint_tab(uint32_t range)
{
assert((range >= FIRST_VALID_ENDPOINT_ISE_RANGE) && (range <= LAST_VALID_ENDPOINT_ISE_RANGE));
return m_endpoints[range - FIRST_VALID_ENDPOINT_ISE_RANGE];
}
void init(bool init_rank_tabs)
{
for (uint32_t range = FIRST_VALID_WEIGHT_ISE_RANGE; range <= LAST_VALID_WEIGHT_ISE_RANGE; range++)
{
const uint32_t num_levels = get_ise_levels(range);
dequant_table& tab = get_weight_tab(range);
tab.init(true, num_levels, init_rank_tabs);
create_quant_tables(tab.m_val_to_ise.data(), tab.m_ISE_to_val.data(), init_rank_tabs ? tab.m_ISE_to_rank.data() : nullptr, init_rank_tabs ? tab.m_rank_to_ISE.data() : nullptr, range, true);
}
for (uint32_t range = FIRST_VALID_ENDPOINT_ISE_RANGE; range <= LAST_VALID_ENDPOINT_ISE_RANGE; range++)
{
const uint32_t num_levels = get_ise_levels(range);
dequant_table& tab = get_endpoint_tab(range);
tab.init(false, num_levels, init_rank_tabs);
create_quant_tables(tab.m_val_to_ise.data(), tab.m_ISE_to_val.data(), init_rank_tabs ? tab.m_ISE_to_rank.data() : nullptr, init_rank_tabs ? tab.m_rank_to_ISE.data() : nullptr, range, false);
}
}
};
extern dequant_tables g_dequant_tables;
void init_tables(bool init_rank_tabs);
// Procedurally returns the texel partition/subset index given the block coordinate and config.
int compute_texel_partition(uint32_t seedIn, uint32_t xIn, uint32_t yIn, uint32_t zIn, int num_partitions, bool small_block);
void blue_contract(
int r, int g, int b, int a,
int& dr, int& dg, int& db, int& da);
void bit_transfer_signed(int& a, int& b);
void decode_endpoint(uint32_t cem_index, int (*pEndpoints)[2], const uint8_t* pE);
typedef uint16_t half_float;
half_float float_to_half(float val, bool toward_zero);
float half_to_float(half_float hval);
const int MAX_RGB9E5 = 0xff80;
void unpack_rgb9e5(uint32_t packed, float& r, float& g, float& b);
uint32_t pack_rgb9e5(float r, float g, float b);
enum decode_mode
{
cDecodeModeSRGB8 = 0, // returns uint8_t's, not valid on HDR blocks
cDecodeModeLDR8 = 1, // returns uint8_t's, not valid on HDR blocks
cDecodeModeHDR16 = 2, // returns uint16_t's (half floats), valid on all LDR/HDR blocks
cDecodeModeRGB9E5 = 3 // returns uint32_t's, packed as RGB 9E5 (shared exponent), see https://registry.khronos.org/OpenGL/extensions/EXT/EXT_texture_shared_exponent.txt
};
// Decodes logical block to output pixels.
// pPixels must point to either 32-bit pixel values (SRGB8/LDR8/9E5) or 64-bit pixel values (HDR16)
bool decode_block(const log_astc_block& log_blk, void* pPixels, uint32_t blk_width, uint32_t blk_height, decode_mode dec_mode);
void decode_bise(uint32_t ise_range, uint8_t* pVals, uint32_t num_vals, const uint8_t *pBits128, uint32_t bit_ofs);
// Unpack a physical ASTC encoded GPU texture block to a logical block description.
bool unpack_block(const void* pASTC_block, log_astc_block& log_blk, uint32_t blk_width, uint32_t blk_height);
} // namespace astc_helpers
#endif // BASISU_ASTC_HELPERS_HEADER
//------------------------------------------------------------------
#ifdef BASISU_ASTC_HELPERS_IMPLEMENTATION
namespace astc_helpers
{
template<typename T> inline T my_min(T a, T b) { return (a < b) ? a : b; }
template<typename T> inline T my_max(T a, T b) { return (a > b) ? a : b; }
const uint8_t g_astc_block_sizes[NUM_ASTC_BLOCK_SIZES][2] = {
{ 4, 4 }, { 5, 4 }, { 5, 5 }, { 6, 5 },
{ 6, 6 }, { 8, 5 }, { 8, 6 }, { 10, 5 },
{ 10, 6 }, { 8, 8 }, { 10, 8 }, { 10, 10 },
{ 12, 10 }, { 12, 12 }
};
const int8_t g_ise_range_table[TOTAL_ISE_RANGES][3] =
{
//b t q
//2 3 5 // rng ise_index notes
{ 1, 0, 0 }, // 0..1 0
{ 0, 1, 0 }, // 0..2 1
{ 2, 0, 0 }, // 0..3 2
{ 0, 0, 1 }, // 0..4 3
{ 1, 1, 0 }, // 0..5 4 min endpoint ISE index
{ 3, 0, 0 }, // 0..7 5
{ 1, 0, 1 }, // 0..9 6
{ 2, 1, 0 }, // 0..11 7
{ 4, 0, 0 }, // 0..15 8
{ 2, 0, 1 }, // 0..19 9
{ 3, 1, 0 }, // 0..23 10
{ 5, 0, 0 }, // 0..31 11 max weight ISE index
{ 3, 0, 1 }, // 0..39 12
{ 4, 1, 0 }, // 0..47 13
{ 6, 0, 0 }, // 0..63 14
{ 4, 0, 1 }, // 0..79 15
{ 5, 1, 0 }, // 0..95 16
{ 7, 0, 0 }, // 0..127 17
{ 5, 0, 1 }, // 0..159 18
{ 6, 1, 0 }, // 0..191 19
{ 8, 0, 0 }, // 0..255 20
};
static inline void astc_set_bits_1_to_9(uint32_t* pDst, uint32_t& bit_offset, uint32_t code, uint32_t codesize)
{
uint8_t* pBuf = reinterpret_cast<uint8_t*>(pDst);
assert(codesize <= 9);
if (codesize)
{
uint32_t byte_bit_offset = bit_offset & 7;
uint32_t val = code << byte_bit_offset;
uint32_t index = bit_offset >> 3;
pBuf[index] |= (uint8_t)val;
if (codesize > (8 - byte_bit_offset))
pBuf[index + 1] |= (uint8_t)(val >> 8);
bit_offset += codesize;
}
}
static inline uint32_t astc_extract_bits(uint32_t bits, int low, int high)
{
return (bits >> low) & ((1 << (high - low + 1)) - 1);
}
// Writes bits to output in an endian safe way
static inline void astc_set_bits(uint32_t* pOutput, uint32_t& bit_pos, uint32_t value, uint32_t total_bits)
{
assert(total_bits <= 31);
assert(value < (1u << total_bits));
uint8_t* pBytes = reinterpret_cast<uint8_t*>(pOutput);
while (total_bits)
{
const uint32_t bits_to_write = my_min<int>(total_bits, 8 - (bit_pos & 7));
pBytes[bit_pos >> 3] |= static_cast<uint8_t>(value << (bit_pos & 7));
bit_pos += bits_to_write;
total_bits -= bits_to_write;
value >>= bits_to_write;
}
}
static const uint8_t g_astc_quint_encode[125] =
{
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 5, 13, 21, 29, 6, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 56, 57,
58, 59, 60, 37, 45, 53, 61, 14, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 88, 89, 90, 91, 92, 69, 77, 85, 93, 22, 96, 97, 98, 99, 100, 104,
105, 106, 107, 108, 112, 113, 114, 115, 116, 120, 121, 122, 123, 124, 101, 109, 117, 125, 30, 102, 103, 70, 71, 38, 110, 111, 78, 79, 46, 118, 119, 86, 87, 54,
126, 127, 94, 95, 62, 39, 47, 55, 63, 7 /*31 - results in the same decode as 7*/
};
// Encodes 3 values to output, usable for any range that uses quints and bits
static inline void astc_encode_quints(uint32_t* pOutput, const uint8_t* pValues, uint32_t& bit_pos, int n)
{
// First extract the quints and the bits from the 3 input values
int quints = 0, bits[3];
const uint32_t bit_mask = (1 << n) - 1;
for (int i = 0; i < 3; i++)
{
static const int s_muls[3] = { 1, 5, 25 };
const int t = pValues[i] >> n;
quints += t * s_muls[i];
bits[i] = pValues[i] & bit_mask;
}
// Encode the quints, by inverting the bit manipulations done by the decoder, converting 3 quints into 7-bits.
// See https://www.khronos.org/registry/DataFormat/specs/1.2/dataformat.1.2.html#astc-integer-sequence-encoding
assert(quints < 125);
const int T = g_astc_quint_encode[quints];
// Now interleave the 7 encoded quint bits with the bits to form the encoded output. See table 95-96.
astc_set_bits(pOutput, bit_pos, bits[0] | (astc_extract_bits(T, 0, 2) << n) | (bits[1] << (3 + n)) | (astc_extract_bits(T, 3, 4) << (3 + n * 2)) |
(bits[2] << (5 + n * 2)) | (astc_extract_bits(T, 5, 6) << (5 + n * 3)), 7 + n * 3);
}
static const uint8_t g_astc_trit_encode[243] = { 0, 1, 2, 4, 5, 6, 8, 9, 10, 16, 17, 18, 20, 21, 22, 24, 25, 26, 3, 7, 11, 19, 23, 27, 12, 13, 14, 32, 33, 34, 36, 37, 38, 40, 41, 42, 48, 49, 50, 52, 53, 54, 56, 57, 58, 35, 39,
43, 51, 55, 59, 44, 45, 46, 64, 65, 66, 68, 69, 70, 72, 73, 74, 80, 81, 82, 84, 85, 86, 88, 89, 90, 67, 71, 75, 83, 87, 91, 76, 77, 78, 128, 129, 130, 132, 133, 134, 136, 137, 138, 144, 145, 146, 148, 149, 150, 152, 153, 154,
131, 135, 139, 147, 151, 155, 140, 141, 142, 160, 161, 162, 164, 165, 166, 168, 169, 170, 176, 177, 178, 180, 181, 182, 184, 185, 186, 163, 167, 171, 179, 183, 187, 172, 173, 174, 192, 193, 194, 196, 197, 198, 200, 201, 202,
208, 209, 210, 212, 213, 214, 216, 217, 218, 195, 199, 203, 211, 215, 219, 204, 205, 206, 96, 97, 98, 100, 101, 102, 104, 105, 106, 112, 113, 114, 116, 117, 118, 120, 121, 122, 99, 103, 107, 115, 119, 123, 108, 109, 110, 224,
225, 226, 228, 229, 230, 232, 233, 234, 240, 241, 242, 244, 245, 246, 248, 249, 250, 227, 231, 235, 243, 247, 251, 236, 237, 238, 28, 29, 30, 60, 61, 62, 92, 93, 94, 156, 157, 158, 188, 189, 190, 220, 221, 222, 31, 63, 95, 159,
191, 223, 124, 125, 126 };
// Encodes 5 values to output, usable for any range that uses trits and bits
static void astc_encode_trits(uint32_t* pOutput, const uint8_t* pValues, uint32_t& bit_pos, int n)
{
// First extract the trits and the bits from the 5 input values
int trits = 0, bits[5];
const uint32_t bit_mask = (1 << n) - 1;
for (int i = 0; i < 5; i++)
{
static const int s_muls[5] = { 1, 3, 9, 27, 81 };
const int t = pValues[i] >> n;
trits += t * s_muls[i];
bits[i] = pValues[i] & bit_mask;
}
// Encode the trits, by inverting the bit manipulations done by the decoder, converting 5 trits into 8-bits.
// See https://www.khronos.org/registry/DataFormat/specs/1.2/dataformat.1.2.html#astc-integer-sequence-encoding
assert(trits < 243);
const int T = g_astc_trit_encode[trits];
// Now interleave the 8 encoded trit bits with the bits to form the encoded output. See table 94.
astc_set_bits(pOutput, bit_pos, bits[0] | (astc_extract_bits(T, 0, 1) << n) | (bits[1] << (2 + n)), n * 2 + 2);
astc_set_bits(pOutput, bit_pos, astc_extract_bits(T, 2, 3) | (bits[2] << 2) | (astc_extract_bits(T, 4, 4) << (2 + n)) | (bits[3] << (3 + n)) | (astc_extract_bits(T, 5, 6) << (3 + n * 2)) |
(bits[4] << (5 + n * 2)) | (astc_extract_bits(T, 7, 7) << (5 + n * 3)), n * 3 + 6);
}
// Packs values using ASTC's BISE to output buffer.
void encode_bise(uint32_t* pDst, const uint8_t* pSrc_vals, uint32_t bit_pos, int num_vals, int range)
{
uint32_t temp[5] = { 0 };
const int num_bits = g_ise_range_table[range][0];
int group_size = 0;
if (g_ise_range_table[range][1])
group_size = 5;
else if (g_ise_range_table[range][2])
group_size = 3;
#ifndef NDEBUG
const uint32_t num_levels = get_ise_levels(range);
for (int i = 0; i < num_vals; i++)
{
assert(pSrc_vals[i] < num_levels);
}
#endif
if (group_size)
{
// Range has trits or quints - pack each group of 5 or 3 values
const int total_groups = (group_size == 5) ? ((num_vals + 4) / 5) : ((num_vals + 2) / 3);
for (int group_index = 0; group_index < total_groups; group_index++)
{
uint8_t vals[5] = { 0 };
const int limit = my_min(group_size, num_vals - group_index * group_size);
for (int i = 0; i < limit; i++)
vals[i] = pSrc_vals[group_index * group_size + i];
if (group_size == 5)
astc_encode_trits(temp, vals, bit_pos, num_bits);
else
astc_encode_quints(temp, vals, bit_pos, num_bits);
}
}
else
{
for (int i = 0; i < num_vals; i++)
astc_set_bits_1_to_9(temp, bit_pos, pSrc_vals[i], num_bits);
}
// TODO: Could this write too many bits on incomplete blocks?
pDst[0] |= temp[0]; pDst[1] |= temp[1];
pDst[2] |= temp[2]; pDst[3] |= temp[3];
}
inline uint32_t rev_dword(uint32_t bits)
{
uint32_t v = (bits << 16) | (bits >> 16);
v = ((v & 0x00ff00ff) << 8) | ((v & 0xff00ff00) >> 8); v = ((v & 0x0f0f0f0f) << 4) | ((v & 0xf0f0f0f0) >> 4);
v = ((v & 0x33333333) << 2) | ((v & 0xcccccccc) >> 2); v = ((v & 0x55555555) << 1) | ((v & 0xaaaaaaaa) >> 1);
return v;
}
static inline bool is_packable(int value, int num_bits) { assert((num_bits >= 1) && (num_bits < 31)); return (value >= 0) && (value < (1 << num_bits)); }
static bool get_config_bits(const log_astc_block &log_block, uint32_t &config_bits)
{
config_bits = 0;
const int W = log_block.m_grid_width, H = log_block.m_grid_height;
const uint32_t P = log_block.m_weight_ise_range >= 6; // high precision
const uint32_t Dp_P = (log_block.m_dual_plane << 1) | P; // pack dual plane+high precision bits
// See Tables 81-82
// Compute p from weight range
uint32_t p = 2 + log_block.m_weight_ise_range - (P ? 6 : 0);
// Rearrange p's bits to p0 p2 p1
p = (p >> 1) + ((p & 1) << 2);
// Try encoding each row of table 82.
// W+4 H+2
if (is_packable(W - 4, 2) && is_packable(H - 2, 2))
{
config_bits = (Dp_P << 9) | ((W - 4) << 7) | ((H - 2) << 5) | ((p & 4) << 2) | (p & 3);
return true;
}
// W+8 H+2
if (is_packable(W - 8, 2) && is_packable(H - 2, 2))
{
config_bits = (Dp_P << 9) | ((W - 8) << 7) | ((H - 2) << 5) | ((p & 4) << 2) | 4 | (p & 3);
return true;
}
// W+2 H+8
if (is_packable(W - 2, 2) && is_packable(H - 8, 2))
{
config_bits = (Dp_P << 9) | ((H - 8) << 7) | ((W - 2) << 5) | ((p & 4) << 2) | 8 | (p & 3);
return true;
}
// W+2 H+6
if (is_packable(W - 2, 2) && is_packable(H - 6, 1))
{
config_bits = (Dp_P << 9) | ((H - 6) << 7) | ((W - 2) << 5) | ((p & 4) << 2) | 12 | (p & 3);
return true;
}
// W+2 H+2
if (is_packable(W - 2, 1) && is_packable(H - 2, 2))
{
config_bits = (Dp_P << 9) | ((W) << 7) | ((H - 2) << 5) | ((p & 4) << 2) | 12 | (p & 3);
return true;
}
// 12 H+2
if ((W == 12) && is_packable(H - 2, 2))
{
config_bits = (Dp_P << 9) | ((H - 2) << 5) | (p << 2);
return true;
}
// W+2 12
if ((H == 12) && is_packable(W - 2, 2))
{
config_bits = (Dp_P << 9) | (1 << 7) | ((W - 2) << 5) | (p << 2);
return true;
}
// 6 10
if ((W == 6) && (H == 10))
{
config_bits = (Dp_P << 9) | (3 << 7) | (p << 2);
return true;
}
// 10 6
if ((W == 10) && (H == 6))
{
config_bits = (Dp_P << 9) | (0b1101 << 5) | (p << 2);
return true;
}
// W+6 H+6 (no dual plane or high prec)
if ((!Dp_P) && is_packable(W - 6, 2) && is_packable(H - 6, 2))
{
config_bits = ((H - 6) << 9) | 256 | ((W - 6) << 5) | (p << 2);
return true;
}
// Failed: unsupported weight grid dimensions or config.
return false;
}
bool pack_astc_block(astc_block& phys_block, const log_astc_block& log_block, int* pExpected_endpoint_range)
{
memset(&phys_block, 0, sizeof(phys_block));
if (pExpected_endpoint_range)
*pExpected_endpoint_range = -1;
assert(!log_block.m_error_flag);
if (log_block.m_error_flag)
return false;
if (log_block.m_solid_color_flag_ldr)
{
pack_void_extent_ldr(phys_block, log_block.m_solid_color[0], log_block.m_solid_color[1], log_block.m_solid_color[2], log_block.m_solid_color[3]);
return true;
}
else if (log_block.m_solid_color_flag_hdr)
{
pack_void_extent_hdr(phys_block, log_block.m_solid_color[0], log_block.m_solid_color[1], log_block.m_solid_color[2], log_block.m_solid_color[3]);
return true;
}
if ((log_block.m_num_partitions < 1) || (log_block.m_num_partitions > MAX_PARTITIONS))
return false;
// Max usable weight range is 11
if (log_block.m_weight_ise_range > LAST_VALID_WEIGHT_ISE_RANGE)
return false;
// See 23.24 Illegal Encodings, [0,5] is the minimum ISE encoding for endpoints
if ((log_block.m_endpoint_ise_range < FIRST_VALID_ENDPOINT_ISE_RANGE) || (log_block.m_endpoint_ise_range > LAST_VALID_ENDPOINT_ISE_RANGE))
return false;
if (log_block.m_color_component_selector > 3)
return false;
uint32_t config_bits = 0;
if (!get_config_bits(log_block, config_bits))
return false;
uint32_t bit_pos = 0;
astc_set_bits(&phys_block.m_vals[0], bit_pos, config_bits, 11);
const uint32_t total_grid_weights = (log_block.m_dual_plane ? 2 : 1) * (log_block.m_grid_width * log_block.m_grid_height);
const uint32_t total_weight_bits = get_ise_sequence_bits(total_grid_weights, log_block.m_weight_ise_range);
// 18.24 Illegal Encodings
if ((!total_grid_weights) || (total_grid_weights > MAX_GRID_WEIGHTS) || (total_weight_bits < 24) || (total_weight_bits > 96))
return false;
uint32_t total_extra_bits = 0;
astc_set_bits(&phys_block.m_vals[0], bit_pos, log_block.m_num_partitions - 1, 2);
if (log_block.m_num_partitions > 1)
{
if (log_block.m_partition_id >= NUM_PARTITION_PATTERNS)
return false;
astc_set_bits(&phys_block.m_vals[0], bit_pos, log_block.m_partition_id, 10);
uint32_t highest_cem = 0, lowest_cem = UINT32_MAX;
for (uint32_t j = 0; j < log_block.m_num_partitions; j++)
{
highest_cem = my_max(highest_cem, log_block.m_color_endpoint_modes[j]);
lowest_cem = my_min(lowest_cem, log_block.m_color_endpoint_modes[j]);
}
if (highest_cem > 15)
return false;
// Ensure CEM range is contiguous
if (((highest_cem >> 2) > (1 + (lowest_cem >> 2))))
return false;
// See tables 79/80
uint32_t encoded_cem = log_block.m_color_endpoint_modes[0] << 2;
if (lowest_cem != highest_cem)
{
encoded_cem = my_min<uint32_t>(3, 1 + (lowest_cem >> 2));
// See tables at 23.11 Color Endpoint Mode
for (uint32_t j = 0; j < log_block.m_num_partitions; j++)
{
const int M = log_block.m_color_endpoint_modes[j] & 3;
const int C = (log_block.m_color_endpoint_modes[j] >> 2) - ((encoded_cem & 3) - 1);
if ((C & 1) != C)
return false;
encoded_cem |= (C << (2 + j)) | (M << (2 + log_block.m_num_partitions + 2 * j));
}
total_extra_bits = 3 * log_block.m_num_partitions - 4;
if ((total_weight_bits + total_extra_bits) > 128)
return false;
uint32_t cem_bit_pos = 128 - total_weight_bits - total_extra_bits;
astc_set_bits(&phys_block.m_vals[0], cem_bit_pos, encoded_cem >> 6, total_extra_bits);
}
astc_set_bits(&phys_block.m_vals[0], bit_pos, encoded_cem & 0x3f, 6);
}
else
{
if (log_block.m_partition_id)
return false;
if (log_block.m_color_endpoint_modes[0] > 15)
return false;
astc_set_bits(&phys_block.m_vals[0], bit_pos, log_block.m_color_endpoint_modes[0], 4);
}
if (log_block.m_dual_plane)
{
if (log_block.m_num_partitions > 3)
return false;
total_extra_bits += 2;
uint32_t ccs_bit_pos = 128 - (int)total_weight_bits - (int)total_extra_bits;
astc_set_bits(&phys_block.m_vals[0], ccs_bit_pos, log_block.m_color_component_selector, 2);
}
const uint32_t total_config_bits = bit_pos + total_extra_bits;
const int num_remaining_bits = 128 - (int)total_config_bits - (int)total_weight_bits;
if (num_remaining_bits < 0)
return false;
uint32_t total_cem_vals = 0;
for (uint32_t j = 0; j < log_block.m_num_partitions; j++)
total_cem_vals += 2 + 2 * (log_block.m_color_endpoint_modes[j] >> 2);
if (total_cem_vals > MAX_ENDPOINTS)
return false;
int endpoint_ise_range = -1;
for (int k = 20; k > 0; k--)
{
int bits = get_ise_sequence_bits(total_cem_vals, k);
if (bits <= num_remaining_bits)
{
endpoint_ise_range = k;
break;
}
}
// See 23.24 Illegal Encodings, [0,5] is the minimum ISE encoding for endpoints
if (endpoint_ise_range < (int)FIRST_VALID_ENDPOINT_ISE_RANGE)
return false;
// Ensure the caller utilized the right endpoint ISE range.
if ((int)log_block.m_endpoint_ise_range != endpoint_ise_range)
{
if (pExpected_endpoint_range)
*pExpected_endpoint_range = endpoint_ise_range;
return false;
}
// Pack endpoints forwards
encode_bise(&phys_block.m_vals[0], log_block.m_endpoints, bit_pos, total_cem_vals, endpoint_ise_range);
// Pack weights backwards
uint32_t weight_data[4] = { 0 };
encode_bise(weight_data, log_block.m_weights, 0, total_grid_weights, log_block.m_weight_ise_range);
for (uint32_t i = 0; i < 4; i++)
phys_block.m_vals[i] |= rev_dword(weight_data[3 - i]);
return true;
}
static inline uint32_t bit_replication_scale(uint32_t src, int num_src_bits, int num_dst_bits)
{
assert(num_src_bits <= num_dst_bits);
assert((src & ((1 << num_src_bits) - 1)) == src);
uint32_t dst = 0;
for (int shift = num_dst_bits - num_src_bits; shift > -num_src_bits; shift -= num_src_bits)
dst |= (shift >= 0) ? (src << shift) : (src >> -shift);
return dst;
}
uint32_t dequant_bise_endpoint(uint32_t val, uint32_t ise_range)
{
assert((ise_range >= FIRST_VALID_ENDPOINT_ISE_RANGE) && (ise_range <= LAST_VALID_ENDPOINT_ISE_RANGE));
assert(val < get_ise_levels(ise_range));
uint32_t u = 0;
switch (ise_range)
{
case 5:
{
u = bit_replication_scale(val, 3, 8);
break;
}
case 8:
{
u = bit_replication_scale(val, 4, 8);
break;
}
case 11:
{
u = bit_replication_scale(val, 5, 8);
break;
}
case 14:
{
u = bit_replication_scale(val, 6, 8);
break;
}
case 17:
{
u = bit_replication_scale(val, 7, 8);
break;
}
case 20:
{
u = val;
break;
}
case 4:
case 6:
case 7:
case 9:
case 10:
case 12:
case 13:
case 15:
case 16:
case 18:
case 19:
{
const uint32_t num_bits = g_ise_range_table[ise_range][0];
const uint32_t num_trits = g_ise_range_table[ise_range][1]; BASISU_NOTE_UNUSED(num_trits);
const uint32_t num_quints = g_ise_range_table[ise_range][2]; BASISU_NOTE_UNUSED(num_quints);
// compute Table 103 row index
const int range_index = (num_bits * 2 + (num_quints ? 1 : 0)) - 2;
assert(range_index >= 0 && range_index <= 10);
uint32_t bits = val & ((1 << num_bits) - 1);
uint32_t tval = val >> num_bits;
assert(tval < (num_trits ? 3U : 5U));
uint32_t a = bits & 1;
uint32_t b = (bits >> 1) & 1;
uint32_t c = (bits >> 2) & 1;
uint32_t d = (bits >> 3) & 1;
uint32_t e = (bits >> 4) & 1;
uint32_t f = (bits >> 5) & 1;
uint32_t A = a ? 511 : 0;
uint32_t B = 0;
switch (range_index)
{
case 2:
{
// 876543210
// b000b0bb0
B = (b << 1) | (b << 2) | (b << 4) | (b << 8);
break;
}
case 3:
{
// 876543210
// b0000bb00
B = (b << 2) | (b << 3) | (b << 8);
break;
}
case 4:
{
// 876543210
// cb000cbcb
B = b | (c << 1) | (b << 2) | (c << 3) | (b << 7) | (c << 8);
break;
}
case 5:
{
// 876543210
// cb0000cbc
B = c | (b << 1) | (c << 2) | (b << 7) | (c << 8);
break;
}
case 6:
{
// 876543210
// dcb000dcb
B = b | (c << 1) | (d << 2) | (b << 6) | (c << 7) | (d << 8);
break;
}
case 7:
{
// 876543210
// dcb0000dc
B = c | (d << 1) | (b << 6) | (c << 7) | (d << 8);
break;
}
case 8:
{
// 876543210
// edcb000ed
B = d | (e << 1) | (b << 5) | (c << 6) | (d << 7) | (e << 8);
break;
}
case 9:
{
// 876543210
// edcb0000e
B = e | (b << 5) | (c << 6) | (d << 7) | (e << 8);
break;
}
case 10:
{
// 876543210
// fedcb000f
B = f | (b << 4) | (c << 5) | (d << 6) | (e << 7) | (f << 8);
break;
}
default:
break;
}
static uint8_t C_vals[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
uint32_t C = C_vals[range_index];
uint32_t D = tval;
u = D * C + B;
u = u ^ A;
u = (A & 0x80) | (u >> 2);
break;
}
default:
{
assert(0);
break;
}
}
return u;
}
uint32_t dequant_bise_weight(uint32_t val, uint32_t ise_range)
{
assert(val < get_ise_levels(ise_range));
uint32_t u = 0;
switch (ise_range)
{
case 0:
{
u = val ? 63 : 0;
break;
}
case 1: // 0-2
{
const uint8_t s_tab_0_2[3] = { 0, 32, 63 };
u = s_tab_0_2[val];
break;
}
case 2: // 0-3
{
u = bit_replication_scale(val, 2, 6);
break;
}
case 3: // 0-4
{
const uint8_t s_tab_0_4[5] = { 0, 16, 32, 47, 63 };
u = s_tab_0_4[val];
break;
}
case 5: // 0-7
{
u = bit_replication_scale(val, 3, 6);
break;
}
case 8: // 0-15
{
u = bit_replication_scale(val, 4, 6);
break;
}
case 11: // 0-31
{
u = bit_replication_scale(val, 5, 6);
break;
}
case 4: // 0-5
case 6: // 0-9
case 7: // 0-11
case 9: // 0-19
case 10: // 0-23
{
const uint32_t num_bits = g_ise_range_table[ise_range][0];
const uint32_t num_trits = g_ise_range_table[ise_range][1]; BASISU_NOTE_UNUSED(num_trits);
const uint32_t num_quints = g_ise_range_table[ise_range][2]; BASISU_NOTE_UNUSED(num_quints);
// compute Table 103 row index
const int range_index = num_bits * 2 + (num_quints ? 1 : 0);
// Extract bits and tris/quints from value
const uint32_t bits = val & ((1u << num_bits) - 1);
const uint32_t D = val >> num_bits;
assert(D < (num_trits ? 3U : 5U));
// Now dequantize
// See Table 103. ASTC weight unquantization parameters
static const uint32_t C_table[5] = { 50, 28, 23, 13, 11 };
const uint32_t a = bits & 1, b = (bits >> 1) & 1, c = (bits >> 2) & 1;
const uint32_t A = (a == 0) ? 0 : 0x7F;
uint32_t B = 0;
if (range_index == 4)
B = ((b << 6) | (b << 2) | (b << 0));
else if (range_index == 5)
B = ((b << 6) | (b << 1));
else if (range_index == 6)
B = ((c << 6) | (b << 5) | (c << 1) | (b << 0));
const uint32_t C = C_table[range_index - 2];
u = D * C + B;
u = u ^ A;
u = (A & 0x20) | (u >> 2);
break;
}
default:
assert(0);
break;
}
if (u > 32)
u++;
return u;
}
// Returns the nearest ISE symbol given a [0,255] endpoint value.
uint32_t find_nearest_bise_endpoint(int v, uint32_t ise_range)
{
assert(ise_range >= FIRST_VALID_ENDPOINT_ISE_RANGE && ise_range <= LAST_VALID_ENDPOINT_ISE_RANGE);
const uint32_t total_levels = get_ise_levels(ise_range);
int best_e = INT_MAX, best_index = 0;
for (uint32_t i = 0; i < total_levels; i++)
{
const int qv = dequant_bise_endpoint(i, ise_range);
int e = labs(v - qv);
if (e < best_e)
{
best_e = e;
best_index = i;
if (!best_e)
break;
}
}
return best_index;
}
// Returns the nearest ISE weight given a [0,64] endpoint value.
uint32_t find_nearest_bise_weight(int v, uint32_t ise_range)
{
assert(ise_range >= FIRST_VALID_WEIGHT_ISE_RANGE && ise_range <= LAST_VALID_WEIGHT_ISE_RANGE);
assert(v <= (int)MAX_WEIGHT_VALUE);
const uint32_t total_levels = get_ise_levels(ise_range);
int best_e = INT_MAX, best_index = 0;
for (uint32_t i = 0; i < total_levels; i++)
{
const int qv = dequant_bise_weight(i, ise_range);
int e = labs(v - qv);
if (e < best_e)
{
best_e = e;
best_index = i;
if (!best_e)
break;
}
}
return best_index;
}
void create_quant_tables(
uint8_t* pVal_to_ise, // [0-255] or [0-64] value to nearest ISE symbol, array size is [256] or [65]
uint8_t* pISE_to_val, // ASTC encoded ISE symbol to [0,255] or [0,64] value, [levels]
uint8_t* pISE_to_rank, // returns the level rank index given an ISE symbol, [levels]
uint8_t* pRank_to_ISE, // returns the ISE symbol given a level rank, inverse of pISE_to_rank, [levels]
uint32_t ise_range, // ise range, [4,20] for endpoints, [0,11] for weights
bool weight_flag) // false if block endpoints, true if weights
{
const uint32_t num_dequant_vals = weight_flag ? (MAX_WEIGHT_VALUE + 1) : 256;
for (uint32_t i = 0; i < num_dequant_vals; i++)
{
uint32_t bise_index = weight_flag ? astc_helpers::find_nearest_bise_weight(i, ise_range) : astc_helpers::find_nearest_bise_endpoint(i, ise_range);
if (pVal_to_ise)
pVal_to_ise[i] = (uint8_t)bise_index;
if (pISE_to_val)
pISE_to_val[bise_index] = weight_flag ? (uint8_t)astc_helpers::dequant_bise_weight(bise_index, ise_range) : (uint8_t)astc_helpers::dequant_bise_endpoint(bise_index, ise_range);
}
if (pISE_to_rank || pRank_to_ISE)
{
const uint32_t num_levels = get_ise_levels(ise_range);
if (!g_ise_range_table[ise_range][1] && !g_ise_range_table[ise_range][2])
{
// Only bits
for (uint32_t i = 0; i < num_levels; i++)
{
if (pISE_to_rank)
pISE_to_rank[i] = (uint8_t)i;
if (pRank_to_ISE)
pRank_to_ISE[i] = (uint8_t)i;
}
}
else
{
// Range has trits or quints
uint32_t vals[256];
for (uint32_t i = 0; i < num_levels; i++)
{
uint32_t v = weight_flag ? astc_helpers::dequant_bise_weight(i, ise_range) : astc_helpers::dequant_bise_endpoint(i, ise_range);
// Low=ISE value
// High=dequantized value
vals[i] = (v << 16) | i;
}
// Sorts by dequantized value
std::sort(vals, vals + num_levels);
for (uint32_t rank = 0; rank < num_levels; rank++)
{
uint32_t ise_val = (uint8_t)vals[rank];
if (pISE_to_rank)
pISE_to_rank[ise_val] = (uint8_t)rank;
if (pRank_to_ISE)
pRank_to_ISE[rank] = (uint8_t)ise_val;
}
}
}
}
void pack_void_extent_ldr(astc_block &blk, uint16_t rh, uint16_t gh, uint16_t bh, uint16_t ah)
{
uint8_t* pDst = (uint8_t*)&blk.m_vals[0];
memset(pDst, 0xFF, 16);
pDst[0] = 0b11111100;
pDst[1] = 0b11111101;
pDst[8] = (uint8_t)rh;
pDst[9] = (uint8_t)(rh >> 8);
pDst[10] = (uint8_t)gh;
pDst[11] = (uint8_t)(gh >> 8);
pDst[12] = (uint8_t)bh;
pDst[13] = (uint8_t)(bh >> 8);
pDst[14] = (uint8_t)ah;
pDst[15] = (uint8_t)(ah >> 8);
}
// rh-ah are half-floats
void pack_void_extent_hdr(astc_block& blk, uint16_t rh, uint16_t gh, uint16_t bh, uint16_t ah)
{
uint8_t* pDst = (uint8_t*)&blk.m_vals[0];
memset(pDst, 0xFF, 16);
pDst[0] = 0b11111100;
pDst[8] = (uint8_t)rh;
pDst[9] = (uint8_t)(rh >> 8);
pDst[10] = (uint8_t)gh;
pDst[11] = (uint8_t)(gh >> 8);
pDst[12] = (uint8_t)bh;
pDst[13] = (uint8_t)(bh >> 8);
pDst[14] = (uint8_t)ah;
pDst[15] = (uint8_t)(ah >> 8);
}
bool is_cem_ldr(uint32_t mode)
{
switch (mode)
{
case CEM_LDR_LUM_DIRECT:
case CEM_LDR_LUM_BASE_PLUS_OFS:
case CEM_LDR_LUM_ALPHA_DIRECT:
case CEM_LDR_LUM_ALPHA_BASE_PLUS_OFS:
case CEM_LDR_RGB_BASE_SCALE:
case CEM_LDR_RGB_DIRECT:
case CEM_LDR_RGB_BASE_PLUS_OFFSET:
case CEM_LDR_RGB_BASE_SCALE_PLUS_TWO_A:
case CEM_LDR_RGBA_DIRECT:
case CEM_LDR_RGBA_BASE_PLUS_OFFSET:
return true;
default:
break;
}
return false;
}
bool is_valid_block_size(uint32_t w, uint32_t h)
{
assert((w >= MIN_BLOCK_DIM) && (w <= MAX_BLOCK_DIM));
assert((h >= MIN_BLOCK_DIM) && (h <= MAX_BLOCK_DIM));
#define SIZECHK(x, y) if ((w == (x)) && (h == (y))) return true;
SIZECHK(4, 4);
SIZECHK(5, 4);
SIZECHK(5, 5);
SIZECHK(6, 5);
SIZECHK(6, 6);
SIZECHK(8, 5);
SIZECHK(8, 6);
SIZECHK(10, 5);
SIZECHK(10, 6);
SIZECHK(8, 8);
SIZECHK(10, 8);
SIZECHK(10, 10);
SIZECHK(12, 10);
SIZECHK(12, 12);
#undef SIZECHK
return false;
}
bool block_has_any_hdr_cems(const log_astc_block& log_blk)
{
assert((log_blk.m_num_partitions >= 1) && (log_blk.m_num_partitions <= MAX_PARTITIONS));
for (uint32_t i = 0; i < log_blk.m_num_partitions; i++)
if (is_cem_hdr(log_blk.m_color_endpoint_modes[i]))
return true;
return false;
}
bool block_has_any_ldr_cems(const log_astc_block& log_blk)
{
assert((log_blk.m_num_partitions >= 1) && (log_blk.m_num_partitions <= MAX_PARTITIONS));
for (uint32_t i = 0; i < log_blk.m_num_partitions; i++)
if (!is_cem_hdr(log_blk.m_color_endpoint_modes[i]))
return true;
return false;
}
dequant_tables g_dequant_tables;
void precompute_texel_partitions_4x4();
void init_tables(bool init_rank_tabs)
{
g_dequant_tables.init(init_rank_tabs);
precompute_texel_partitions_4x4();
}
struct weighted_sample
{
uint8_t m_src_x;
uint8_t m_src_y;
uint8_t m_weights[2][2]; // [y][x], scaled by 16, round by adding 8
};
static void compute_upsample_weights(
int block_width, int block_height,
int weight_grid_width, int weight_grid_height,
weighted_sample* pWeights) // there will be block_width * block_height bilinear samples
{
const uint32_t scaleX = (1024 + block_width / 2) / (block_width - 1);
const uint32_t scaleY = (1024 + block_height / 2) / (block_height - 1);
for (int texelY = 0; texelY < block_height; texelY++)
{
for (int texelX = 0; texelX < block_width; texelX++)
{
const uint32_t gX = (scaleX * texelX * (weight_grid_width - 1) + 32) >> 6;
const uint32_t gY = (scaleY * texelY * (weight_grid_height - 1) + 32) >> 6;
const uint32_t jX = gX >> 4;
const uint32_t jY = gY >> 4;
const uint32_t fX = gX & 0xf;
const uint32_t fY = gY & 0xf;
const uint32_t w11 = (fX * fY + 8) >> 4;
const uint32_t w10 = fY - w11;
const uint32_t w01 = fX - w11;
const uint32_t w00 = 16 - fX - fY + w11;
weighted_sample& s = pWeights[texelX + texelY * block_width];
s.m_src_x = (uint8_t)jX;
s.m_src_y = (uint8_t)jY;
s.m_weights[0][0] = (uint8_t)w00;
s.m_weights[0][1] = (uint8_t)w01;
s.m_weights[1][0] = (uint8_t)w10;
s.m_weights[1][1] = (uint8_t)w11;
}
}
}
// Should be dequantized [0,64] weights
static void upsample_weight_grid(
uint32_t bx, uint32_t by, // destination/to dimension
uint32_t wx, uint32_t wy, // source/from dimension
const uint8_t* pSrc_weights, // these are dequantized [0,64] weights, NOT ISE symbols, [wy][wx]
uint8_t* pDst_weights) // [by][bx]
{
assert((bx >= 2) && (by >= 2) && (bx <= 12) && (by <= 12));
assert((wx >= 2) && (wy >= 2) && (wx <= bx) && (wy <= by));
const uint32_t total_src_weights = wx * wy;
const uint32_t total_dst_weights = bx * by;
if (total_src_weights == total_dst_weights)
{
memcpy(pDst_weights, pSrc_weights, total_src_weights);
return;
}
weighted_sample weights[12 * 12];
compute_upsample_weights(bx, by, wx, wy, weights);
const weighted_sample* pS = weights;
for (uint32_t y = 0; y < by; y++)
{
for (uint32_t x = 0; x < bx; x++, ++pS)
{
const uint32_t w00 = pS->m_weights[0][0];
const uint32_t w01 = pS->m_weights[0][1];
const uint32_t w10 = pS->m_weights[1][0];
const uint32_t w11 = pS->m_weights[1][1];
assert(w00 || w01 || w10 || w11);
const uint32_t sx = pS->m_src_x, sy = pS->m_src_y;
uint32_t total = 8;
if (w00) total += pSrc_weights[bounds_check(sx + sy * wx, 0U, total_src_weights)] * w00;
if (w01) total += pSrc_weights[bounds_check(sx + 1 + sy * wx, 0U, total_src_weights)] * w01;
if (w10) total += pSrc_weights[bounds_check(sx + (sy + 1) * wx, 0U, total_src_weights)] * w10;
if (w11) total += pSrc_weights[bounds_check(sx + 1 + (sy + 1) * wx, 0U, total_src_weights)] * w11;
pDst_weights[x + y * bx] = (uint8_t)(total >> 4);
}
}
}
inline uint32_t hash52(uint32_t v)
{
uint32_t p = v;
p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4;
p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3;
p ^= p << 6; p ^= p >> 17;
return p;
}
int compute_texel_partition(uint32_t seedIn, uint32_t xIn, uint32_t yIn, uint32_t zIn, int num_partitions, bool small_block)
{
assert(zIn == 0);
const uint32_t x = small_block ? xIn << 1 : xIn;
const uint32_t y = small_block ? yIn << 1 : yIn;
const uint32_t z = small_block ? zIn << 1 : zIn;
const uint32_t seed = seedIn + 1024 * (num_partitions - 1);
const uint32_t rnum = hash52(seed);
uint8_t seed1 = (uint8_t)(rnum & 0xf);
uint8_t seed2 = (uint8_t)((rnum >> 4) & 0xf);
uint8_t seed3 = (uint8_t)((rnum >> 8) & 0xf);
uint8_t seed4 = (uint8_t)((rnum >> 12) & 0xf);
uint8_t seed5 = (uint8_t)((rnum >> 16) & 0xf);
uint8_t seed6 = (uint8_t)((rnum >> 20) & 0xf);
uint8_t seed7 = (uint8_t)((rnum >> 24) & 0xf);
uint8_t seed8 = (uint8_t)((rnum >> 28) & 0xf);
uint8_t seed9 = (uint8_t)((rnum >> 18) & 0xf);
uint8_t seed10 = (uint8_t)((rnum >> 22) & 0xf);
uint8_t seed11 = (uint8_t)((rnum >> 26) & 0xf);
uint8_t seed12 = (uint8_t)(((rnum >> 30) | (rnum << 2)) & 0xf);
seed1 = (uint8_t)(seed1 * seed1);
seed2 = (uint8_t)(seed2 * seed2);
seed3 = (uint8_t)(seed3 * seed3);
seed4 = (uint8_t)(seed4 * seed4);
seed5 = (uint8_t)(seed5 * seed5);
seed6 = (uint8_t)(seed6 * seed6);
seed7 = (uint8_t)(seed7 * seed7);
seed8 = (uint8_t)(seed8 * seed8);
seed9 = (uint8_t)(seed9 * seed9);
seed10 = (uint8_t)(seed10 * seed10);
seed11 = (uint8_t)(seed11 * seed11);
seed12 = (uint8_t)(seed12 * seed12);
const int shA = (seed & 2) != 0 ? 4 : 5;
const int shB = (num_partitions == 3) ? 6 : 5;
const int sh1 = (seed & 1) != 0 ? shA : shB;
const int sh2 = (seed & 1) != 0 ? shB : shA;
const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2;
seed1 = (uint8_t)(seed1 >> sh1);
seed2 = (uint8_t)(seed2 >> sh2);
seed3 = (uint8_t)(seed3 >> sh1);
seed4 = (uint8_t)(seed4 >> sh2);
seed5 = (uint8_t)(seed5 >> sh1);
seed6 = (uint8_t)(seed6 >> sh2);
seed7 = (uint8_t)(seed7 >> sh1);
seed8 = (uint8_t)(seed8 >> sh2);
seed9 = (uint8_t)(seed9 >> sh3);
seed10 = (uint8_t)(seed10 >> sh3);
seed11 = (uint8_t)(seed11 >> sh3);
seed12 = (uint8_t)(seed12 >> sh3);
const int a = 0x3f & (seed1 * x + seed2 * y + seed11 * z + (rnum >> 14));
const int b = 0x3f & (seed3 * x + seed4 * y + seed12 * z + (rnum >> 10));
const int c = (num_partitions >= 3) ? 0x3f & (seed5 * x + seed6 * y + seed9 * z + (rnum >> 6)) : 0;
const int d = (num_partitions >= 4) ? 0x3f & (seed7 * x + seed8 * y + seed10 * z + (rnum >> 2)) : 0;
return (a >= b && a >= c && a >= d) ? 0
: (b >= c && b >= d) ? 1
: (c >= d) ? 2
: 3;
}
static uint32_t g_texel_partitions_4x4[1024][2];
void precompute_texel_partitions_4x4()
{
for (uint32_t p = 0; p < 1024; p++)
{
uint32_t v2 = 0, v3 = 0;
for (uint32_t y = 0; y < 4; y++)
{
for (uint32_t x = 0; x < 4; x++)
{
const uint32_t shift = x * 2 + y * 8;
v2 |= (compute_texel_partition(p, x, y, 0, 2, true) << shift);
v3 |= (compute_texel_partition(p, x, y, 0, 3, true) << shift);
}
}
g_texel_partitions_4x4[p][0] = v2;
g_texel_partitions_4x4[p][1] = v3;
}
}
static inline int get_precompute_texel_partitions_4x4(uint32_t seed, uint32_t x, uint32_t y, uint32_t num_partitions)
{
assert(g_texel_partitions_4x4[1][0]);
assert(seed < 1024);
assert((x <= 3) && (y <= 3));
assert((num_partitions >= 2) && (num_partitions <= 3));
const uint32_t shift = x * 2 + y * 8;
return (g_texel_partitions_4x4[seed][num_partitions - 2] >> shift) & 3;
}
void blue_contract(
int r, int g, int b, int a,
int &dr, int &dg, int &db, int &da)
{
dr = (r + b) >> 1;
dg = (g + b) >> 1;
db = b;
da = a;
}
inline void bit_transfer_signed(int& a, int& b)
{
b >>= 1;
b |= (a & 0x80);
a >>= 1;
a &= 0x3F;
if ((a & 0x20) != 0)
a -= 0x40;
}
static inline int clamp(int a, int l, int h)
{
if (a < l)
a = l;
else if (a > h)
a = h;
return a;
}
static inline float clampf(float a, float l, float h)
{
if (a < l)
a = l;
else if (a > h)
a = h;
return a;
}
inline int sign_extend(int src, int num_src_bits)
{
assert((num_src_bits >= 2) && (num_src_bits <= 31));
const bool negative = (src & (1 << (num_src_bits - 1))) != 0;
if (negative)
return src | ~((1 << num_src_bits) - 1);
else
return src & ((1 << num_src_bits) - 1);
}
// endpoints is [4][2]
void decode_endpoint(uint32_t cem_index, int (*pEndpoints)[2], const uint8_t *pE)
{
assert(cem_index <= CEM_HDR_RGB_HDR_ALPHA);
int v0 = pE[0], v1 = pE[1];
int& e0_r = pEndpoints[0][0], &e0_g = pEndpoints[1][0], &e0_b = pEndpoints[2][0], &e0_a = pEndpoints[3][0];
int& e1_r = pEndpoints[0][1], &e1_g = pEndpoints[1][1], &e1_b = pEndpoints[2][1], &e1_a = pEndpoints[3][1];
switch (cem_index)
{
case CEM_LDR_LUM_DIRECT:
{
e0_r = v0; e1_r = v1;
e0_g = v0; e1_g = v1;
e0_b = v0; e1_b = v1;
e0_a = 0xFF; e1_a = 0xFF;
break;
}
case CEM_LDR_LUM_BASE_PLUS_OFS:
{
int l0 = (v0 >> 2) | (v1 & 0xc0);
int l1 = l0 + (v1 & 0x3f);
if (l1 > 0xFF)
l1 = 0xFF;
e0_r = l0; e1_r = l1;
e0_g = l0; e1_g = l1;
e0_b = l0; e1_b = l1;
e0_a = 0xFF; e1_a = 0xFF;
break;
}
case CEM_LDR_LUM_ALPHA_DIRECT:
{
int v2 = pE[2], v3 = pE[3];
e0_r = v0; e1_r = v1;
e0_g = v0; e1_g = v1;
e0_b = v0; e1_b = v1;
e0_a = v2; e1_a = v3;
break;
}
case CEM_LDR_LUM_ALPHA_BASE_PLUS_OFS:
{
int v2 = pE[2], v3 = pE[3];
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
e0_r = v0; e1_r = v0 + v1;
e0_g = v0; e1_g = v0 + v1;
e0_b = v0; e1_b = v0 + v1;
e0_a = v2; e1_a = v2 + v3;
for (uint32_t c = 0; c < 4; c++)
{
pEndpoints[c][0] = clamp(pEndpoints[c][0], 0, 255);
pEndpoints[c][1] = clamp(pEndpoints[c][1], 0, 255);
}
break;
}
case CEM_LDR_RGB_BASE_SCALE:
{
int v2 = pE[2], v3 = pE[3];
e0_r = (v0 * v3) >> 8; e1_r = v0;
e0_g = (v1 * v3) >> 8; e1_g = v1;
e0_b = (v2 * v3) >> 8; e1_b = v2;
e0_a = 0xFF; e1_a = 0xFF;
break;
}
case CEM_LDR_RGB_DIRECT:
{
int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5];
if ((v1 + v3 + v5) >= (v0 + v2 + v4))
{
e0_r = v0; e1_r = v1;
e0_g = v2; e1_g = v3;
e0_b = v4; e1_b = v5;
e0_a = 0xFF; e1_a = 0xFF;
}
else
{
blue_contract(v1, v3, v5, 0xFF, e0_r, e0_g, e0_b, e0_a);
blue_contract(v0, v2, v4, 0xFF, e1_r, e1_g, e1_b, e1_a);
}
break;
}
case CEM_LDR_RGB_BASE_PLUS_OFFSET:
{
int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5];
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
bit_transfer_signed(v5, v4);
if ((v1 + v3 + v5) >= 0)
{
e0_r = v0; e1_r = v0 + v1;
e0_g = v2; e1_g = v2 + v3;
e0_b = v4; e1_b = v4 + v5;
e0_a = 0xFF; e1_a = 0xFF;
}
else
{
blue_contract(v0 + v1, v2 + v3, v4 + v5, 0xFF, e0_r, e0_g, e0_b, e0_a);
blue_contract(v0, v2, v4, 0xFF, e1_r, e1_g, e1_b, e1_a);
}
for (uint32_t c = 0; c < 4; c++)
{
pEndpoints[c][0] = clamp(pEndpoints[c][0], 0, 255);
pEndpoints[c][1] = clamp(pEndpoints[c][1], 0, 255);
}
break;
}
case CEM_LDR_RGB_BASE_SCALE_PLUS_TWO_A:
{
int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5];
e0_r = (v0 * v3) >> 8; e1_r = v0;
e0_g = (v1 * v3) >> 8; e1_g = v1;
e0_b = (v2 * v3) >> 8; e1_b = v2;
e0_a = v4; e1_a = v5;
break;
}
case CEM_LDR_RGBA_DIRECT:
{
int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5], v6 = pE[6], v7 = pE[7];
if ((v1 + v3 + v5) >= (v0 + v2 + v4))
{
e0_r = v0; e1_r = v1;
e0_g = v2; e1_g = v3;
e0_b = v4; e1_b = v5;
e0_a = v6; e1_a = v7;
}
else
{
blue_contract(v1, v3, v5, v7, e0_r, e0_g, e0_b, e0_a);
blue_contract(v0, v2, v4, v6, e1_r, e1_g, e1_b, e1_a);
}
break;
}
case CEM_LDR_RGBA_BASE_PLUS_OFFSET:
{
int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5], v6 = pE[6], v7 = pE[7];
bit_transfer_signed(v1, v0);
bit_transfer_signed(v3, v2);
bit_transfer_signed(v5, v4);
bit_transfer_signed(v7, v6);
if ((v1 + v3 + v5) >= 0)
{
e0_r = v0; e1_r = v0 + v1;
e0_g = v2; e1_g = v2 + v3;
e0_b = v4; e1_b = v4 + v5;
e0_a = v6; e1_a = v6 + v7;
}
else
{
blue_contract(v0 + v1, v2 + v3, v4 + v5, v6 + v7, e0_r, e0_g, e0_b, e0_a);
blue_contract(v0, v2, v4, v6, e1_r, e1_g, e1_b, e1_a);
}
for (uint32_t c = 0; c < 4; c++)
{
pEndpoints[c][0] = clamp(pEndpoints[c][0], 0, 255);
pEndpoints[c][1] = clamp(pEndpoints[c][1], 0, 255);
}
break;
}
case CEM_HDR_LUM_LARGE_RANGE:
{
int y0, y1;
if (v1 >= v0)
{
y0 = (v0 << 4);
y1 = (v1 << 4);
}
else
{
y0 = (v1 << 4) + 8;
y1 = (v0 << 4) - 8;
}
e0_r = y0; e1_r = y1;
e0_g = y0; e1_g = y1;
e0_b = y0; e1_b = y1;
e0_a = 0x780; e1_a = 0x780;
break;
}
case CEM_HDR_LUM_SMALL_RANGE:
{
int y0, y1, d;
if ((v0 & 0x80) != 0)
{
y0 = ((v1 & 0xE0) << 4) | ((v0 & 0x7F) << 2);
d = (v1 & 0x1F) << 2;
}
else
{
y0 = ((v1 & 0xF0) << 4) | ((v0 & 0x7F) << 1);
d = (v1 & 0x0F) << 1;
}
y1 = y0 + d;
if (y1 > 0xFFF)
y1 = 0xFFF;
e0_r = y0; e1_r = y1;
e0_g = y0; e1_g = y1;
e0_b = y0; e1_b = y1;
e0_a = 0x780; e1_a = 0x780;
break;
}
case CEM_HDR_RGB_BASE_SCALE:
{
int v2 = pE[2], v3 = pE[3];
int modeval = ((v0 & 0xC0) >> 6) | ((v1 & 0x80) >> 5) | ((v2 & 0x80) >> 4);
int majcomp, mode;
if ((modeval & 0xC) != 0xC)
{
majcomp = modeval >> 2;
mode = modeval & 3;
}
else if (modeval != 0xF)
{
majcomp = modeval & 3;
mode = 4;
}
else
{
majcomp = 0;
mode = 5;
}
int red = v0 & 0x3f;
int green = v1 & 0x1f;
int blue = v2 & 0x1f;
int scale = v3 & 0x1f;
int x0 = (v1 >> 6) & 1;
int x1 = (v1 >> 5) & 1;
int x2 = (v2 >> 6) & 1;
int x3 = (v2 >> 5) & 1;
int x4 = (v3 >> 7) & 1;
int x5 = (v3 >> 6) & 1;
int x6 = (v3 >> 5) & 1;
int ohm = 1 << mode;
if (ohm & 0x30) green |= x0 << 6;
if (ohm & 0x3A) green |= x1 << 5;
if (ohm & 0x30) blue |= x2 << 6;
if (ohm & 0x3A) blue |= x3 << 5;
if (ohm & 0x3D) scale |= x6 << 5;
if (ohm & 0x2D) scale |= x5 << 6;
if (ohm & 0x04) scale |= x4 << 7;
if (ohm & 0x3B) red |= x4 << 6;
if (ohm & 0x04) red |= x3 << 6;
if (ohm & 0x10) red |= x5 << 7;
if (ohm & 0x0F) red |= x2 << 7;
if (ohm & 0x05) red |= x1 << 8;
if (ohm & 0x0A) red |= x0 << 8;
if (ohm & 0x05) red |= x0 << 9;
if (ohm & 0x02) red |= x6 << 9;
if (ohm & 0x01) red |= x3 << 10;
if (ohm & 0x02) red |= x5 << 10;
static const int s_shamts[6] = { 1,1,2,3,4,5 };
const int shamt = s_shamts[mode];
red <<= shamt;
green <<= shamt;
blue <<= shamt;
scale <<= shamt;
if (mode != 5)
{
green = red - green;
blue = red - blue;
}
if (majcomp == 1)
std::swap(red, green);
if (majcomp == 2)
std::swap(red, blue);
e1_r = clamp(red, 0, 0xFFF);
e1_g = clamp(green, 0, 0xFFF);
e1_b = clamp(blue, 0, 0xFFF);
e1_a = 0x780;
e0_r = clamp(red - scale, 0, 0xFFF);
e0_g = clamp(green - scale, 0, 0xFFF);
e0_b = clamp(blue - scale, 0, 0xFFF);
e0_a = 0x780;
break;
}
case CEM_HDR_RGB_HDR_ALPHA:
case CEM_HDR_RGB_LDR_ALPHA:
case CEM_HDR_RGB:
{
int v2 = pE[2], v3 = pE[3], v4 = pE[4], v5 = pE[5];
int majcomp = ((v4 & 0x80) >> 7) | ((v5 & 0x80) >> 6);
e0_a = 0x780;
e1_a = 0x780;
if (majcomp == 3)
{
e0_r = v0 << 4;
e0_g = v2 << 4;
e0_b = (v4 & 0x7f) << 5;
e1_r = v1 << 4;
e1_g = v3 << 4;
e1_b = (v5 & 0x7f) << 5;
}
else
{
int mode = ((v1 & 0x80) >> 7) | ((v2 & 0x80) >> 6) | ((v3 & 0x80) >> 5);
int va = v0 | ((v1 & 0x40) << 2);
int vb0 = v2 & 0x3f;
int vb1 = v3 & 0x3f;
int vc = v1 & 0x3f;
int vd0 = v4 & 0x7f;
int vd1 = v5 & 0x7f;
static const int s_dbitstab[8] = { 7,6,7,6,5,6,5,6 };
vd0 = sign_extend(vd0, s_dbitstab[mode]);
vd1 = sign_extend(vd1, s_dbitstab[mode]);
int x0 = (v2 >> 6) & 1;
int x1 = (v3 >> 6) & 1;
int x2 = (v4 >> 6) & 1;
int x3 = (v5 >> 6) & 1;
int x4 = (v4 >> 5) & 1;
int x5 = (v5 >> 5) & 1;
int ohm = 1 << mode;
if (ohm & 0xA4) va |= x0 << 9;
if (ohm & 0x08) va |= x2 << 9;
if (ohm & 0x50) va |= x4 << 9;
if (ohm & 0x50) va |= x5 << 10;
if (ohm & 0xA0) va |= x1 << 10;
if (ohm & 0xC0) va |= x2 << 11;
if (ohm & 0x04) vc |= x1 << 6;
if (ohm & 0xE8) vc |= x3 << 6;
if (ohm & 0x20) vc |= x2 << 7;
if (ohm & 0x5B) vb0 |= x0 << 6;
if (ohm & 0x5B) vb1 |= x1 << 6;
if (ohm & 0x12) vb0 |= x2 << 7;
if (ohm & 0x12) vb1 |= x3 << 7;
int shamt = (mode >> 1) ^ 3;
va = (uint32_t)va << shamt;
vb0 = (uint32_t)vb0 << shamt;
vb1 = (uint32_t)vb1 << shamt;
vc = (uint32_t)vc << shamt;
vd0 = (uint32_t)vd0 << shamt;
vd1 = (uint32_t)vd1 << shamt;
e1_r = clamp(va, 0, 0xFFF);
e1_g = clamp(va - vb0, 0, 0xFFF);
e1_b = clamp(va - vb1, 0, 0xFFF);
e0_r = clamp(va - vc, 0, 0xFFF);
e0_g = clamp(va - vb0 - vc - vd0, 0, 0xFFF);
e0_b = clamp(va - vb1 - vc - vd1, 0, 0xFFF);
if (majcomp == 1)
{
std::swap(e0_r, e0_g);
std::swap(e1_r, e1_g);
}
else if (majcomp == 2)
{
std::swap(e0_r, e0_b);
std::swap(e1_r, e1_b);
}
}
if (cem_index == CEM_HDR_RGB_LDR_ALPHA)
{
int v6 = pE[6], v7 = pE[7];
e0_a = v6;
e1_a = v7;
}
else if (cem_index == CEM_HDR_RGB_HDR_ALPHA)
{
int v6 = pE[6], v7 = pE[7];
// Extract mode bits
int mode = ((v6 >> 7) & 1) | ((v7 >> 6) & 2);
v6 &= 0x7F;
v7 &= 0x7F;
if (mode == 3)
{
e0_a = v6 << 5;
e1_a = v7 << 5;
}
else
{
v6 |= (v7 << (mode + 1)) & 0x780;
v7 &= (0x3F >> mode);
v7 ^= (0x20 >> mode);
v7 -= (0x20 >> mode);
v6 <<= (4 - mode);
v7 <<= (4 - mode);
v7 += v6;
v7 = clamp(v7, 0, 0xFFF);
e0_a = v6;
e1_a = v7;
}
}
break;
}
default:
{
assert(0);
for (uint32_t c = 0; c < 4; c++)
{
pEndpoints[c][0] = 0;
pEndpoints[c][1] = 0;
}
break;
}
}
}
static inline bool is_half_inf_or_nan(half_float v)
{
return get_bits(v, 10, 14) == 31;
}
// This float->half conversion matches how "F32TO16" works on Intel GPU's.
half_float float_to_half(float val, bool toward_zero)
{
union { float f; int32_t i; uint32_t u; } fi = { val };
const int flt_m = fi.i & 0x7FFFFF, flt_e = (fi.i >> 23) & 0xFF, flt_s = (fi.i >> 31) & 0x1;
int s = flt_s, e = 0, m = 0;
// inf/NaN
if (flt_e == 0xff)
{
e = 31;
if (flt_m != 0) // NaN
m = 1;
}
// not zero or denormal
else if (flt_e != 0)
{
int new_exp = flt_e - 127;
if (new_exp > 15)
e = 31;
else if (new_exp < -14)
{
if (toward_zero)
m = (int)truncf((1 << 24) * fabsf(fi.f));
else
m = lrintf((1 << 24) * fabsf(fi.f));
}
else
{
e = new_exp + 15;
if (toward_zero)
m = (int)truncf((float)flt_m * (1.0f / (float)(1 << 13)));
else
m = lrintf((float)flt_m * (1.0f / (float)(1 << 13)));
}
}
assert((0 <= m) && (m <= 1024));
if (m == 1024)
{
e++;
m = 0;
}
assert((s >= 0) && (s <= 1));
assert((e >= 0) && (e <= 31));
assert((m >= 0) && (m <= 1023));
half_float result = (half_float)((s << 15) | (e << 10) | m);
return result;
}
float half_to_float(half_float hval)
{
union { float f; uint32_t u; } x = { 0 };
uint32_t s = ((uint32_t)hval >> 15) & 1;
uint32_t e = ((uint32_t)hval >> 10) & 0x1F;
uint32_t m = (uint32_t)hval & 0x3FF;
if (!e)
{
if (!m)
{
// +- 0
x.u = s << 31;
return x.f;
}
else
{
// denormalized
while (!(m & 0x00000400))
{
m <<= 1;
--e;
}
++e;
m &= ~0x00000400;
}
}
else if (e == 31)
{
if (m == 0)
{
// +/- INF
x.u = (s << 31) | 0x7f800000;
return x.f;
}
else
{
// +/- NaN
x.u = (s << 31) | 0x7f800000 | (m << 13);
return x.f;
}
}
e = e + (127 - 15);
m = m << 13;
assert(s <= 1);
assert(m <= 0x7FFFFF);
assert(e <= 255);
x.u = m | (e << 23) | (s << 31);
return x.f;
}
static inline half_float qlog16_to_half(int k)
{
assert((k >= 0) && (k <= 0xFFFF));
int E = (k & 0xF800) >> 11;
int M = k & 0x7FF;
int Mt;
if (M < 512)
Mt = 3 * M;
else if (M >= 1536)
Mt = 5 * M - 2048;
else
Mt = 4 * M - 512;
return (half_float)((E << 10) + (Mt >> 3));
}
// See https://registry.khronos.org/OpenGL/extensions/EXT/EXT_texture_shared_exponent.txt
const int RGB9E5_EXPONENT_BITS = 5, RGB9E5_MANTISSA_BITS = 9, RGB9E5_EXP_BIAS = 15, RGB9E5_MAX_VALID_BIASED_EXP = 31;
const int MAX_RGB9E5_EXP = (RGB9E5_MAX_VALID_BIASED_EXP - RGB9E5_EXP_BIAS);
const int RGB9E5_MANTISSA_VALUES = (1 << RGB9E5_MANTISSA_BITS);
const int MAX_RGB9E5_MANTISSA = (RGB9E5_MANTISSA_VALUES - 1);
//const int MAX_RGB9E5 = (int)(((float)MAX_RGB9E5_MANTISSA) / RGB9E5_MANTISSA_VALUES * (1 << MAX_RGB9E5_EXP));
const int EPSILON_RGB9E5 = (int)((1.0f / (float)RGB9E5_MANTISSA_VALUES) / (float)(1 << RGB9E5_EXP_BIAS));
void unpack_rgb9e5(uint32_t packed, float& r, float& g, float& b)
{
int x = packed & 511;
int y = (packed >> 9) & 511;
int z = (packed >> 18) & 511;
int w = (packed >> 27) & 31;
const float scale = powf(2.0f, static_cast<float>(w - RGB9E5_EXP_BIAS - RGB9E5_MANTISSA_BITS));
r = x * scale;
g = y * scale;
b = z * scale;
}
// floor_log2 is not correct for the denorm and zero values, but we are going to do a max of this value with the minimum rgb9e5 exponent that will hide these problem cases.
static inline int floor_log2(float x)
{
union float754
{
unsigned int raw;
float value;
};
float754 f;
f.value = x;
// Extract float exponent
return ((f.raw >> 23) & 0xFF) - 127;
}
static inline int maximumi(int a, int b) { return (a > b) ? a : b; }
static inline float maximumf(float a, float b) { return (a > b) ? a : b; }
uint32_t pack_rgb9e5(float r, float g, float b)
{
r = clampf(r, 0.0f, MAX_RGB9E5);
g = clampf(g, 0.0f, MAX_RGB9E5);
b = clampf(b, 0.0f, MAX_RGB9E5);
float maxrgb = maximumf(maximumf(r, g), b);
int exp_shared = maximumi(-RGB9E5_EXP_BIAS - 1, floor_log2(maxrgb)) + 1 + RGB9E5_EXP_BIAS;
assert((exp_shared >= 0) && (exp_shared <= RGB9E5_MAX_VALID_BIASED_EXP));
float denom = powf(2.0f, (float)(exp_shared - RGB9E5_EXP_BIAS - RGB9E5_MANTISSA_BITS));
int maxm = (int)floorf((maxrgb / denom) + 0.5f);
if (maxm == (MAX_RGB9E5_MANTISSA + 1))
{
denom *= 2;
exp_shared += 1;
assert(exp_shared <= RGB9E5_MAX_VALID_BIASED_EXP);
}
else
{
assert(maxm <= MAX_RGB9E5_MANTISSA);
}
int rm = (int)floorf((r / denom) + 0.5f);
int gm = (int)floorf((g / denom) + 0.5f);
int bm = (int)floorf((b / denom) + 0.5f);
assert((rm >= 0) && (rm <= MAX_RGB9E5_MANTISSA));
assert((gm >= 0) && (gm <= MAX_RGB9E5_MANTISSA));
assert((bm >= 0) && (bm <= MAX_RGB9E5_MANTISSA));
return rm | (gm << 9) | (bm << 18) | (exp_shared << 27);
}
static inline int clz17(uint32_t x)
{
assert(x <= 0x1FFFF);
x &= 0x1FFFF;
if (!x)
return 17;
uint32_t n = 0;
while ((x & 0x10000) == 0)
{
x <<= 1u;
n++;
}
return n;
}
static inline uint32_t pack_rgb9e5_ldr_astc(int Cr, int Cg, int Cb)
{
int lz = clz17(Cr | Cg | Cb | 1);
if (Cr == 65535) { Cr = 65536; lz = 0; }
if (Cg == 65535) { Cg = 65536; lz = 0; }
if (Cb == 65535) { Cb = 65536; lz = 0; }
Cr <<= lz; Cg <<= lz; Cb <<= lz;
Cr = (Cr >> 8) & 0x1FF;
Cg = (Cg >> 8) & 0x1FF;
Cb = (Cb >> 8) & 0x1FF;
uint32_t exponent = 16 - lz;
uint32_t texel = (exponent << 27) | (Cb << 18) | (Cg << 9) | Cr;
return texel;
}
static inline uint32_t pack_rgb9e5_hdr_astc(int Cr, int Cg, int Cb)
{
if (Cr > 0x7c00) Cr = 0; else if (Cr == 0x7c00) Cr = 0x7bff;
if (Cg > 0x7c00) Cg = 0; else if (Cg == 0x7c00) Cg = 0x7bff;
if (Cb > 0x7c00) Cb = 0; else if (Cb == 0x7c00) Cb = 0x7bff;
int Re = (Cr >> 10) & 0x1F;
int Ge = (Cg >> 10) & 0x1F;
int Be = (Cb >> 10) & 0x1F;
int Rex = (Re == 0) ? 1 : Re;
int Gex = (Ge == 0) ? 1 : Ge;
int Bex = (Be == 0) ? 1 : Be;
int Xm = ((Cr | Cg | Cb) & 0x200) >> 9;
int Xe = Re | Ge | Be;
uint32_t rshift, gshift, bshift, expo;
if (Xe == 0)
{
expo = rshift = gshift = bshift = Xm;
}
else if (Re >= Ge && Re >= Be)
{
expo = Rex + 1;
rshift = 2;
gshift = Rex - Gex + 2;
bshift = Rex - Bex + 2;
}
else if (Ge >= Be)
{
expo = Gex + 1;
rshift = Gex - Rex + 2;
gshift = 2;
bshift = Gex - Bex + 2;
}
else
{
expo = Bex + 1;
rshift = Bex - Rex + 2;
gshift = Bex - Gex + 2;
bshift = 2;
}
int Rm = (Cr & 0x3FF) | (Re == 0 ? 0 : 0x400);
int Gm = (Cg & 0x3FF) | (Ge == 0 ? 0 : 0x400);
int Bm = (Cb & 0x3FF) | (Be == 0 ? 0 : 0x400);
Rm = (Rm >> rshift) & 0x1FF;
Gm = (Gm >> gshift) & 0x1FF;
Bm = (Bm >> bshift) & 0x1FF;
uint32_t texel = (expo << 27) | (Bm << 18) | (Gm << 9) | (Rm << 0);
return texel;
}
// Important: pPixels is either 32-bit/texel or 64-bit/texel.
bool decode_block(const log_astc_block& log_blk, void* pPixels, uint32_t blk_width, uint32_t blk_height, decode_mode dec_mode)
{
assert(is_valid_block_size(blk_width, blk_height));
assert(g_dequant_tables.m_endpoints[0].m_ISE_to_val.size());
if (!g_dequant_tables.m_endpoints[0].m_ISE_to_val.size())
return false;
const uint32_t num_blk_pixels = blk_width * blk_height;
// Write block error color
if (dec_mode == cDecodeModeHDR16)
{
// NaN's
memset(pPixels, 0xFF, num_blk_pixels * sizeof(half_float) * 4);
}
else if (dec_mode == cDecodeModeRGB9E5)
{
const uint32_t purple_9e5 = pack_rgb9e5(1.0f, 0.0f, 1.0f);
for (uint32_t i = 0; i < num_blk_pixels; i++)
((uint32_t*)pPixels)[i] = purple_9e5;
}
else
{
for (uint32_t i = 0; i < num_blk_pixels; i++)
((uint32_t*)pPixels)[i] = 0xFFFF00FF;
}
if (log_blk.m_error_flag)
{
// Should this return false? It's not an invalid logical block config, though.
return false;
}
// Handle solid color blocks
if (log_blk.m_solid_color_flag_ldr)
{
// LDR solid block
if (dec_mode == cDecodeModeHDR16)
{
// Convert LDR pixels to half-float
half_float h[4];
for (uint32_t c = 0; c < 4; c++)
h[c] = (log_blk.m_solid_color[c] == 0xFFFF) ? 0x3C00 : float_to_half((float)log_blk.m_solid_color[c] * (1.0f / 65536.0f), true);
for (uint32_t i = 0; i < num_blk_pixels; i++)
memcpy((uint16_t*)pPixels + i * 4, h, sizeof(half_float) * 4);
}
else if (dec_mode == cDecodeModeRGB9E5)
{
float r = (log_blk.m_solid_color[0] == 0xFFFF) ? 1.0f : ((float)log_blk.m_solid_color[0] * (1.0f / 65536.0f));
float g = (log_blk.m_solid_color[1] == 0xFFFF) ? 1.0f : ((float)log_blk.m_solid_color[1] * (1.0f / 65536.0f));
float b = (log_blk.m_solid_color[2] == 0xFFFF) ? 1.0f : ((float)log_blk.m_solid_color[2] * (1.0f / 65536.0f));
const uint32_t packed = pack_rgb9e5(r, g, b);
for (uint32_t i = 0; i < num_blk_pixels; i++)
((uint32_t*)pPixels)[i] = packed;
}
else
{
// Convert LDR pixels to 8-bits
for (uint32_t i = 0; i < num_blk_pixels; i++)
for (uint32_t c = 0; c < 4; c++)
((uint8_t*)pPixels)[i * 4 + c] = (log_blk.m_solid_color[c] >> 8);
}
return true;
}
else if (log_blk.m_solid_color_flag_hdr)
{
// HDR solid block, decode mode must be half-float or RGB9E5
if (dec_mode == cDecodeModeHDR16)
{
for (uint32_t i = 0; i < num_blk_pixels; i++)
memcpy((uint16_t*)pPixels + i * 4, log_blk.m_solid_color, sizeof(half_float) * 4);
}
else if (dec_mode == cDecodeModeRGB9E5)
{
float r = half_to_float(log_blk.m_solid_color[0]);
float g = half_to_float(log_blk.m_solid_color[1]);
float b = half_to_float(log_blk.m_solid_color[2]);
const uint32_t packed = pack_rgb9e5(r, g, b);
for (uint32_t i = 0; i < num_blk_pixels; i++)
((uint32_t*)pPixels)[i] = packed;
}
else
{
return false;
}
return true;
}
// Sanity check block's config
if ((log_blk.m_grid_width < 2) || (log_blk.m_grid_height < 2))
return false;
if ((log_blk.m_grid_width > blk_width) || (log_blk.m_grid_height > blk_height))
return false;
if ((log_blk.m_endpoint_ise_range < FIRST_VALID_ENDPOINT_ISE_RANGE) || (log_blk.m_endpoint_ise_range > LAST_VALID_ENDPOINT_ISE_RANGE))
return false;
if ((log_blk.m_weight_ise_range < FIRST_VALID_WEIGHT_ISE_RANGE) || (log_blk.m_weight_ise_range > LAST_VALID_WEIGHT_ISE_RANGE))
return false;
if ((log_blk.m_num_partitions < 1) || (log_blk.m_num_partitions > MAX_PARTITIONS))
return false;
if ((log_blk.m_dual_plane) && (log_blk.m_num_partitions > MAX_DUAL_PLANE_PARTITIONS))
return false;
if (log_blk.m_partition_id >= NUM_PARTITION_PATTERNS)
return false;
if ((log_blk.m_num_partitions == 1) && (log_blk.m_partition_id > 0))
return false;
if (log_blk.m_color_component_selector > 3)
return false;
const uint32_t total_endpoint_levels = get_ise_levels(log_blk.m_endpoint_ise_range);
const uint32_t total_weight_levels = get_ise_levels(log_blk.m_weight_ise_range);
bool is_ldr_endpoints[MAX_PARTITIONS];
// Check CEM's
uint32_t total_cem_vals = 0;
for (uint32_t i = 0; i < log_blk.m_num_partitions; i++)
{
if (log_blk.m_color_endpoint_modes[i] > 15)
return false;
total_cem_vals += get_num_cem_values(log_blk.m_color_endpoint_modes[i]);
is_ldr_endpoints[i] = is_cem_ldr(log_blk.m_color_endpoint_modes[i]);
}
if (total_cem_vals > MAX_ENDPOINTS)
return false;
const dequant_table& endpoint_dequant_tab = g_dequant_tables.get_endpoint_tab(log_blk.m_endpoint_ise_range);
const uint8_t* pEndpoint_dequant = endpoint_dequant_tab.m_ISE_to_val.data();
// Dequantized endpoints to [0,255]
uint8_t dequantized_endpoints[MAX_ENDPOINTS];
for (uint32_t i = 0; i < total_cem_vals; i++)
{
if (log_blk.m_endpoints[i] >= total_endpoint_levels)
return false;
dequantized_endpoints[i] = pEndpoint_dequant[log_blk.m_endpoints[i]];
}
// Dequantize weights to [0,64]
uint8_t dequantized_weights[2][12 * 12];
const dequant_table& weight_dequant_tab = g_dequant_tables.get_weight_tab(log_blk.m_weight_ise_range);
const uint8_t* pWeight_dequant = weight_dequant_tab.m_ISE_to_val.data();
const uint32_t total_weight_vals = (log_blk.m_dual_plane ? 2 : 1) * log_blk.m_grid_width * log_blk.m_grid_height;
for (uint32_t i = 0; i < total_weight_vals; i++)
{
if (log_blk.m_weights[i] >= total_weight_levels)
return false;
const uint32_t plane_index = log_blk.m_dual_plane ? (i & 1) : 0;
const uint32_t grid_index = log_blk.m_dual_plane ? (i >> 1) : i;
dequantized_weights[plane_index][grid_index] = pWeight_dequant[log_blk.m_weights[i]];
}
// Upsample weight grid. [0,64] weights
uint8_t upsampled_weights[2][12 * 12];
upsample_weight_grid(blk_width, blk_height, log_blk.m_grid_width, log_blk.m_grid_height, &dequantized_weights[0][0], &upsampled_weights[0][0]);
if (log_blk.m_dual_plane)
upsample_weight_grid(blk_width, blk_height, log_blk.m_grid_width, log_blk.m_grid_height, &dequantized_weights[1][0], &upsampled_weights[1][0]);
// Decode CEM's
int endpoints[4][4][2]; // [subset][comp][l/h]
uint32_t endpoint_val_index = 0;
for (uint32_t subset = 0; subset < log_blk.m_num_partitions; subset++)
{
const uint32_t cem_index = log_blk.m_color_endpoint_modes[subset];
decode_endpoint(cem_index, &endpoints[subset][0], &dequantized_endpoints[endpoint_val_index]);
endpoint_val_index += get_num_cem_values(cem_index);
}
// Decode texels
const bool small_block = num_blk_pixels < 31;
const bool use_precomputed_texel_partitions = (blk_width == 4) && (blk_height == 4) && (log_blk.m_num_partitions >= 2) && (log_blk.m_num_partitions <= 3);
const uint32_t ccs = log_blk.m_dual_plane ? log_blk.m_color_component_selector : UINT32_MAX;
bool success = true;
if (dec_mode == cDecodeModeRGB9E5)
{
// returns uint32_t's
for (uint32_t y = 0; y < blk_height; y++)
{
for (uint32_t x = 0; x < blk_width; x++)
{
const uint32_t pixel_index = x + y * blk_width;
const uint32_t subset = (log_blk.m_num_partitions > 1) ?
(use_precomputed_texel_partitions ? get_precompute_texel_partitions_4x4(log_blk.m_partition_id, x, y, log_blk.m_num_partitions) : compute_texel_partition(log_blk.m_partition_id, x, y, 0, log_blk.m_num_partitions, small_block))
: 0;
int comp[3];
for (uint32_t c = 0; c < 3; c++)
{
const uint32_t w = upsampled_weights[(c == ccs) ? 1 : 0][pixel_index];
if (is_ldr_endpoints[subset])
{
assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFF));
assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFF));
int le = endpoints[subset][c][0];
int he = endpoints[subset][c][1];
le = (le << 8) | le;
he = (he << 8) | he;
int k = weight_interpolate(le, he, w);
assert((k >= 0) && (k <= 0xFFFF));
comp[c] = k; // 1.0
}
else
{
assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFFF));
assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFFF));
int le = endpoints[subset][c][0] << 4;
int he = endpoints[subset][c][1] << 4;
int qlog16 = weight_interpolate(le, he, w);
comp[c] = qlog16_to_half(qlog16);
if (is_half_inf_or_nan((half_float)comp[c]))
comp[c] = 0x7BFF;
}
} // c
uint32_t packed;
if (is_ldr_endpoints[subset])
packed = pack_rgb9e5_ldr_astc(comp[0], comp[1], comp[2]);
else
packed = pack_rgb9e5_hdr_astc(comp[0], comp[1], comp[2]);
((uint32_t*)pPixels)[pixel_index] = packed;
} // x
} // y
}
else if (dec_mode == cDecodeModeHDR16)
{
// Note: must round towards zero when converting float to half for ASTC (18.19 Weight Application)
// returns half floats
for (uint32_t y = 0; y < blk_height; y++)
{
for (uint32_t x = 0; x < blk_width; x++)
{
const uint32_t pixel_index = x + y * blk_width;
const uint32_t subset = (log_blk.m_num_partitions > 1) ?
(use_precomputed_texel_partitions ? get_precompute_texel_partitions_4x4(log_blk.m_partition_id, x, y, log_blk.m_num_partitions) : compute_texel_partition(log_blk.m_partition_id, x, y, 0, log_blk.m_num_partitions, small_block))
: 0;
for (uint32_t c = 0; c < 4; c++)
{
const uint32_t w = upsampled_weights[(c == ccs) ? 1 : 0][pixel_index];
half_float o;
if ( (is_ldr_endpoints[subset]) ||
((log_blk.m_color_endpoint_modes[subset] == CEM_HDR_RGB_LDR_ALPHA) && (c == 3)) )
{
assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFF));
assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFF));
int le = endpoints[subset][c][0];
int he = endpoints[subset][c][1];
le = (le << 8) | le;
he = (he << 8) | he;
int k = weight_interpolate(le, he, w);
assert((k >= 0) && (k <= 0xFFFF));
if (k == 0xFFFF)
o = 0x3C00; // 1.0
else
o = float_to_half((float)k * (1.0f / 65536.0f), true);
}
else
{
assert((endpoints[subset][c][0] >= 0) && (endpoints[subset][c][0] <= 0xFFF));
assert((endpoints[subset][c][1] >= 0) && (endpoints[subset][c][1] <= 0xFFF));
int le = endpoints[subset][c][0] << 4;
int he = endpoints[subset][c][1] << 4;
int qlog16 = weight_interpolate(le, he, w);
o = qlog16_to_half(qlog16);
if (is_half_inf_or_nan(o))
o = 0x7BFF;
}
((half_float*)pPixels)[pixel_index * 4 + c] = o;
}
} // x
} // y
}
else
{
// returns uint8_t's
for (uint32_t y = 0; y < blk_height; y++)
{
for (uint32_t x = 0; x < blk_width; x++)
{
const uint32_t pixel_index = x + y * blk_width;
const uint32_t subset = (log_blk.m_num_partitions > 1) ?
(use_precomputed_texel_partitions ? get_precompute_texel_partitions_4x4(log_blk.m_partition_id, x, y, log_blk.m_num_partitions) : compute_texel_partition(log_blk.m_partition_id, x, y, 0, log_blk.m_num_partitions, small_block))
: 0;
if (!is_ldr_endpoints[subset])
{
((uint32_t*)pPixels)[pixel_index * 4] = 0xFFFF00FF;
success = false;
}
else
{
for (uint32_t c = 0; c < 4; c++)
{
const uint32_t w = upsampled_weights[(c == ccs) ? 1 : 0][pixel_index];
int le = endpoints[subset][c][0];
int he = endpoints[subset][c][1];
// FIXME: the spec is apparently wrong? this matches ARM's and Google's decoder
//if ((dec_mode == cDecodeModeSRGB8) && (c <= 2))
// See https://github.com/ARM-software/astc-encoder/issues/447
if (dec_mode == cDecodeModeSRGB8)
{
le = (le << 8) | 0x80;
he = (he << 8) | 0x80;
}
else
{
le = (le << 8) | le;
he = (he << 8) | he;
}
uint32_t k = weight_interpolate(le, he, w);
// FIXME: This is what the spec says to do in LDR mode, but this is not what ARM's decoder does
// See decompress_symbolic_block(), decode_texel() and unorm16_to_sf16.
// It seems to effectively divide by 65535.0 and convert to FP16, then back to float, mul by 255.0, add .5 and then convert to 8-bit.
((uint8_t*)pPixels)[pixel_index * 4 + c] = (uint8_t)(k >> 8);
}
}
} // x
} // y
}
return success;
}
//------------------------------------------------
// Physical to logical block decoding
// unsigned 128-bit int, with some signed helpers
class uint128
{
uint64_t m_lo, m_hi;
public:
uint128() = default;
inline uint128(uint64_t lo) : m_lo(lo), m_hi(0) { }
inline uint128(uint64_t lo, uint64_t hi) : m_lo(lo), m_hi(hi) { }
inline uint128(const uint128& other) : m_lo(other.m_lo), m_hi(other.m_hi) { }
inline uint128& set_signed(int64_t lo) { m_lo = lo; m_hi = (lo < 0) ? UINT64_MAX : 0; return *this; }
inline uint128& set(uint64_t lo) { m_lo = lo; m_hi = 0; return *this; }
inline explicit operator uint8_t () const { return (uint8_t)m_lo; }
inline explicit operator uint16_t () const { return (uint16_t)m_lo; }
inline explicit operator uint32_t () const { return (uint32_t)m_lo; }
inline explicit operator uint64_t () const { return m_lo; }
inline uint128& operator= (const uint128& rhs) { m_lo = rhs.m_lo; m_hi = rhs.m_hi; return *this; }
inline uint128& operator= (const uint64_t val) { m_lo = val; m_hi = 0; return *this; }
inline uint64_t get_low() const { return m_lo; }
inline uint64_t& get_low() { return m_lo; }
inline uint64_t get_high() const { return m_hi; }
inline uint64_t& get_high() { return m_hi; }
inline bool operator== (const uint128& rhs) const { return (m_lo == rhs.m_lo) && (m_hi == rhs.m_hi); }
inline bool operator!= (const uint128& rhs) const { return (m_lo != rhs.m_lo) || (m_hi != rhs.m_hi); }
inline bool operator< (const uint128& rhs) const
{
if (m_hi < rhs.m_hi)
return true;
if (m_hi == rhs.m_hi)
{
if (m_lo < rhs.m_lo)
return true;
}
return false;
}
inline bool operator> (const uint128& rhs) const { return (rhs < *this); }
inline bool operator<= (const uint128& rhs) const { return (*this == rhs) || (*this < rhs); }
inline bool operator>= (const uint128& rhs) const { return (*this == rhs) || (*this > rhs); }
inline bool is_zero() const { return (m_lo == 0) && (m_hi == 0); }
inline bool is_all_ones() const { return (m_lo == UINT64_MAX) && (m_hi == UINT64_MAX); }
inline bool is_non_zero() const { return (m_lo != 0) || (m_hi != 0); }
inline explicit operator bool() const { return is_non_zero(); }
inline bool is_signed() const { return ((int64_t)m_hi) < 0; }
inline bool signed_less(const uint128& rhs) const
{
const bool l_signed = is_signed(), r_signed = rhs.is_signed();
if (l_signed == r_signed)
return *this < rhs;
if (l_signed && !r_signed)
return true;
assert(!l_signed && r_signed);
return false;
}
inline bool signed_greater(const uint128& rhs) const { return rhs.signed_less(*this); }
inline bool signed_less_equal(const uint128& rhs) const { return !rhs.signed_less(*this); }
inline bool signed_greater_equal(const uint128& rhs) const { return !signed_less(rhs); }
double get_double() const
{
double res = 0;
if (m_hi)
res = (double)m_hi * pow(2.0f, 64.0f);
res += (double)m_lo;
return res;
}
double get_signed_double() const
{
if (is_signed())
return -(uint128(*this).abs().get_double());
else
return get_double();
}
inline uint128 abs() const
{
uint128 res(*this);
if (res.is_signed())
res = -res;
return res;
}
inline uint128& operator<<= (int shift)
{
assert(shift >= 0);
if (shift < 0)
return *this;
m_hi = (shift >= 64) ? ((shift >= 128) ? 0 : (m_lo << (shift - 64))) : (m_hi << shift);
if ((shift) && (shift < 64))
m_hi |= (m_lo >> (64 - shift));
m_lo = (shift >= 64) ? 0 : (m_lo << shift);
return *this;
}
inline uint128 operator<< (int shift) const { uint128 res(*this); res <<= shift; return res; }
inline uint128& operator>>= (int shift)
{
assert(shift >= 0);
if (shift < 0)
return *this;
m_lo = (shift >= 64) ? ((shift >= 128) ? 0 : (m_hi >> (shift - 64))) : (m_lo >> shift);
if ((shift) && (shift < 64))
m_lo |= (m_hi << (64 - shift));
m_hi = (shift >= 64) ? 0 : (m_hi >> shift);
return *this;
}
inline uint128 operator>> (int shift) const { uint128 res(*this); res >>= shift; return res; }
inline uint128 signed_shift_right(int shift) const
{
uint128 res(*this);
res >>= shift;
if (is_signed())
{
uint128 x(0U);
x = ~x;
x >>= shift;
res |= (~x);
}
return res;
}
inline uint128& operator |= (const uint128& rhs) { m_lo |= rhs.m_lo; m_hi |= rhs.m_hi; return *this; }
inline uint128 operator | (const uint128& rhs) const { uint128 res(*this); res |= rhs; return res; }
inline uint128& operator &= (const uint128& rhs) { m_lo &= rhs.m_lo; m_hi &= rhs.m_hi; return *this; }
inline uint128 operator & (const uint128& rhs) const { uint128 res(*this); res &= rhs; return res; }
inline uint128& operator ^= (const uint128& rhs) { m_lo ^= rhs.m_lo; m_hi ^= rhs.m_hi; return *this; }
inline uint128 operator ^ (const uint128& rhs) const { uint128 res(*this); res ^= rhs; return res; }
inline uint128 operator ~() const { return uint128(~m_lo, ~m_hi); }
inline uint128 operator -() const { uint128 res(~*this); if (++res.m_lo == 0) ++res.m_hi; return res; }
// prefix
inline uint128 operator ++()
{
if (++m_lo == 0)
++m_hi;
return *this;
}
// postfix
inline uint128 operator ++(int)
{
uint128 res(*this);
if (++m_lo == 0)
++m_hi;
return res;
}
// prefix
inline uint128 operator --()
{
const uint64_t t = m_lo;
if (--m_lo > t)
--m_hi;
return *this;
}
// postfix
inline uint128 operator --(int)
{
const uint64_t t = m_lo;
uint128 res(*this);
if (--m_lo > t)
--m_hi;
return res;
}
inline uint128& operator+= (const uint128& rhs)
{
const uint64_t t = m_lo + rhs.m_lo;
m_hi = m_hi + rhs.m_hi + (t < m_lo);
m_lo = t;
return *this;
}
inline uint128 operator+ (const uint128& rhs) const { uint128 res(*this); res += rhs; return res; }
inline uint128& operator-= (const uint128& rhs)
{
const uint64_t t = m_lo - rhs.m_lo;
m_hi = m_hi - rhs.m_hi - (t > m_lo);
m_lo = t;
return *this;
}
inline uint128 operator- (const uint128& rhs) const { uint128 res(*this); res -= rhs; return res; }
// computes bit by bit, very slow
uint128& operator*=(const uint128& rhs)
{
uint128 temp(*this), result(0U);
for (uint128 bitmask(rhs); bitmask; bitmask >>= 1, temp <<= 1)
if (bitmask.get_low() & 1)
result += temp;
*this = result;
return *this;
}
uint128 operator*(const uint128& rhs) const { uint128 res(*this); res *= rhs; return res; }
// computes bit by bit, very slow
friend uint128 divide(const uint128& dividend, const uint128& divisor, uint128& remainder)
{
remainder = 0;
if (!divisor)
{
assert(0);
return ~uint128(0U);
}
uint128 quotient(0), one(1);
for (int i = 127; i >= 0; i--)
{
remainder = (remainder << 1) | ((dividend >> i) & one);
if (remainder >= divisor)
{
remainder -= divisor;
quotient |= (one << i);
}
}
return quotient;
}
uint128 operator/(const uint128& rhs) const { uint128 remainder, res; res = divide(*this, rhs, remainder); return res; }
uint128 operator/=(const uint128& rhs) { uint128 remainder; *this = divide(*this, rhs, remainder); return *this; }
uint128 operator%(const uint128& rhs) const { uint128 remainder; divide(*this, rhs, remainder); return remainder; }
uint128 operator%=(const uint128& rhs) { uint128 remainder; divide(*this, rhs, remainder); *this = remainder; return *this; }
void print_hex(FILE* pFile) const
{
fprintf(pFile, "0x%016llx%016llx", (unsigned long long int)m_hi, (unsigned long long int)m_lo);
}
void format_unsigned(std::string& res) const
{
basisu::vector<uint8_t> digits;
digits.reserve(39 + 1);
uint128 k(*this), ten(10);
do
{
uint128 r;
k = divide(k, ten, r);
digits.push_back((uint8_t)r);
} while (k);
for (int i = (int)digits.size() - 1; i >= 0; i--)
res += ('0' + digits[i]);
}
void format_signed(std::string& res) const
{
uint128 val(*this);
if (val.is_signed())
{
res.push_back('-');
val = -val;
}
val.format_unsigned(res);
}
void print_unsigned(FILE* pFile)
{
std::string str;
format_unsigned(str);
fprintf(pFile, "%s", str.c_str());
}
void print_signed(FILE* pFile)
{
std::string str;
format_signed(str);
fprintf(pFile, "%s", str.c_str());
}
uint128 get_reversed_bits() const
{
uint128 res;
const uint32_t* pSrc = (const uint32_t*)this;
uint32_t* pDst = (uint32_t*)&res;
pDst[0] = rev_dword(pSrc[3]);
pDst[1] = rev_dword(pSrc[2]);
pDst[2] = rev_dword(pSrc[1]);
pDst[3] = rev_dword(pSrc[0]);
return res;
}
uint128 get_byteswapped() const
{
uint128 res;
const uint8_t* pSrc = (const uint8_t*)this;
uint8_t* pDst = (uint8_t*)&res;
for (uint32_t i = 0; i < 16; i++)
pDst[i] = pSrc[15 - i];
return res;
}
inline uint64_t get_bits64(uint32_t bit_ofs, uint32_t bit_len) const
{
assert(bit_ofs < 128);
assert(bit_len && (bit_len <= 64) && ((bit_ofs + bit_len) <= 128));
uint128 res(*this);
res >>= bit_ofs;
const uint64_t bitmask = (bit_len == 64) ? UINT64_MAX : ((1ull << bit_len) - 1);
return res.get_low() & bitmask;
}
inline uint32_t get_bits(uint32_t bit_ofs, uint32_t bit_len) const
{
assert(bit_len <= 32);
return (uint32_t)get_bits64(bit_ofs, bit_len);
}
inline uint32_t next_bits(uint32_t& bit_ofs, uint32_t len) const
{
assert(len && (len <= 32));
uint32_t x = get_bits(bit_ofs, len);
bit_ofs += len;
return x;
}
inline uint128& set_bits(uint64_t val, uint32_t bit_ofs, uint32_t num_bits)
{
assert(bit_ofs < 128);
assert(num_bits && (num_bits <= 64) && ((bit_ofs + num_bits) <= 128));
uint128 bitmask(1);
bitmask = (bitmask << num_bits) - 1;
assert(uint128(val) <= bitmask);
bitmask <<= bit_ofs;
*this &= ~bitmask;
*this = *this | (uint128(val) << bit_ofs);
return *this;
}
};
static bool decode_void_extent(const uint128& bits, log_astc_block& log_blk)
{
if (bits.get_bits(10, 2) != 0b11)
return false;
uint32_t bit_ofs = 12;
const uint32_t min_s = bits.next_bits(bit_ofs, 13);
const uint32_t max_s = bits.next_bits(bit_ofs, 13);
const uint32_t min_t = bits.next_bits(bit_ofs, 13);
const uint32_t max_t = bits.next_bits(bit_ofs, 13);
assert(bit_ofs == 64);
const bool all_extents_all_ones = (min_s == 0x1FFF) && (max_s == 0x1FFF) && (min_t == 0x1FFF) && (max_t == 0x1FFF);
if (!all_extents_all_ones && ((min_s >= max_s) || (min_t >= max_t)))
return false;
const bool hdr_flag = bits.get_bits(9, 1) != 0;
if (hdr_flag)
log_blk.m_solid_color_flag_hdr = true;
else
log_blk.m_solid_color_flag_ldr = true;
log_blk.m_solid_color[0] = (uint16_t)bits.get_bits(64, 16);
log_blk.m_solid_color[1] = (uint16_t)bits.get_bits(80, 16);
log_blk.m_solid_color[2] = (uint16_t)bits.get_bits(96, 16);
log_blk.m_solid_color[3] = (uint16_t)bits.get_bits(112, 16);
if (log_blk.m_solid_color_flag_hdr)
{
for (uint32_t c = 0; c < 4; c++)
if (is_half_inf_or_nan(log_blk.m_solid_color[c]))
return false;
}
return true;
}
struct astc_dec_row
{
int8_t Dp_ofs, P_ofs, W_ofs, W_size, H_ofs, H_size, W_bias, H_bias, p0_ofs, p1_ofs, p2_ofs;
};
static const astc_dec_row s_dec_rows[10] =
{
// Dp_ofs, P_ofs, W_ofs, W_size, H_ofs, H_size, W_bias, H_bias, p0_ofs, p1_ofs, p2_ofs;
{ 10, 9, 7, 2, 5, 2, 4, 2, 4, 0, 1 }, // 4 2
{ 10, 9, 7, 2, 5, 2, 8, 2, 4, 0, 1 }, // 8 2
{ 10, 9, 5, 2, 7, 2, 2, 8, 4, 0, 1 }, // 2 8
{ 10, 9, 5, 2, 7, 1, 2, 6, 4, 0, 1 }, // 2 6
{ 10, 9, 7, 1, 5, 2, 2, 2, 4, 0, 1 }, // 2 2
{ 10, 9, 0, 0, 5, 2, 12, 2, 4, 2, 3 }, // 12 2
{ 10, 9, 5, 2, 0, 0, 2, 12, 4, 2, 3 }, // 2 12
{ 10, 9, 0, 0, 0, 0, 6, 10, 4, 2, 3 }, // 6 10
{ 10, 9, 0, 0, 0, 0, 10, 6, 4, 2, 3 }, // 10 6
{ -1, -1, 5, 2, 9, 2, 6, 6, 4, 2, 3 }, // 6 6
};
static bool decode_config(const uint128& bits, log_astc_block& log_blk)
{
// Reserved
if (bits.get_bits(0, 4) == 0)
return false;
// Reserved
if ((bits.get_bits(0, 2) == 0) && (bits.get_bits(6, 3) == 0b111))
{
if (bits.get_bits(2, 4) != 0b1111)
return false;
}
// Void extent
if (bits.get_bits(0, 9) == 0b111111100)
return decode_void_extent(bits, log_blk);
// Check rows
const uint32_t x0_2 = bits.get_bits(0, 2), x2_2 = bits.get_bits(2, 2);
const uint32_t x5_4 = bits.get_bits(5, 4), x8_1 = bits.get_bits(8, 1);
const uint32_t x7_2 = bits.get_bits(7, 2);
int row_index = -1;
if (x0_2 == 0)
{
if (x7_2 == 0b00)
row_index = 5;
else if (x7_2 == 0b01)
row_index = 6;
else if (x5_4 == 0b1100)
row_index = 7;
else if (x5_4 == 0b1101)
row_index = 8;
else if (x7_2 == 0b10)
row_index = 9;
}
else
{
if (x2_2 == 0b00)
row_index = 0;
else if (x2_2 == 0b01)
row_index = 1;
else if (x2_2 == 0b10)
row_index = 2;
else if ((x2_2 == 0b11) && (x8_1 == 0))
row_index = 3;
else if ((x2_2 == 0b11) && (x8_1 == 1))
row_index = 4;
}
if (row_index < 0)
return false;
const astc_dec_row& r = s_dec_rows[row_index];
bool P = false, Dp = false;
uint32_t W = r.W_bias, H = r.H_bias;
if (r.P_ofs >= 0)
P = bits.get_bits(r.P_ofs, 1) != 0;
if (r.Dp_ofs >= 0)
Dp = bits.get_bits(r.Dp_ofs, 1) != 0;
if (r.W_size)
W += bits.get_bits(r.W_ofs, r.W_size);
if (r.H_size)
H += bits.get_bits(r.H_ofs, r.H_size);
assert((W >= MIN_GRID_DIM) && (W <= MAX_BLOCK_DIM));
assert((H >= MIN_GRID_DIM) && (H <= MAX_BLOCK_DIM));
int p0 = bits.get_bits(r.p0_ofs, 1);
int p1 = bits.get_bits(r.p1_ofs, 1);
int p2 = bits.get_bits(r.p2_ofs, 1);
uint32_t p = p0 | (p1 << 1) | (p2 << 2);
if (p < 2)
return false;
log_blk.m_grid_width = W;
log_blk.m_grid_height = H;
log_blk.m_weight_ise_range = (p - 2) + (P * BISE_10_LEVELS);
assert(log_blk.m_weight_ise_range <= LAST_VALID_WEIGHT_ISE_RANGE);
log_blk.m_dual_plane = Dp;
return true;
}
static inline uint32_t read_le_dword(const uint8_t* pBytes)
{
return (pBytes[0]) | (pBytes[1] << 8U) | (pBytes[2] << 16U) | (pBytes[3] << 24U);
}
// See 18.12.Integer Sequence Encoding - tables computed by executing the decoder functions with all possible 8/7-bit inputs.
static const uint8_t s_trit_decode[256][5] =
{
{0,0,0,0,0},{1,0,0,0,0},{2,0,0,0,0},{0,0,2,0,0},{0,1,0,0,0},{1,1,0,0,0},{2,1,0,0,0},{1,0,2,0,0},
{0,2,0,0,0},{1,2,0,0,0},{2,2,0,0,0},{2,0,2,0,0},{0,2,2,0,0},{1,2,2,0,0},{2,2,2,0,0},{2,0,2,0,0},
{0,0,1,0,0},{1,0,1,0,0},{2,0,1,0,0},{0,1,2,0,0},{0,1,1,0,0},{1,1,1,0,0},{2,1,1,0,0},{1,1,2,0,0},
{0,2,1,0,0},{1,2,1,0,0},{2,2,1,0,0},{2,1,2,0,0},{0,0,0,2,2},{1,0,0,2,2},{2,0,0,2,2},{0,0,2,2,2},
{0,0,0,1,0},{1,0,0,1,0},{2,0,0,1,0},{0,0,2,1,0},{0,1,0,1,0},{1,1,0,1,0},{2,1,0,1,0},{1,0,2,1,0},
{0,2,0,1,0},{1,2,0,1,0},{2,2,0,1,0},{2,0,2,1,0},{0,2,2,1,0},{1,2,2,1,0},{2,2,2,1,0},{2,0,2,1,0},
{0,0,1,1,0},{1,0,1,1,0},{2,0,1,1,0},{0,1,2,1,0},{0,1,1,1,0},{1,1,1,1,0},{2,1,1,1,0},{1,1,2,1,0},
{0,2,1,1,0},{1,2,1,1,0},{2,2,1,1,0},{2,1,2,1,0},{0,1,0,2,2},{1,1,0,2,2},{2,1,0,2,2},{1,0,2,2,2},
{0,0,0,2,0},{1,0,0,2,0},{2,0,0,2,0},{0,0,2,2,0},{0,1,0,2,0},{1,1,0,2,0},{2,1,0,2,0},{1,0,2,2,0},
{0,2,0,2,0},{1,2,0,2,0},{2,2,0,2,0},{2,0,2,2,0},{0,2,2,2,0},{1,2,2,2,0},{2,2,2,2,0},{2,0,2,2,0},
{0,0,1,2,0},{1,0,1,2,0},{2,0,1,2,0},{0,1,2,2,0},{0,1,1,2,0},{1,1,1,2,0},{2,1,1,2,0},{1,1,2,2,0},
{0,2,1,2,0},{1,2,1,2,0},{2,2,1,2,0},{2,1,2,2,0},{0,2,0,2,2},{1,2,0,2,2},{2,2,0,2,2},{2,0,2,2,2},
{0,0,0,0,2},{1,0,0,0,2},{2,0,0,0,2},{0,0,2,0,2},{0,1,0,0,2},{1,1,0,0,2},{2,1,0,0,2},{1,0,2,0,2},
{0,2,0,0,2},{1,2,0,0,2},{2,2,0,0,2},{2,0,2,0,2},{0,2,2,0,2},{1,2,2,0,2},{2,2,2,0,2},{2,0,2,0,2},
{0,0,1,0,2},{1,0,1,0,2},{2,0,1,0,2},{0,1,2,0,2},{0,1,1,0,2},{1,1,1,0,2},{2,1,1,0,2},{1,1,2,0,2},
{0,2,1,0,2},{1,2,1,0,2},{2,2,1,0,2},{2,1,2,0,2},{0,2,2,2,2},{1,2,2,2,2},{2,2,2,2,2},{2,0,2,2,2},
{0,0,0,0,1},{1,0,0,0,1},{2,0,0,0,1},{0,0,2,0,1},{0,1,0,0,1},{1,1,0,0,1},{2,1,0,0,1},{1,0,2,0,1},
{0,2,0,0,1},{1,2,0,0,1},{2,2,0,0,1},{2,0,2,0,1},{0,2,2,0,1},{1,2,2,0,1},{2,2,2,0,1},{2,0,2,0,1},
{0,0,1,0,1},{1,0,1,0,1},{2,0,1,0,1},{0,1,2,0,1},{0,1,1,0,1},{1,1,1,0,1},{2,1,1,0,1},{1,1,2,0,1},
{0,2,1,0,1},{1,2,1,0,1},{2,2,1,0,1},{2,1,2,0,1},{0,0,1,2,2},{1,0,1,2,2},{2,0,1,2,2},{0,1,2,2,2},
{0,0,0,1,1},{1,0,0,1,1},{2,0,0,1,1},{0,0,2,1,1},{0,1,0,1,1},{1,1,0,1,1},{2,1,0,1,1},{1,0,2,1,1},
{0,2,0,1,1},{1,2,0,1,1},{2,2,0,1,1},{2,0,2,1,1},{0,2,2,1,1},{1,2,2,1,1},{2,2,2,1,1},{2,0,2,1,1},
{0,0,1,1,1},{1,0,1,1,1},{2,0,1,1,1},{0,1,2,1,1},{0,1,1,1,1},{1,1,1,1,1},{2,1,1,1,1},{1,1,2,1,1},
{0,2,1,1,1},{1,2,1,1,1},{2,2,1,1,1},{2,1,2,1,1},{0,1,1,2,2},{1,1,1,2,2},{2,1,1,2,2},{1,1,2,2,2},
{0,0,0,2,1},{1,0,0,2,1},{2,0,0,2,1},{0,0,2,2,1},{0,1,0,2,1},{1,1,0,2,1},{2,1,0,2,1},{1,0,2,2,1},
{0,2,0,2,1},{1,2,0,2,1},{2,2,0,2,1},{2,0,2,2,1},{0,2,2,2,1},{1,2,2,2,1},{2,2,2,2,1},{2,0,2,2,1},
{0,0,1,2,1},{1,0,1,2,1},{2,0,1,2,1},{0,1,2,2,1},{0,1,1,2,1},{1,1,1,2,1},{2,1,1,2,1},{1,1,2,2,1},
{0,2,1,2,1},{1,2,1,2,1},{2,2,1,2,1},{2,1,2,2,1},{0,2,1,2,2},{1,2,1,2,2},{2,2,1,2,2},{2,1,2,2,2},
{0,0,0,1,2},{1,0,0,1,2},{2,0,0,1,2},{0,0,2,1,2},{0,1,0,1,2},{1,1,0,1,2},{2,1,0,1,2},{1,0,2,1,2},
{0,2,0,1,2},{1,2,0,1,2},{2,2,0,1,2},{2,0,2,1,2},{0,2,2,1,2},{1,2,2,1,2},{2,2,2,1,2},{2,0,2,1,2},
{0,0,1,1,2},{1,0,1,1,2},{2,0,1,1,2},{0,1,2,1,2},{0,1,1,1,2},{1,1,1,1,2},{2,1,1,1,2},{1,1,2,1,2},
{0,2,1,1,2},{1,2,1,1,2},{2,2,1,1,2},{2,1,2,1,2},{0,2,2,2,2},{1,2,2,2,2},{2,2,2,2,2},{2,1,2,2,2}
};
static const uint8_t s_quint_decode[128][3] =
{
{0,0,0},{1,0,0},{2,0,0},{3,0,0},{4,0,0},{0,4,0},{4,4,0},{4,4,4},
{0,1,0},{1,1,0},{2,1,0},{3,1,0},{4,1,0},{1,4,0},{4,4,1},{4,4,4},
{0,2,0},{1,2,0},{2,2,0},{3,2,0},{4,2,0},{2,4,0},{4,4,2},{4,4,4},
{0,3,0},{1,3,0},{2,3,0},{3,3,0},{4,3,0},{3,4,0},{4,4,3},{4,4,4},
{0,0,1},{1,0,1},{2,0,1},{3,0,1},{4,0,1},{0,4,1},{4,0,4},{0,4,4},
{0,1,1},{1,1,1},{2,1,1},{3,1,1},{4,1,1},{1,4,1},{4,1,4},{1,4,4},
{0,2,1},{1,2,1},{2,2,1},{3,2,1},{4,2,1},{2,4,1},{4,2,4},{2,4,4},
{0,3,1},{1,3,1},{2,3,1},{3,3,1},{4,3,1},{3,4,1},{4,3,4},{3,4,4},
{0,0,2},{1,0,2},{2,0,2},{3,0,2},{4,0,2},{0,4,2},{2,0,4},{3,0,4},
{0,1,2},{1,1,2},{2,1,2},{3,1,2},{4,1,2},{1,4,2},{2,1,4},{3,1,4},
{0,2,2},{1,2,2},{2,2,2},{3,2,2},{4,2,2},{2,4,2},{2,2,4},{3,2,4},
{0,3,2},{1,3,2},{2,3,2},{3,3,2},{4,3,2},{3,4,2},{2,3,4},{3,3,4},
{0,0,3},{1,0,3},{2,0,3},{3,0,3},{4,0,3},{0,4,3},{0,0,4},{1,0,4},
{0,1,3},{1,1,3},{2,1,3},{3,1,3},{4,1,3},{1,4,3},{0,1,4},{1,1,4},
{0,2,3},{1,2,3},{2,2,3},{3,2,3},{4,2,3},{2,4,3},{0,2,4},{1,2,4},
{0,3,3},{1,3,3},{2,3,3},{3,3,3},{4,3,3},{3,4,3},{0,3,4},{1,3,4}
};
static void decode_trit_block(uint8_t* pVals, uint32_t num_vals, const uint128& bits, uint32_t& bit_ofs, uint32_t bits_per_val)
{
assert((num_vals >= 1) && (num_vals <= 5));
uint32_t m[5] = { 0 }, T = 0;
static const uint8_t s_t_bits[5] = { 2, 2, 1, 2, 1 };
for (uint32_t T_ofs = 0, c = 0; c < num_vals; c++)
{
if (bits_per_val)
m[c] = bits.next_bits(bit_ofs, bits_per_val);
T |= (bits.next_bits(bit_ofs, s_t_bits[c]) << T_ofs);
T_ofs += s_t_bits[c];
}
const uint8_t (&p_trits)[5] = s_trit_decode[T];
for (uint32_t i = 0; i < num_vals; i++)
pVals[i] = (uint8_t)((p_trits[i] << bits_per_val) | m[i]);
}
static void decode_quint_block(uint8_t* pVals, uint32_t num_vals, const uint128& bits, uint32_t& bit_ofs, uint32_t bits_per_val)
{
assert((num_vals >= 1) && (num_vals <= 3));
uint32_t m[3] = { 0 }, T = 0;
static const uint8_t s_t_bits[3] = { 3, 2, 2 };
for (uint32_t T_ofs = 0, c = 0; c < num_vals; c++)
{
if (bits_per_val)
m[c] = bits.next_bits(bit_ofs, bits_per_val);
T |= (bits.next_bits(bit_ofs, s_t_bits[c]) << T_ofs);
T_ofs += s_t_bits[c];
}
const uint8_t (&p_quints)[3] = s_quint_decode[T];
for (uint32_t i = 0; i < num_vals; i++)
pVals[i] = (uint8_t)((p_quints[i] << bits_per_val) | m[i]);
}
static void decode_bise(uint32_t ise_range, uint8_t* pVals, uint32_t num_vals, const uint128& bits, uint32_t bit_ofs)
{
assert(num_vals && (ise_range < TOTAL_ISE_RANGES));
const uint32_t bits_per_val = g_ise_range_table[ise_range][0];
if (g_ise_range_table[ise_range][1])
{
// Trits+bits, 5 vals per block, 7 bits extra per block
const uint32_t total_blocks = (num_vals + 4) / 5;
for (uint32_t b = 0; b < total_blocks; b++)
{
const uint32_t num_vals_in_block = std::min<int>(num_vals - 5 * b, 5);
decode_trit_block(pVals + 5 * b, num_vals_in_block, bits, bit_ofs, bits_per_val);
}
}
else if (g_ise_range_table[ise_range][2])
{
// Quints+bits, 3 vals per block, 8 bits extra per block
const uint32_t total_blocks = (num_vals + 2) / 3;
for (uint32_t b = 0; b < total_blocks; b++)
{
const uint32_t num_vals_in_block = std::min<int>(num_vals - 3 * b, 3);
decode_quint_block(pVals + 3 * b, num_vals_in_block, bits, bit_ofs, bits_per_val);
}
}
else
{
assert(bits_per_val);
// Only bits
for (uint32_t i = 0; i < num_vals; i++)
pVals[i] = (uint8_t)bits.next_bits(bit_ofs, bits_per_val);
}
}
void decode_bise(uint32_t ise_range, uint8_t* pVals, uint32_t num_vals, const uint8_t* pBits128, uint32_t bit_ofs)
{
const uint128 bits(
(uint64_t)read_le_dword(pBits128) | (((uint64_t)read_le_dword(pBits128 + sizeof(uint32_t))) << 32),
(uint64_t)read_le_dword(pBits128 + sizeof(uint32_t) * 2) | (((uint64_t)read_le_dword(pBits128 + sizeof(uint32_t) * 3)) << 32));
return decode_bise(ise_range, pVals, num_vals, bits, bit_ofs);
}
// Decodes a physical ASTC block to a logical ASTC block.
// blk_width/blk_height are only used to validate the weight grid's dimensions.
bool unpack_block(const void* pASTC_block, log_astc_block& log_blk, uint32_t blk_width, uint32_t blk_height)
{
assert(is_valid_block_size(blk_width, blk_height));
const uint8_t* pS = (uint8_t*)pASTC_block;
log_blk.clear();
log_blk.m_error_flag = true;
const uint128 bits(
(uint64_t)read_le_dword(pS) | (((uint64_t)read_le_dword(pS + sizeof(uint32_t))) << 32),
(uint64_t)read_le_dword(pS + sizeof(uint32_t) * 2) | (((uint64_t)read_le_dword(pS + sizeof(uint32_t) * 3)) << 32));
const uint128 rev_bits(bits.get_reversed_bits());
if (!decode_config(bits, log_blk))
return false;
if (log_blk.m_solid_color_flag_hdr || log_blk.m_solid_color_flag_ldr)
{
// Void extent
log_blk.m_error_flag = false;
return true;
}
// Check grid dimensions
if ((log_blk.m_grid_width > blk_width) || (log_blk.m_grid_height > blk_height))
return false;
// Now we have the grid width/height, dual plane, weight ISE range
const uint32_t total_grid_weights = (log_blk.m_dual_plane ? 2 : 1) * (log_blk.m_grid_width * log_blk.m_grid_height);
const uint32_t total_weight_bits = get_ise_sequence_bits(total_grid_weights, log_blk.m_weight_ise_range);
// 18.24 Illegal Encodings
if ((!total_grid_weights) || (total_grid_weights > MAX_GRID_WEIGHTS) || (total_weight_bits < 24) || (total_weight_bits > 96))
return false;
const uint32_t end_of_weight_bit_ofs = 128 - total_weight_bits;
uint32_t total_extra_bits = 0;
// Right before the weight bits, there may be extra CEM bits, then the 2 CCS bits if dual plane.
log_blk.m_num_partitions = bits.get_bits(11, 2) + 1;
if (log_blk.m_num_partitions == 1)
log_blk.m_color_endpoint_modes[0] = bits.get_bits(13, 4); // read CEM bits
else
{
// 2 or more partitions
if (log_blk.m_dual_plane && (log_blk.m_num_partitions == 4))
return false;
log_blk.m_partition_id = bits.get_bits(13, 10);
uint32_t cem_bits = bits.get_bits(23, 6);
if ((cem_bits & 3) == 0)
{
// All CEM's the same
for (uint32_t i = 0; i < log_blk.m_num_partitions; i++)
log_blk.m_color_endpoint_modes[i] = cem_bits >> 2;
}
else
{
// CEM's different, but within up to 2 adjacent classes
const uint32_t first_cem_index = ((cem_bits & 3) - 1) * 4;
total_extra_bits = 3 * log_blk.m_num_partitions - 4;
if ((total_weight_bits + total_extra_bits) > 128)
return false;
uint32_t cem_bit_pos = end_of_weight_bit_ofs - total_extra_bits;
uint32_t c[4] = { 0 }, m[4] = { 0 };
cem_bits >>= 2;
for (uint32_t i = 0; i < log_blk.m_num_partitions; i++, cem_bits >>= 1)
c[i] = cem_bits & 1;
switch (log_blk.m_num_partitions)
{
case 2:
{
m[0] = cem_bits & 3;
m[1] = bits.next_bits(cem_bit_pos, 2);
break;
}
case 3:
{
m[0] = cem_bits & 1;
m[0] |= (bits.next_bits(cem_bit_pos, 1) << 1);
m[1] = bits.next_bits(cem_bit_pos, 2);
m[2] = bits.next_bits(cem_bit_pos, 2);
break;
}
case 4:
{
for (uint32_t i = 0; i < 4; i++)
m[i] = bits.next_bits(cem_bit_pos, 2);
break;
}
default:
{
assert(0);
break;
}
}
assert(cem_bit_pos == end_of_weight_bit_ofs);
for (uint32_t i = 0; i < log_blk.m_num_partitions; i++)
{
log_blk.m_color_endpoint_modes[i] = first_cem_index + (c[i] * 4) + m[i];
assert(log_blk.m_color_endpoint_modes[i] <= 15);
}
}
}
// Now we have all the CEM indices.
if (log_blk.m_dual_plane)
{
// Read CCS bits, beneath any CEM bits
total_extra_bits += 2;
if (total_extra_bits > end_of_weight_bit_ofs)
return false;
uint32_t ccs_bit_pos = end_of_weight_bit_ofs - total_extra_bits;
log_blk.m_color_component_selector = bits.get_bits(ccs_bit_pos, 2);
}
uint32_t config_bit_pos = 11 + 2; // config+num_parts
if (log_blk.m_num_partitions == 1)
config_bit_pos += 4; // CEM bits
else
config_bit_pos += 10 + 6; // part_id+CEM bits
// config+num_parts+total_extra_bits (CEM extra+CCS)
uint32_t total_config_bits = config_bit_pos + total_extra_bits;
// Compute number of remaining bits in block
const int num_remaining_bits = 128 - (int)total_config_bits - (int)total_weight_bits;
if (num_remaining_bits < 0)
return false;
// Compute total number of ISE encoded color endpoint mode values
uint32_t total_cem_vals = 0;
for (uint32_t j = 0; j < log_blk.m_num_partitions; j++)
total_cem_vals += get_num_cem_values(log_blk.m_color_endpoint_modes[j]);
if (total_cem_vals > MAX_ENDPOINTS)
return false;
// Infer endpoint ISE range based off the # of values we need to encode, and the # of remaining bits in the block
int endpoint_ise_range = -1;
for (int k = 20; k > 0; k--)
{
int b = get_ise_sequence_bits(total_cem_vals, k);
if (b <= num_remaining_bits)
{
endpoint_ise_range = k;
break;
}
}
// See 23.24 Illegal Encodings, [0,5] is the minimum ISE encoding for endpoints
if (endpoint_ise_range < (int)FIRST_VALID_ENDPOINT_ISE_RANGE)
return false;
log_blk.m_endpoint_ise_range = endpoint_ise_range;
// Decode endpoints forwards in block
decode_bise(log_blk.m_endpoint_ise_range, log_blk.m_endpoints, total_cem_vals, bits, config_bit_pos);
// Decode grid weights backwards in block
decode_bise(log_blk.m_weight_ise_range, log_blk.m_weights, total_grid_weights, rev_bits, 0);
log_blk.m_error_flag = false;
return true;
}
} // namespace astc_helpers
#endif //BASISU_ASTC_HELPERS_IMPLEMENTATION