virtualx-engine/core/math/matrix3.cpp
Juan Linietsky 6d233c651b -Changed KinematicBody API yet again to make it friendlier
-Fixed get_scale functions (and added set_scale) to make it more coherent when decomposing and composing (fixes bugs in transform interpolation)
2017-09-04 07:49:42 -03:00

756 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*************************************************************************/
/* matrix3.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "matrix3.h"
#include "math_funcs.h"
#include "os/copymem.h"
#include "print_string.h"
#define cofac(row1, col1, row2, col2) \
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
void Basis::from_z(const Vector3 &p_z) {
if (Math::abs(p_z.z) > Math_SQRT12) {
// choose p in y-z plane
real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
real_t k = 1.0 / Math::sqrt(a);
elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
} else {
// choose p in x-y plane
real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
real_t k = 1.0 / Math::sqrt(a);
elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
}
elements[2] = p_z;
}
void Basis::invert() {
real_t co[3] = {
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
real_t det = elements[0][0] * co[0] +
elements[0][1] * co[1] +
elements[0][2] * co[2];
#ifdef MATH_CHECKS
ERR_FAIL_COND(det == 0);
#endif
real_t s = 1.0 / det;
set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}
void Basis::orthonormalize() {
#ifdef MATH_CHECKS
ERR_FAIL_COND(determinant() == 0);
#endif
// Gram-Schmidt Process
Vector3 x = get_axis(0);
Vector3 y = get_axis(1);
Vector3 z = get_axis(2);
x.normalize();
y = (y - x * (x.dot(y)));
y.normalize();
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
z.normalize();
set_axis(0, x);
set_axis(1, y);
set_axis(2, z);
}
Basis Basis::orthonormalized() const {
Basis c = *this;
c.orthonormalize();
return c;
}
bool Basis::is_orthogonal() const {
Basis id;
Basis m = (*this) * transposed();
return is_equal_approx(id, m);
}
bool Basis::is_diagonal() const {
return (
Math::is_equal_approx(elements[0][1], 0) && Math::is_equal_approx(elements[0][2], 0) &&
Math::is_equal_approx(elements[1][0], 0) && Math::is_equal_approx(elements[1][2], 0) &&
Math::is_equal_approx(elements[2][0], 0) && Math::is_equal_approx(elements[2][1], 0));
}
bool Basis::is_rotation() const {
return Math::is_equal_approx(determinant(), 1) && is_orthogonal();
}
bool Basis::is_symmetric() const {
if (!Math::is_equal_approx(elements[0][1], elements[1][0]))
return false;
if (!Math::is_equal_approx(elements[0][2], elements[2][0]))
return false;
if (!Math::is_equal_approx(elements[1][2], elements[2][1]))
return false;
return true;
}
Basis Basis::diagonalize() {
//NOTE: only implemented for symmetric matrices
//with the Jacobi iterative method method
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!is_symmetric(), Basis());
#endif
const int ite_max = 1024;
real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
int ite = 0;
Basis acc_rot;
while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
real_t el01_2 = elements[0][1] * elements[0][1];
real_t el02_2 = elements[0][2] * elements[0][2];
real_t el12_2 = elements[1][2] * elements[1][2];
// Find the pivot element
int i, j;
if (el01_2 > el02_2) {
if (el12_2 > el01_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 1;
}
} else {
if (el12_2 > el02_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 2;
}
}
// Compute the rotation angle
real_t angle;
if (Math::is_equal_approx(elements[j][j], elements[i][i])) {
angle = Math_PI / 4;
} else {
angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
}
// Compute the rotation matrix
Basis rot;
rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle));
// Update the off matrix norm
off_matrix_norm_2 -= elements[i][j] * elements[i][j];
// Apply the rotation
*this = rot * *this * rot.transposed();
acc_rot = rot * acc_rot;
}
return acc_rot;
}
Basis Basis::inverse() const {
Basis inv = *this;
inv.invert();
return inv;
}
void Basis::transpose() {
SWAP(elements[0][1], elements[1][0]);
SWAP(elements[0][2], elements[2][0]);
SWAP(elements[1][2], elements[2][1]);
}
Basis Basis::transposed() const {
Basis tr = *this;
tr.transpose();
return tr;
}
// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis::scale(const Vector3 &p_scale) {
elements[0][0] *= p_scale.x;
elements[0][1] *= p_scale.x;
elements[0][2] *= p_scale.x;
elements[1][0] *= p_scale.y;
elements[1][1] *= p_scale.y;
elements[1][2] *= p_scale.y;
elements[2][0] *= p_scale.z;
elements[2][1] *= p_scale.z;
elements[2][2] *= p_scale.z;
}
Basis Basis::scaled(const Vector3 &p_scale) const {
Basis m = *this;
m.scale(p_scale);
return m;
}
void Basis::set_scale(const Vector3 &p_scale) {
set_axis(0, get_axis(0).normalized() * p_scale.x);
set_axis(1, get_axis(1).normalized() * p_scale.y);
set_axis(2, get_axis(2).normalized() * p_scale.z);
}
Vector3 Basis::get_scale() const {
return Vector3(
Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}
Vector3 Basis::get_signed_scale() const {
// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
//
// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
// Therefore, we are going to do this decomposition by sticking to a particular convention.
// This may lead to confusion for some users though.
//
// The convention we use here is to absorb the sign flip into the scaling matrix.
// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
//
// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
// matrix elements.
//
// The rotation part of this decomposition is returned by get_rotation* functions.
real_t det_sign = determinant() > 0 ? 1 : -1;
return det_sign * Vector3(
Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}
// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
// This (internal) function is too specıfıc and named too ugly to expose to users, and probably there's no need to do so.
Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(determinant() == 0, Vector3());
Basis m = transposed() * (*this);
ERR_FAIL_COND_V(m.is_diagonal() == false, Vector3());
#endif
Vector3 scale = get_scale();
Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
rotref = (*this) * inv_scale;
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(rotref.is_orthogonal() == false, Vector3());
#endif
return scale.abs();
}
// Multiplies the matrix from left by the rotation matrix: M -> R.M
// Note that this does *not* rotate the matrix itself.
//
// The main use of Basis is as Transform.basis, which is used a the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
return Basis(p_axis, p_phi) * (*this);
}
void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
*this = rotated(p_axis, p_phi);
}
Basis Basis::rotated(const Vector3 &p_euler) const {
return Basis(p_euler) * (*this);
}
void Basis::rotate(const Vector3 &p_euler) {
*this = rotated(p_euler);
}
// TODO: rename this to get_rotation_euler
Vector3 Basis::get_rotation() const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
return m.get_euler();
}
void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
m.get_axis_angle(p_axis, p_angle);
}
// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
//
// The current implementation uses XYZ convention (Z is the first rotation),
// so euler.z is the angle of the (first) rotation around Z axis and so on,
//
// And thus, assuming the matrix is a rotation matrix, this function returns
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
// around the z-axis by a and so on.
Vector3 Basis::get_euler_xyz() const {
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler;
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(is_rotation() == false, euler);
#endif
euler.y = Math::asin(elements[0][2]);
if (euler.y < Math_PI * 0.5) {
if (euler.y > -Math_PI * 0.5) {
// is this a pure Y rotation?
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
// return the simplest form
euler.x = 0;
euler.y = atan2(elements[0][2], elements[0][0]);
euler.z = 0;
} else {
euler.x = Math::atan2(-elements[1][2], elements[2][2]);
euler.z = Math::atan2(-elements[0][1], elements[0][0]);
}
} else {
real_t r = Math::atan2(elements[1][0], elements[1][1]);
euler.z = 0.0;
euler.x = euler.z - r;
}
} else {
real_t r = Math::atan2(elements[0][1], elements[1][1]);
euler.z = 0;
euler.x = r - euler.z;
}
return euler;
}
// set_euler_xyz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses XYZ convention (Z is the first rotation).
void Basis::set_euler_xyz(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = xmat * (ymat * zmat);
}
// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
// as the x, y, and z components of a Vector3 respectively.
Vector3 Basis::get_euler_yxz() const {
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
Vector3 euler;
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(is_rotation() == false, euler);
#endif
real_t m12 = elements[1][2];
if (m12 < 1) {
if (m12 > -1) {
// is this a pure X rotation?
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
// return the simplest form
euler.x = atan2(-m12, elements[1][1]);
euler.y = 0;
euler.z = 0;
} else {
euler.x = asin(-m12);
euler.y = atan2(elements[0][2], elements[2][2]);
euler.z = atan2(elements[1][0], elements[1][1]);
}
} else { // m12 == -1
euler.x = Math_PI * 0.5;
euler.y = -atan2(-elements[0][1], elements[0][0]);
euler.z = 0;
}
} else { // m12 == 1
euler.x = -Math_PI * 0.5;
euler.y = -atan2(-elements[0][1], elements[0][0]);
euler.z = 0;
}
return euler;
}
// set_euler_yxz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses YXZ convention (Z is the first rotation).
void Basis::set_euler_yxz(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = ymat * xmat * zmat;
}
bool Basis::is_equal_approx(const Basis &a, const Basis &b) const {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (Math::is_equal_approx(a.elements[i][j], b.elements[i][j]) == false)
return false;
}
}
return true;
}
bool Basis::operator==(const Basis &p_matrix) const {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (elements[i][j] != p_matrix.elements[i][j])
return false;
}
}
return true;
}
bool Basis::operator!=(const Basis &p_matrix) const {
return (!(*this == p_matrix));
}
Basis::operator String() const {
String mtx;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i != 0 || j != 0)
mtx += ", ";
mtx += rtos(elements[i][j]);
}
}
return mtx;
}
Basis::operator Quat() const {
//commenting this check because precision issues cause it to fail when it shouldn't
//#ifdef MATH_CHECKS
//ERR_FAIL_COND_V(is_rotation() == false, Quat());
//#endif
real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
real_t temp[4];
if (trace > 0.0) {
real_t s = Math::sqrt(trace + 1.0);
temp[3] = (s * 0.5);
s = 0.5 / s;
temp[0] = ((elements[2][1] - elements[1][2]) * s);
temp[1] = ((elements[0][2] - elements[2][0]) * s);
temp[2] = ((elements[1][0] - elements[0][1]) * s);
} else {
int i = elements[0][0] < elements[1][1] ?
(elements[1][1] < elements[2][2] ? 2 : 1) :
(elements[0][0] < elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = Math::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
temp[i] = s * 0.5;
s = 0.5 / s;
temp[3] = (elements[k][j] - elements[j][k]) * s;
temp[j] = (elements[j][i] + elements[i][j]) * s;
temp[k] = (elements[k][i] + elements[i][k]) * s;
}
return Quat(temp[0], temp[1], temp[2], temp[3]);
}
static const Basis _ortho_bases[24] = {
Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
};
int Basis::get_orthogonal_index() const {
//could be sped up if i come up with a way
Basis orth = *this;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
real_t v = orth[i][j];
if (v > 0.5)
v = 1.0;
else if (v < -0.5)
v = -1.0;
else
v = 0;
orth[i][j] = v;
}
}
for (int i = 0; i < 24; i++) {
if (_ortho_bases[i] == orth)
return i;
}
return 0;
}
void Basis::set_orthogonal_index(int p_index) {
//there only exist 24 orthogonal bases in r3
ERR_FAIL_INDEX(p_index, 24);
*this = _ortho_bases[p_index];
}
void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND(is_rotation() == false);
#endif
real_t angle, x, y, z; // variables for result
real_t epsilon = 0.01; // margin to allow for rounding errors
real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonaland zero in other terms
if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
// this singularity is identity matrix so angle = 0
r_axis = Vector3(0, 1, 0);
r_angle = 0;
return;
}
// otherwise this singularity is angle = 180
angle = Math_PI;
real_t xx = (elements[0][0] + 1) / 2;
real_t yy = (elements[1][1] + 1) / 2;
real_t zz = (elements[2][2] + 1) / 2;
real_t xy = (elements[1][0] + elements[0][1]) / 4;
real_t xz = (elements[2][0] + elements[0][2]) / 4;
real_t yz = (elements[2][1] + elements[1][2]) / 4;
if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
if (xx < epsilon) {
x = 0;
y = 0.7071;
z = 0.7071;
} else {
x = Math::sqrt(xx);
y = xy / x;
z = xz / x;
}
} else if (yy > zz) { // elements[1][1] is the largest diagonal term
if (yy < epsilon) {
x = 0.7071;
y = 0;
z = 0.7071;
} else {
y = Math::sqrt(yy);
x = xy / y;
z = yz / y;
}
} else { // elements[2][2] is the largest diagonal term so base result on this
if (zz < epsilon) {
x = 0.7071;
y = 0.7071;
z = 0;
} else {
z = Math::sqrt(zz);
x = xz / z;
y = yz / z;
}
}
r_axis = Vector3(x, y, z);
r_angle = angle;
return;
}
// as we have reached here there are no singularities so we can handle normally
real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
if (angle < 0) s = -s;
x = (elements[2][1] - elements[1][2]) / s;
y = (elements[0][2] - elements[2][0]) / s;
z = (elements[1][0] - elements[0][1]) / s;
r_axis = Vector3(x, y, z);
r_angle = angle;
}
Basis::Basis(const Vector3 &p_euler) {
set_euler(p_euler);
}
Basis::Basis(const Quat &p_quat) {
real_t d = p_quat.length_squared();
real_t s = 2.0 / d;
real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
set(1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy));
}
void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
#ifdef MATH_CHECKS
ERR_FAIL_COND(p_axis.is_normalized() == false);
#endif
Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
real_t cosine = Math::cos(p_phi);
real_t sine = Math::sin(p_phi);
elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine;
elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine;
elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine;
elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine;
elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine;
elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
}
Basis::Basis(const Vector3 &p_axis, real_t p_phi) {
set_axis_angle(p_axis, p_phi);
}