virtualx-engine/thirdparty/embree/kernels/bvh/bvh_collider.cpp
2021-01-14 18:02:07 +01:00

375 lines
16 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "bvh_collider.h"
#include "../geometry/triangle_triangle_intersector.h"
namespace embree
{
namespace isa
{
#define CSTAT(x)
size_t parallel_depth_threshold = 3;
CSTAT(std::atomic<size_t> bvh_collide_traversal_steps(0));
CSTAT(std::atomic<size_t> bvh_collide_leaf_pairs(0));
CSTAT(std::atomic<size_t> bvh_collide_leaf_iterations(0));
CSTAT(std::atomic<size_t> bvh_collide_prim_intersections1(0));
CSTAT(std::atomic<size_t> bvh_collide_prim_intersections2(0));
CSTAT(std::atomic<size_t> bvh_collide_prim_intersections3(0));
CSTAT(std::atomic<size_t> bvh_collide_prim_intersections4(0));
CSTAT(std::atomic<size_t> bvh_collide_prim_intersections5(0));
CSTAT(std::atomic<size_t> bvh_collide_prim_intersections(0));
struct Collision
{
__forceinline Collision() {}
__forceinline Collision (unsigned geomID0, unsigned primID0, unsigned geomID1, unsigned primID1)
: geomID0(geomID0), primID0(primID0), geomID1(geomID1), primID1(primID1) {}
unsigned geomID0;
unsigned primID0;
unsigned geomID1;
unsigned primID1;
};
template<int N>
__forceinline size_t overlap(const BBox3fa& box0, const typename BVHN<N>::AABBNode& node1)
{
const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),node1.lower_x);
const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),node1.lower_y);
const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),node1.lower_z);
const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),node1.upper_x);
const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),node1.upper_y);
const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),node1.upper_z);
return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z));
}
template<int N>
__forceinline size_t overlap(const BBox3fa& box0, const BBox<Vec3<vfloat<N>>>& box1)
{
const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),box1.lower.x);
const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),box1.lower.y);
const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),box1.lower.z);
const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),box1.upper.x);
const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),box1.upper.y);
const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),box1.upper.z);
return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z));
}
template<int N>
__forceinline size_t overlap(const BBox<Vec3<vfloat<N>>>& box0, size_t i, const BBox<Vec3<vfloat<N>>>& box1)
{
const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x[i]),box1.lower.x);
const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y[i]),box1.lower.y);
const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z[i]),box1.lower.z);
const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x[i]),box1.upper.x);
const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y[i]),box1.upper.y);
const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z[i]),box1.upper.z);
return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z));
}
bool intersect_triangle_triangle (Scene* scene0, unsigned geomID0, unsigned primID0, Scene* scene1, unsigned geomID1, unsigned primID1)
{
CSTAT(bvh_collide_prim_intersections1++);
const TriangleMesh* mesh0 = scene0->get<TriangleMesh>(geomID0);
const TriangleMesh* mesh1 = scene1->get<TriangleMesh>(geomID1);
const TriangleMesh::Triangle& tri0 = mesh0->triangle(primID0);
const TriangleMesh::Triangle& tri1 = mesh1->triangle(primID1);
/* special culling for scene intersection with itself */
if (scene0 == scene1 && geomID0 == geomID1)
{
/* ignore self intersections */
if (primID0 == primID1)
return false;
}
CSTAT(bvh_collide_prim_intersections2++);
if (scene0 == scene1 && geomID0 == geomID1)
{
/* ignore intersection with topological neighbors */
const vint4 t0(tri0.v[0],tri0.v[1],tri0.v[2],tri0.v[2]);
if (any(vint4(tri1.v[0]) == t0)) return false;
if (any(vint4(tri1.v[1]) == t0)) return false;
if (any(vint4(tri1.v[2]) == t0)) return false;
}
CSTAT(bvh_collide_prim_intersections3++);
const Vec3fa a0 = mesh0->vertex(tri0.v[0]);
const Vec3fa a1 = mesh0->vertex(tri0.v[1]);
const Vec3fa a2 = mesh0->vertex(tri0.v[2]);
const Vec3fa b0 = mesh1->vertex(tri1.v[0]);
const Vec3fa b1 = mesh1->vertex(tri1.v[1]);
const Vec3fa b2 = mesh1->vertex(tri1.v[2]);
return TriangleTriangleIntersector::intersect_triangle_triangle(a0,a1,a2,b0,b1,b2);
}
template<int N>
__forceinline void BVHNColliderUserGeom<N>::processLeaf(NodeRef node0, NodeRef node1)
{
Collision collisions[16];
size_t num_collisions = 0;
size_t N0; Object* leaf0 = (Object*) node0.leaf(N0);
size_t N1; Object* leaf1 = (Object*) node1.leaf(N1);
for (size_t i=0; i<N0; i++) {
for (size_t j=0; j<N1; j++) {
const unsigned geomID0 = leaf0[i].geomID();
const unsigned primID0 = leaf0[i].primID();
const unsigned geomID1 = leaf1[j].geomID();
const unsigned primID1 = leaf1[j].primID();
if (this->scene0 == this->scene1 && geomID0 == geomID1 && primID0 == primID1) continue;
collisions[num_collisions++] = Collision(geomID0,primID0,geomID1,primID1);
if (num_collisions == 16) {
this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions);
num_collisions = 0;
}
}
}
if (num_collisions)
this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions);
}
template<int N>
void BVHNCollider<N>::collide_recurse(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1, size_t depth0, size_t depth1)
{
CSTAT(bvh_collide_traversal_steps++);
if (unlikely(ref0.isLeaf())) {
if (unlikely(ref1.isLeaf())) {
CSTAT(bvh_collide_leaf_pairs++);
processLeaf(ref0,ref1);
return;
} else goto recurse_node1;
} else {
if (unlikely(ref1.isLeaf())) {
goto recurse_node0;
} else {
if (area(bounds0) > area(bounds1)) {
goto recurse_node0;
}
else {
goto recurse_node1;
}
}
}
{
recurse_node0:
AABBNode* node0 = ref0.getAABBNode();
size_t mask = overlap<N>(bounds1,*node0);
//for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
//for (size_t i=0; i<N; i++) {
#if 0
if (depth0 < parallel_depth_threshold)
{
parallel_for(size_t(N), [&] ( size_t i ) {
if (mask & ( 1 << i)) {
BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE);
collide_recurse(node0->child(i),node0->bounds(i),ref1,bounds1,depth0+1,depth1);
}
});
}
else
#endif
{
for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE);
collide_recurse(node0->child(i),node0->bounds(i),ref1,bounds1,depth0+1,depth1);
}
}
return;
}
{
recurse_node1:
AABBNode* node1 = ref1.getAABBNode();
size_t mask = overlap<N>(bounds0,*node1);
//for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
//for (size_t i=0; i<N; i++) {
#if 0
if (depth1 < parallel_depth_threshold)
{
parallel_for(size_t(N), [&] ( size_t i ) {
if (mask & ( 1 << i)) {
BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE);
collide_recurse(ref0,bounds0,node1->child(i),node1->bounds(i),depth0,depth1+1);
}
});
}
else
#endif
{
for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE);
collide_recurse(ref0,bounds0,node1->child(i),node1->bounds(i),depth0,depth1+1);
}
}
return;
}
}
template<int N>
void BVHNCollider<N>::split(const CollideJob& job, jobvector& jobs)
{
if (unlikely(job.ref0.isLeaf())) {
if (unlikely(job.ref1.isLeaf())) {
jobs.push_back(job);
return;
} else goto recurse_node1;
} else {
if (unlikely(job.ref1.isLeaf())) {
goto recurse_node0;
} else {
if (area(job.bounds0) > area(job.bounds1)) {
goto recurse_node0;
}
else {
goto recurse_node1;
}
}
}
{
recurse_node0:
const AABBNode* node0 = job.ref0.getAABBNode();
size_t mask = overlap<N>(job.bounds1,*node0);
for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
jobs.push_back(CollideJob(node0->child(i),node0->bounds(i),job.depth0+1,job.ref1,job.bounds1,job.depth1));
}
return;
}
{
recurse_node1:
const AABBNode* node1 = job.ref1.getAABBNode();
size_t mask = overlap<N>(job.bounds0,*node1);
for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) {
jobs.push_back(CollideJob(job.ref0,job.bounds0,job.depth0,node1->child(i),node1->bounds(i),job.depth1+1));
}
return;
}
}
template<int N>
void BVHNCollider<N>::collide_recurse_entry(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1)
{
CSTAT(bvh_collide_traversal_steps = 0);
CSTAT(bvh_collide_leaf_pairs = 0);
CSTAT(bvh_collide_leaf_iterations = 0);
CSTAT(bvh_collide_prim_intersections1 = 0);
CSTAT(bvh_collide_prim_intersections2 = 0);
CSTAT(bvh_collide_prim_intersections3 = 0);
CSTAT(bvh_collide_prim_intersections4 = 0);
CSTAT(bvh_collide_prim_intersections5 = 0);
CSTAT(bvh_collide_prim_intersections = 0);
#if 0
collide_recurse(ref0,bounds0,ref1,bounds1,0,0);
#else
const int M = 2048;
jobvector jobs[2];
jobs[0].reserve(M);
jobs[1].reserve(M);
jobs[0].push_back(CollideJob(ref0,bounds0,0,ref1,bounds1,0));
int source = 0;
int target = 1;
/* try to split job until job list is full */
while (jobs[source].size()+8 <= M)
{
for (size_t i=0; i<jobs[source].size(); i++)
{
const CollideJob& job = jobs[source][i];
size_t remaining = jobs[source].size()-i;
if (jobs[target].size()+remaining+8 > M) {
jobs[target].push_back(job);
} else {
split(job,jobs[target]);
}
}
/* stop splitting jobs if we reached only leaves and cannot make progress anymore */
if (jobs[target].size() == jobs[source].size())
break;
jobs[source].resize(0);
std::swap(source,target);
}
/* parallel processing of all jobs */
parallel_for(size_t(jobs[source].size()), [&] ( size_t i ) {
CollideJob& j = jobs[source][i];
collide_recurse(j.ref0,j.bounds0,j.ref1,j.bounds1,j.depth0,j.depth1);
});
#endif
CSTAT(PRINT(bvh_collide_traversal_steps));
CSTAT(PRINT(bvh_collide_leaf_pairs));
CSTAT(PRINT(bvh_collide_leaf_iterations));
CSTAT(PRINT(bvh_collide_prim_intersections1));
CSTAT(PRINT(bvh_collide_prim_intersections2));
CSTAT(PRINT(bvh_collide_prim_intersections3));
CSTAT(PRINT(bvh_collide_prim_intersections4));
CSTAT(PRINT(bvh_collide_prim_intersections5));
CSTAT(PRINT(bvh_collide_prim_intersections));
}
template<int N>
void BVHNColliderUserGeom<N>::collide(BVH* __restrict__ bvh0, BVH* __restrict__ bvh1, RTCCollideFunc callback, void* userPtr)
{
BVHNColliderUserGeom<N>(bvh0->scene,bvh1->scene,callback,userPtr).
collide_recurse_entry(bvh0->root,bvh0->bounds.bounds(),bvh1->root,bvh1->bounds.bounds());
}
#if defined (EMBREE_LOWEST_ISA)
struct collision_regression_test : public RegressionTest
{
collision_regression_test(const char* name) : RegressionTest(name) {
registerRegressionTest(this);
}
bool run ()
{
bool passed = true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(-0.008815f, 0.041848f, -2.49875e-06f), Vec3fa(-0.008276f, 0.053318f, -2.49875e-06f), Vec3fa(0.003023f, 0.048969f, -2.49875e-06f),
Vec3fa(0.00245f, 0.037612f, -2.49875e-06f), Vec3fa(0.01434f, 0.042634f, -2.49875e-06f), Vec3fa(0.013499f, 0.031309f, -2.49875e-06f)) == false;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,1),Vec3fa(1,0,1),Vec3fa(0,1,1)) == false;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,1),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,-0.1f),Vec3fa(1,0,1),Vec3fa(0,1,1)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0,0,0),Vec3fa(0.5f,0,0),Vec3fa(0,0.5f,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(0.5f,0,0),Vec3fa(0,0.5f,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(0.1f,-0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0), Vec3fa(-0.1f,0.1f,0),Vec3fa(0.5f,0.1f,0),Vec3fa(0.1f,0.5f,0)) == true;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0),
Vec3fa(-1,1,0) + Vec3fa(0,0,0),Vec3fa(-1,1,0) + Vec3fa(0.1f,0,0),Vec3fa(-1,1,0) + Vec3fa(0,0.1f,0)) == false;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0),
Vec3fa( 2,0.5f,0) + Vec3fa(0,0,0),Vec3fa( 2,0.5f,0) + Vec3fa(0.1f,0,0),Vec3fa( 2,0.5f,0) + Vec3fa(0,0.1f,0)) == false;
passed &= TriangleTriangleIntersector::intersect_triangle_triangle (Vec3fa(0,0,0),Vec3fa(1,0,0),Vec3fa(0,1,0),
Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0,0),Vec3fa(0.5f,-2.0f,0) + Vec3fa(0.1f,0,0),Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0.1f,0)) == false;
return passed;
}
};
collision_regression_test collision_regression("collision_regression_test");
#endif
////////////////////////////////////////////////////////////////////////////////
/// Collider Definitions
////////////////////////////////////////////////////////////////////////////////
DEFINE_COLLIDER(BVH4ColliderUserGeom,BVHNColliderUserGeom<4>);
#if defined(__AVX__)
DEFINE_COLLIDER(BVH8ColliderUserGeom,BVHNColliderUserGeom<8>);
#endif
}
}