530 lines
15 KiB
GLSL
530 lines
15 KiB
GLSL
#[compute]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
#if defined(MODE_FOG) || defined(MODE_FILTER)
|
|
|
|
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
|
|
|
|
#endif
|
|
|
|
#if defined(MODE_DENSITY)
|
|
|
|
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
|
|
|
|
#endif
|
|
|
|
#include "cluster_data_inc.glsl"
|
|
|
|
#define M_PI 3.14159265359
|
|
|
|
layout(set = 0, binding = 1) uniform texture2D shadow_atlas;
|
|
layout(set = 0, binding = 2) uniform texture2D directional_shadow_atlas;
|
|
|
|
layout(set = 0, binding = 3, std430) restrict readonly buffer Lights {
|
|
LightData data[];
|
|
}
|
|
lights;
|
|
|
|
layout(set = 0, binding = 4, std140) uniform DirectionalLights {
|
|
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
|
|
}
|
|
directional_lights;
|
|
|
|
layout(set = 0, binding = 5) uniform utexture3D cluster_texture;
|
|
|
|
layout(set = 0, binding = 6, std430) restrict readonly buffer ClusterData {
|
|
uint indices[];
|
|
}
|
|
cluster_data;
|
|
|
|
layout(set = 0, binding = 7) uniform sampler linear_sampler;
|
|
|
|
#ifdef MODE_DENSITY
|
|
layout(rgba16f, set = 0, binding = 8) uniform restrict writeonly image3D density_map;
|
|
layout(rgba16f, set = 0, binding = 9) uniform restrict readonly image3D fog_map; //unused
|
|
#endif
|
|
|
|
#ifdef MODE_FOG
|
|
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D density_map;
|
|
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D fog_map;
|
|
#endif
|
|
|
|
#ifdef MODE_FILTER
|
|
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map;
|
|
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map;
|
|
#endif
|
|
|
|
layout(set = 0, binding = 10) uniform sampler shadow_sampler;
|
|
|
|
#define MAX_GI_PROBES 8
|
|
|
|
struct GIProbeData {
|
|
mat4 xform;
|
|
vec3 bounds;
|
|
float dynamic_range;
|
|
|
|
float bias;
|
|
float normal_bias;
|
|
bool blend_ambient;
|
|
uint texture_slot;
|
|
|
|
float anisotropy_strength;
|
|
float ambient_occlusion;
|
|
float ambient_occlusion_size;
|
|
uint mipmaps;
|
|
};
|
|
|
|
layout(set = 0, binding = 11, std140) uniform GIProbes {
|
|
GIProbeData data[MAX_GI_PROBES];
|
|
}
|
|
gi_probes;
|
|
|
|
layout(set = 0, binding = 12) uniform texture3D gi_probe_textures[MAX_GI_PROBES];
|
|
|
|
layout(set = 0, binding = 13) uniform sampler linear_sampler_with_mipmaps;
|
|
|
|
#ifdef ENABLE_SDFGI
|
|
|
|
// SDFGI Integration on set 1
|
|
#define SDFGI_MAX_CASCADES 8
|
|
|
|
struct SDFGIProbeCascadeData {
|
|
vec3 position;
|
|
float to_probe;
|
|
ivec3 probe_world_offset;
|
|
float to_cell; // 1/bounds * grid_size
|
|
};
|
|
|
|
layout(set = 1, binding = 0, std140) uniform SDFGI {
|
|
vec3 grid_size;
|
|
uint max_cascades;
|
|
|
|
bool use_occlusion;
|
|
int probe_axis_size;
|
|
float probe_to_uvw;
|
|
float normal_bias;
|
|
|
|
vec3 lightprobe_tex_pixel_size;
|
|
float energy;
|
|
|
|
vec3 lightprobe_uv_offset;
|
|
float y_mult;
|
|
|
|
vec3 occlusion_clamp;
|
|
uint pad3;
|
|
|
|
vec3 occlusion_renormalize;
|
|
uint pad4;
|
|
|
|
vec3 cascade_probe_size;
|
|
uint pad5;
|
|
|
|
SDFGIProbeCascadeData cascades[SDFGI_MAX_CASCADES];
|
|
}
|
|
sdfgi;
|
|
|
|
layout(set = 1, binding = 1) uniform texture2DArray sdfgi_ambient_texture;
|
|
|
|
layout(set = 1, binding = 2) uniform texture3D sdfgi_occlusion_texture;
|
|
|
|
#endif //SDFGI
|
|
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
vec2 fog_frustum_size_begin;
|
|
vec2 fog_frustum_size_end;
|
|
|
|
float fog_frustum_end;
|
|
float z_near;
|
|
float z_far;
|
|
int filter_axis;
|
|
|
|
ivec3 fog_volume_size;
|
|
uint directional_light_count;
|
|
|
|
vec3 light_color;
|
|
float base_density;
|
|
|
|
float detail_spread;
|
|
float gi_inject;
|
|
uint max_gi_probes;
|
|
uint pad;
|
|
|
|
mat3x4 cam_rotation;
|
|
}
|
|
params;
|
|
|
|
float get_depth_at_pos(float cell_depth_size, int z) {
|
|
float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
|
|
d = pow(d, params.detail_spread);
|
|
return params.fog_frustum_end * d;
|
|
}
|
|
|
|
vec3 hash3f(uvec3 x) {
|
|
x = ((x >> 16) ^ x) * 0x45d9f3b;
|
|
x = ((x >> 16) ^ x) * 0x45d9f3b;
|
|
x = (x >> 16) ^ x;
|
|
return vec3(x & 0xFFFFF) / vec3(float(0xFFFFF));
|
|
}
|
|
|
|
void main() {
|
|
vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size);
|
|
|
|
#ifdef MODE_DENSITY
|
|
|
|
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
|
|
if (any(greaterThanEqual(pos, params.fog_volume_size))) {
|
|
return; //do not compute
|
|
}
|
|
|
|
vec3 posf = vec3(pos);
|
|
|
|
//posf += mix(vec3(0.0),vec3(1.0),0.3) * hash3f(uvec3(pos)) * 2.0 - 1.0;
|
|
|
|
vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
|
|
fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);
|
|
|
|
vec3 view_pos;
|
|
view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z));
|
|
view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
|
|
view_pos.y = -view_pos.y;
|
|
|
|
vec3 total_light = params.light_color;
|
|
|
|
float total_density = params.base_density;
|
|
float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
|
|
//compute directional lights
|
|
|
|
for (uint i = 0; i < params.directional_light_count; i++) {
|
|
vec3 shadow_attenuation = vec3(1.0);
|
|
|
|
if (directional_lights.data[i].shadow_enabled) {
|
|
float depth_z = -view_pos.z;
|
|
|
|
vec4 pssm_coord;
|
|
vec3 shadow_color = directional_lights.data[i].shadow_color1.rgb;
|
|
vec3 light_dir = directional_lights.data[i].direction;
|
|
vec4 v = vec4(view_pos, 1.0);
|
|
float z_range;
|
|
|
|
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
z_range = directional_lights.data[i].shadow_z_range.x;
|
|
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
z_range = directional_lights.data[i].shadow_z_range.y;
|
|
|
|
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
z_range = directional_lights.data[i].shadow_z_range.z;
|
|
|
|
} else {
|
|
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
|
|
pssm_coord /= pssm_coord.w;
|
|
z_range = directional_lights.data[i].shadow_z_range.w;
|
|
}
|
|
|
|
float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r;
|
|
float shadow = exp(min(0.0, (depth - pssm_coord.z)) * z_range * directional_lights.data[i].shadow_volumetric_fog_fade);
|
|
|
|
/*
|
|
//float shadow = textureProj(sampler2DShadow(directional_shadow_atlas,shadow_sampler),pssm_coord);
|
|
float shadow = 0.0;
|
|
for(float xi=-1;xi<=1;xi++) {
|
|
for(float yi=-1;yi<=1;yi++) {
|
|
vec2 ofs = vec2(xi,yi) * 1.5 * params.directional_shadow_pixel_size;
|
|
shadow += textureProj(sampler2DShadow(directional_shadow_atlas,shadow_sampler),pssm_coord + vec4(ofs,0.0,0.0));
|
|
}
|
|
|
|
}
|
|
|
|
shadow /= 3.0 * 3.0;
|
|
|
|
*/
|
|
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance
|
|
|
|
shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);
|
|
}
|
|
|
|
total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy / M_PI;
|
|
}
|
|
|
|
//compute lights from cluster
|
|
|
|
vec3 cluster_pos;
|
|
cluster_pos.xy = fog_unit_pos.xy;
|
|
cluster_pos.z = clamp((abs(view_pos.z) - params.z_near) / (params.z_far - params.z_near), 0.0, 1.0);
|
|
|
|
uvec4 cluster_cell = texture(usampler3D(cluster_texture, linear_sampler), cluster_pos);
|
|
|
|
uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
|
|
uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
|
|
|
|
for (uint i = 0; i < omni_light_count; i++) {
|
|
uint light_index = cluster_data.indices[omni_light_pointer + i];
|
|
|
|
vec3 light_pos = lights.data[i].position;
|
|
float d = distance(lights.data[i].position, view_pos) * lights.data[i].inv_radius;
|
|
vec3 shadow_attenuation = vec3(1.0);
|
|
|
|
if (d < 1.0) {
|
|
vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
|
|
vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
|
|
|
|
float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
|
|
|
|
vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
|
|
|
|
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
|
|
|
|
if (shadow_color_enabled.a > 0.5) {
|
|
//has shadow
|
|
vec4 v = vec4(view_pos, 1.0);
|
|
|
|
vec4 splane = (lights.data[i].shadow_matrix * v);
|
|
float shadow_len = length(splane.xyz); //need to remember shadow len from here
|
|
|
|
splane.xyz = normalize(splane.xyz);
|
|
vec4 clamp_rect = lights.data[i].atlas_rect;
|
|
|
|
if (splane.z >= 0.0) {
|
|
splane.z += 1.0;
|
|
|
|
clamp_rect.y += clamp_rect.w;
|
|
|
|
} else {
|
|
splane.z = 1.0 - splane.z;
|
|
}
|
|
|
|
splane.xy /= splane.z;
|
|
|
|
splane.xy = splane.xy * 0.5 + 0.5;
|
|
splane.z = shadow_len * lights.data[i].inv_radius;
|
|
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
|
|
splane.w = 1.0; //needed? i think it should be 1 already
|
|
|
|
float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
|
|
float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
|
|
|
|
shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
|
|
}
|
|
total_light += light * attenuation * shadow_attenuation;
|
|
}
|
|
}
|
|
|
|
uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
|
|
uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
|
|
|
|
for (uint i = 0; i < spot_light_count; i++) {
|
|
uint light_index = cluster_data.indices[spot_light_pointer + i];
|
|
|
|
vec3 light_pos = lights.data[i].position;
|
|
vec3 light_rel_vec = lights.data[i].position - view_pos;
|
|
float d = length(light_rel_vec) * lights.data[i].inv_radius;
|
|
vec3 shadow_attenuation = vec3(1.0);
|
|
|
|
if (d < 1.0) {
|
|
vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
|
|
vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
|
|
|
|
float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
|
|
|
|
vec3 spot_dir = lights.data[i].direction;
|
|
vec2 spot_att_angle = unpackHalf2x16(lights.data[i].cone_attenuation_angle);
|
|
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
|
|
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
|
|
attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
|
|
|
|
vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
|
|
|
|
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
|
|
|
|
if (shadow_color_enabled.a > 0.5) {
|
|
//has shadow
|
|
vec4 v = vec4(view_pos, 1.0);
|
|
|
|
vec4 splane = (lights.data[i].shadow_matrix * v);
|
|
splane /= splane.w;
|
|
|
|
float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
|
|
float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
|
|
|
|
shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
|
|
}
|
|
|
|
total_light += light * attenuation * shadow_attenuation;
|
|
}
|
|
}
|
|
|
|
vec3 world_pos = mat3(params.cam_rotation) * view_pos;
|
|
|
|
for (uint i = 0; i < params.max_gi_probes; i++) {
|
|
vec3 position = (gi_probes.data[i].xform * vec4(world_pos, 1.0)).xyz;
|
|
|
|
//this causes corrupted pixels, i have no idea why..
|
|
if (all(bvec2(all(greaterThanEqual(position, vec3(0.0))), all(lessThan(position, gi_probes.data[i].bounds))))) {
|
|
position /= gi_probes.data[i].bounds;
|
|
|
|
vec4 light = vec4(0.0);
|
|
for (uint j = 0; j < gi_probes.data[i].mipmaps; j++) {
|
|
vec4 slight = textureLod(sampler3D(gi_probe_textures[i], linear_sampler_with_mipmaps), position, float(j));
|
|
float a = (1.0 - light.a);
|
|
light += a * slight;
|
|
}
|
|
|
|
light.rgb *= gi_probes.data[i].dynamic_range * params.gi_inject;
|
|
|
|
total_light += light.rgb;
|
|
}
|
|
}
|
|
|
|
//sdfgi
|
|
#ifdef ENABLE_SDFGI
|
|
|
|
{
|
|
float blend = -1.0;
|
|
vec3 ambient_total = vec3(0.0);
|
|
|
|
for (uint i = 0; i < sdfgi.max_cascades; i++) {
|
|
vec3 cascade_pos = (world_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
|
|
|
|
if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
|
|
continue; //skip cascade
|
|
}
|
|
|
|
vec3 base_pos = floor(cascade_pos);
|
|
ivec3 probe_base_pos = ivec3(base_pos);
|
|
|
|
vec4 ambient_accum = vec4(0.0);
|
|
|
|
ivec3 tex_pos = ivec3(probe_base_pos.xy, int(i));
|
|
tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
|
|
|
|
for (uint j = 0; j < 8; j++) {
|
|
ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
|
|
ivec3 probe_posi = probe_base_pos;
|
|
probe_posi += offset;
|
|
|
|
// Compute weight
|
|
|
|
vec3 probe_pos = vec3(probe_posi);
|
|
vec3 probe_to_pos = cascade_pos - probe_pos;
|
|
|
|
vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
|
|
float weight = trilinear.x * trilinear.y * trilinear.z;
|
|
|
|
// Compute lightprobe occlusion
|
|
|
|
if (sdfgi.use_occlusion) {
|
|
ivec3 occ_indexv = abs((sdfgi.cascades[i].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
|
|
vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
|
|
|
|
vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
|
|
occ_pos.z += float(i);
|
|
if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
|
|
occ_pos.x += 1.0;
|
|
}
|
|
|
|
occ_pos *= sdfgi.occlusion_renormalize;
|
|
float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask);
|
|
|
|
weight *= max(occlusion, 0.01);
|
|
}
|
|
|
|
// Compute ambient texture position
|
|
|
|
ivec3 uvw = tex_pos;
|
|
uvw.xy += offset.xy;
|
|
uvw.x += offset.z * sdfgi.probe_axis_size;
|
|
|
|
vec3 ambient = texelFetch(sampler2DArray(sdfgi_ambient_texture, linear_sampler), uvw, 0).rgb;
|
|
|
|
ambient_accum.rgb += ambient * weight;
|
|
ambient_accum.a += weight;
|
|
}
|
|
|
|
if (ambient_accum.a > 0) {
|
|
ambient_accum.rgb /= ambient_accum.a;
|
|
}
|
|
ambient_total = ambient_accum.rgb;
|
|
break;
|
|
}
|
|
|
|
total_light += ambient_total * params.gi_inject;
|
|
}
|
|
|
|
#endif
|
|
|
|
imageStore(density_map, pos, vec4(total_light, total_density));
|
|
#endif
|
|
|
|
#ifdef MODE_FOG
|
|
|
|
ivec3 pos = ivec3(gl_GlobalInvocationID.xy, 0);
|
|
|
|
if (any(greaterThanEqual(pos, params.fog_volume_size))) {
|
|
return; //do not compute
|
|
}
|
|
|
|
vec4 fog_accum = vec4(0.0);
|
|
float prev_z = 0.0;
|
|
|
|
float t = 1.0;
|
|
|
|
for (int i = 0; i < params.fog_volume_size.z; i++) {
|
|
//compute fog position
|
|
ivec3 fog_pos = pos + ivec3(0, 0, i);
|
|
//get fog value
|
|
vec4 fog = imageLoad(density_map, fog_pos);
|
|
|
|
//get depth at cell pos
|
|
float z = get_depth_at_pos(fog_cell_size.z, i);
|
|
//get distance from previous pos
|
|
float d = abs(prev_z - z);
|
|
//compute exinction based on beer's
|
|
float extinction = t * exp(-d * fog.a);
|
|
//compute alpha based on different of extinctions
|
|
float alpha = t - extinction;
|
|
//update extinction
|
|
t = extinction;
|
|
|
|
fog_accum += vec4(fog.rgb * alpha, alpha);
|
|
prev_z = z;
|
|
|
|
vec4 fog_value;
|
|
|
|
if (fog_accum.a > 0.0) {
|
|
fog_value = vec4(fog_accum.rgb / fog_accum.a, 1.0 - t);
|
|
} else {
|
|
fog_value = vec4(0.0);
|
|
}
|
|
|
|
imageStore(fog_map, fog_pos, fog_value);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_FILTER
|
|
|
|
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
|
|
|
|
const float gauss[7] = float[](0.071303, 0.131514, 0.189879, 0.214607, 0.189879, 0.131514, 0.071303);
|
|
|
|
const ivec3 filter_dir[3] = ivec3[](ivec3(1, 0, 0), ivec3(0, 1, 0), ivec3(0, 0, 1));
|
|
ivec3 offset = filter_dir[params.filter_axis];
|
|
|
|
vec4 accum = vec4(0.0);
|
|
for (int i = -3; i <= 3; i++) {
|
|
accum += imageLoad(source_map, clamp(pos + offset * i, ivec3(0), params.fog_volume_size - ivec3(1))) * gauss[i + 3];
|
|
}
|
|
|
|
imageStore(dest_map, pos, accum);
|
|
|
|
#endif
|
|
}
|