virtualx-engine/doc/classes/AABB.xml
Hugo Locurcio b68dd2e189
Add an XML schema for documentation
This makes it easier to spot syntax errors when editing the
class reference. The schema is referenced locally so validation
can still work offline.

Each class XML's schema conformance is also checked on GitHub Actions.
2022-02-15 00:03:31 +01:00

263 lines
10 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="AABB" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Axis-Aligned Bounding Box.
</brief_description>
<description>
[AABB] consists of a position, a size, and several utility functions. It is typically used for fast overlap tests.
It uses floating-point coordinates. The 2D counterpart to [AABB] is [Rect2].
Negative values for [member size] are not supported and will not work for most methods. Use [method abs] to get an AABB with a positive size.
[b]Note:[/b] Unlike [Rect2], [AABB] does not have a variant that uses integer coordinates.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
<link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link>
</tutorials>
<constructors>
<constructor name="AABB">
<return type="AABB" />
<description>
Constructs a default-initialized [AABB] with default (zero) values of [member position] and [member size].
</description>
</constructor>
<constructor name="AABB">
<return type="AABB" />
<argument index="0" name="from" type="AABB" />
<description>
Constructs an [AABB] as a copy of the given [AABB].
</description>
</constructor>
<constructor name="AABB">
<return type="AABB" />
<argument index="0" name="position" type="Vector3" />
<argument index="1" name="size" type="Vector3" />
<description>
Constructs an [AABB] from a position and size.
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="AABB" />
<description>
Returns an AABB with equivalent position and size, modified so that the most-negative corner is the origin and the size is positive.
</description>
</method>
<method name="encloses" qualifiers="const">
<return type="bool" />
<argument index="0" name="with" type="AABB" />
<description>
Returns [code]true[/code] if this [AABB] completely encloses another one.
</description>
</method>
<method name="expand" qualifiers="const">
<return type="AABB" />
<argument index="0" name="to_point" type="Vector3" />
<description>
Returns a copy of this [AABB] expanded to include a given point.
[b]Example:[/b]
[codeblocks]
[gdscript]
# position (-3, 2, 0), size (1, 1, 1)
var box = AABB(Vector3(-3, 2, 0), Vector3(1, 1, 1))
# position (-3, -1, 0), size (3, 4, 2), so we fit both the original AABB and Vector3(0, -1, 2)
var box2 = box.expand(Vector3(0, -1, 2))
[/gdscript]
[csharp]
// position (-3, 2, 0), size (1, 1, 1)
var box = new AABB(new Vector3(-3, 2, 0), new Vector3(1, 1, 1));
// position (-3, -1, 0), size (3, 4, 2), so we fit both the original AABB and Vector3(0, -1, 2)
var box2 = box.Expand(new Vector3(0, -1, 2));
[/csharp]
[/codeblocks]
</description>
</method>
<method name="get_center" qualifiers="const">
<return type="Vector3" />
<description>
Returns the center of the [AABB], which is equal to [member position] + ([member size] / 2).
</description>
</method>
<method name="get_endpoint" qualifiers="const">
<return type="Vector3" />
<argument index="0" name="idx" type="int" />
<description>
Gets the position of the 8 endpoints of the [AABB] in space.
</description>
</method>
<method name="get_longest_axis" qualifiers="const">
<return type="Vector3" />
<description>
Returns the normalized longest axis of the [AABB].
</description>
</method>
<method name="get_longest_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the index of the longest axis of the [AABB] (according to [Vector3]'s [code]AXIS_*[/code] constants).
</description>
</method>
<method name="get_longest_axis_size" qualifiers="const">
<return type="float" />
<description>
Returns the scalar length of the longest axis of the [AABB].
</description>
</method>
<method name="get_shortest_axis" qualifiers="const">
<return type="Vector3" />
<description>
Returns the normalized shortest axis of the [AABB].
</description>
</method>
<method name="get_shortest_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the index of the shortest axis of the [AABB] (according to [Vector3]::AXIS* enum).
</description>
</method>
<method name="get_shortest_axis_size" qualifiers="const">
<return type="float" />
<description>
Returns the scalar length of the shortest axis of the [AABB].
</description>
</method>
<method name="get_support" qualifiers="const">
<return type="Vector3" />
<argument index="0" name="dir" type="Vector3" />
<description>
Returns the support point in a given direction. This is useful for collision detection algorithms.
</description>
</method>
<method name="get_volume" qualifiers="const">
<return type="float" />
<description>
Returns the volume of the [AABB].
</description>
</method>
<method name="grow" qualifiers="const">
<return type="AABB" />
<argument index="0" name="by" type="float" />
<description>
Returns a copy of the [AABB] grown a given amount of units towards all the sides.
</description>
</method>
<method name="has_no_surface" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the [AABB] is empty.
</description>
</method>
<method name="has_no_volume" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the [AABB] is flat or empty.
</description>
</method>
<method name="has_point" qualifiers="const">
<return type="bool" />
<argument index="0" name="point" type="Vector3" />
<description>
Returns [code]true[/code] if the [AABB] contains a point. Points on the faces of the AABB are considered included, though float-point precision errors may impact the accuracy of such checks.
[b]Note:[/b] This method is not reliable for [AABB] with a [i]negative size[/i]. Use [method abs] to get a positive sized equivalent [AABB] to check for contained points.
</description>
</method>
<method name="intersection" qualifiers="const">
<return type="AABB" />
<argument index="0" name="with" type="AABB" />
<description>
Returns the intersection between two [AABB]. An empty AABB (size [code](0, 0, 0)[/code]) is returned on failure.
</description>
</method>
<method name="intersects" qualifiers="const">
<return type="bool" />
<argument index="0" name="with" type="AABB" />
<description>
Returns [code]true[/code] if the [AABB] overlaps with another.
</description>
</method>
<method name="intersects_plane" qualifiers="const">
<return type="bool" />
<argument index="0" name="plane" type="Plane" />
<description>
Returns [code]true[/code] if the [AABB] is on both sides of a plane.
</description>
</method>
<method name="intersects_ray" qualifiers="const">
<return type="Variant" />
<argument index="0" name="from" type="Vector3" />
<argument index="1" name="dir" type="Vector3" />
<description>
</description>
</method>
<method name="intersects_segment" qualifiers="const">
<return type="Variant" />
<argument index="0" name="from" type="Vector3" />
<argument index="1" name="to" type="Vector3" />
<description>
Returns [code]true[/code] if the [AABB] intersects the line segment between [code]from[/code] and [code]to[/code].
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<argument index="0" name="aabb" type="AABB" />
<description>
Returns [code]true[/code] if this [AABB] and [code]aabb[/code] are approximately equal, by calling [method @GlobalScope.is_equal_approx] on each component.
</description>
</method>
<method name="merge" qualifiers="const">
<return type="AABB" />
<argument index="0" name="with" type="AABB" />
<description>
Returns a larger [AABB] that contains both this [AABB] and [code]with[/code].
</description>
</method>
</methods>
<members>
<member name="end" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
Ending corner. This is calculated as [code]position + size[/code]. Setting this value will change the size.
</member>
<member name="position" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
Beginning corner. Typically has values lower than [member end].
</member>
<member name="size" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
Size from [member position] to [member end]. Typically, all components are positive.
If the size is negative, you can use [method abs] to fix it.
</member>
</members>
<operators>
<operator name="operator !=">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator !=">
<return type="bool" />
<argument index="0" name="right" type="AABB" />
<description>
Returns [code]true[/code] if the vectors are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="AABB" />
<argument index="0" name="right" type="Transform3D" />
<description>
Inversely transforms (multiplies) the [AABB] by the given [Transform3D] transformation matrix.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<argument index="0" name="right" type="AABB" />
<description>
Returns [code]true[/code] if the AABBs are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
</operators>
</class>