virtualx-engine/platform/iphone/rasterizer_iphone.cpp

2766 lines
74 KiB
C++

/*************************************************************************/
/* rasterizer_iphone.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifdef IPHONE_ENABLED
#include "rasterizer_iphone.h"
#include "os/os.h"
#include "globals.h"
#include <stdio.h>
_FORCE_INLINE_ static void _gl_load_transform(const Transform& tr) {
GLfloat matrix[16]={ /* build a 16x16 matrix */
tr.basis.elements[0][0],
tr.basis.elements[1][0],
tr.basis.elements[2][0],
0,
tr.basis.elements[0][1],
tr.basis.elements[1][1],
tr.basis.elements[2][1],
0,
tr.basis.elements[0][2],
tr.basis.elements[1][2],
tr.basis.elements[2][2],
0,
tr.origin.x,
tr.origin.y,
tr.origin.z,
1
};
glLoadMatrixf(matrix);
};
_FORCE_INLINE_ static void _gl_mult_transform(const Transform& tr) {
GLfloat matrix[16]={ /* build a 16x16 matrix */
tr.basis.elements[0][0],
tr.basis.elements[1][0],
tr.basis.elements[2][0],
0,
tr.basis.elements[0][1],
tr.basis.elements[1][1],
tr.basis.elements[2][1],
0,
tr.basis.elements[0][2],
tr.basis.elements[1][2],
tr.basis.elements[2][2],
0,
tr.origin.x,
tr.origin.y,
tr.origin.z,
1
};
glMultMatrixf(matrix);
};
static const GLenum prim_type[]={GL_POINTS,GL_LINES,GL_TRIANGLES,GL_TRIANGLE_FAN};
static void _draw_primitive(int p_points, const float *p_vertices, const float *p_normals, const float* p_colors, const float *p_uvs,const Plane *p_tangents=NULL,int p_instanced=1) {
ERR_FAIL_COND(!p_vertices);
ERR_FAIL_COND(p_points <1 || p_points>4);
GLenum type = prim_type[p_points - 1];
if (!p_colors) {
glColor4f(1, 1, 1, 1);
};
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)p_vertices);
if (p_normals) {
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, 0, (GLvoid*)p_normals);
};
if (p_colors) {
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4,GL_FLOAT, 0, p_colors);
};
if (p_uvs) {
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, p_uvs);
};
glDrawArrays( type, 0, p_points);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
};
/* TEXTURE API */
static Image _get_gl_image_and_format(const Image& p_image, Image::Format p_format, uint32_t p_flags,GLenum& r_gl_format,int &r_gl_components,bool &r_has_alpha_cache) {
r_has_alpha_cache=false;
Image image=p_image;
switch(p_format) {
case Image::FORMAT_L8: {
r_gl_components=1;
r_gl_format=GL_LUMINANCE;
} break;
case Image::FORMAT_INTENSITY: {
image.convert(Image::FORMAT_RGBA8);
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_LA8: {
image.convert(Image::FORMAT_RGBA8);
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_INDEXED: {
image.convert(Image::FORMAT_RGB8);
r_gl_components=3;
r_gl_format=GL_RGB;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
image.convert(Image::FORMAT_RGBA8);
r_gl_components=4;
r_gl_format=GL_RGB;
r_has_alpha_cache=true;
} break;
case Image::FORMAT_RGB8: {
r_gl_components=3; r_gl_format=GL_RGB;
} break;
case Image::FORMAT_RGBA8: {
r_gl_components=4;
r_gl_format=GL_RGBA;
r_has_alpha_cache=true;
} break;
default: {
ERR_FAIL_V(Image());
}
}
return image;
}
RID RasterizerIPhone::texture_create() {
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture,RID());
glGenTextures(1, &texture->tex_id);
texture->active=false;
return texture_owner.make_rid( texture );
}
void RasterizerIPhone::texture_allocate(RID p_texture,int p_width, int p_height,Image::Format p_format,uint32_t p_flags) {
bool has_alpha_cache;
int components;
GLenum format;
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
texture->width=p_width;
texture->height=p_height;
texture->format=p_format;
texture->flags=p_flags;
//texture->target = (p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
texture->target = GL_TEXTURE_2D;
_get_gl_image_and_format(Image(),texture->format,texture->flags,format,components,has_alpha_cache);
texture->gl_components_cache=components;
texture->gl_format_cache=format;
texture->format_has_alpha=has_alpha_cache;
texture->has_alpha=false; //by default it doesn't have alpha unless something with alpha is blitteds
glBindTexture(texture->target, texture->tex_id);
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) {
glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE );
}
if (texture->target==GL_TEXTURE_2D) {
glTexImage2D(texture->target, 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE,NULL);
}
/*
else {
//cubemappor
for (int i=0;i<6;i++)
glTexImage2D(_cube_side_enum[i], 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE,NULL);
}
*/
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR); // Linear Filtering
if (texture->flags&VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) {
//glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR);
};
}
if (texture->flags&VS::TEXTURE_FLAG_REPEAT /* && texture->target != GL_TEXTURE_CUBE_MAP*/) {
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
}
texture->active=true;
}
void RasterizerIPhone::texture_blit_rect(RID p_texture,int p_x,int p_y, const Image& p_image,VS::CubeMapSide p_cube_side) {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->format != p_image.get_format() );
int components;
GLenum format;
bool alpha;
Image img = _get_gl_image_and_format(p_image, p_image.get_format(),texture->flags,format,components,alpha);
if (img.detect_alpha())
texture->has_alpha=true;
GLenum blit_target = GL_TEXTURE_2D; //(texture->target == GL_TEXTURE_CUBE_MAP)?_cube_side_enum[p_cube_side]:GL_TEXTURE_2D;
PoolVector<uint8_t>::Read read = img.get_data().read();
glBindTexture(texture->target, texture->tex_id);
glTexSubImage2D( blit_target, 0, p_x,p_y,img.get_width(),img.get_height(),format,GL_UNSIGNED_BYTE,read.ptr() );
//glGenerateMipmap( texture->target );
}
Image RasterizerIPhone::texture_get_rect(RID p_texture,int p_x,int p_y,int p_width, int p_height,VS::CubeMapSide p_cube_side) const {
return Image();
}
void RasterizerIPhone::texture_set_flags(RID p_texture,uint32_t p_flags) {
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
glBindTexture(texture->target, texture->tex_id);
uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP;
texture->flags=p_flags|cube; // can't remove a cube from being a cube
if (texture->flags&VS::TEXTURE_FLAG_REPEAT /*&& texture->target != GL_TEXTURE_CUBE_MAP*/) {
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
}
if (texture->flags&VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering
if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS)
glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // nearest
}
}
uint32_t RasterizerIPhone::texture_get_flags(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->flags;
}
Image::Format RasterizerIPhone::texture_get_format(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,Image::FORMAT_L8);
return texture->format;
}
uint32_t RasterizerIPhone::texture_get_width(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->width;
}
uint32_t RasterizerIPhone::texture_get_height(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->height;
}
bool RasterizerIPhone::texture_has_alpha(RID p_texture) const {
Texture * texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture,0);
return texture->has_alpha;
}
/* SHADER API */
RID RasterizerIPhone::shader_create() {
return RID();
}
void RasterizerIPhone::shader_node_add(RID p_shader,VS::ShaderNodeType p_type,int p_id) {
}
void RasterizerIPhone::shader_node_remove(RID p_shader,int p_id) {
}
void RasterizerIPhone::shader_node_change_type(RID p_shader, int p_id, VS::ShaderNodeType p_type) {
}
void RasterizerIPhone::shader_node_set_param(RID p_shader, int p_id, const Variant& p_value) {
}
void RasterizerIPhone::shader_get_node_list(RID p_shader,List<int> *p_node_list) const {
}
VS::ShaderNodeType RasterizerIPhone::shader_node_get_type(RID p_shader,int p_id) const {
return VS::NODE_ADD;
}
Variant RasterizerIPhone::shader_node_get_param(RID p_shader,int p_id) const {
return Variant();
}
void RasterizerIPhone::shader_connect(RID p_shader,int p_src_id,int p_src_slot, int p_dst_id,int p_dst_slot) {
}
bool RasterizerIPhone::shader_is_connected(RID p_shader,int p_src_id,int p_src_slot, int p_dst_id,int p_dst_slot) const {
return false;
}
void RasterizerIPhone::shader_disconnect(RID p_shader,int p_src_id,int p_src_slot, int p_dst_id,int p_dst_slot) {
}
void RasterizerIPhone::shader_get_connections(RID p_shader,List<VS::ShaderConnection> *p_connections) const {
}
void RasterizerIPhone::shader_clear(RID p_shader) {
}
/* COMMON MATERIAL API */
void RasterizerIPhone::material_set_param(RID p_material, const StringName& p_param, const Variant& p_value) {
}
Variant RasterizerIPhone::material_get_param(RID p_material, const StringName& p_param) const {
return Variant();
}
void RasterizerIPhone::material_get_param_list(RID p_material, List<String> *p_param_list) const {
}
void RasterizerIPhone::material_set_flag(RID p_material, VS::MaterialFlag p_flag,bool p_enabled) {
}
bool RasterizerIPhone::material_get_flag(RID p_material,VS::MaterialFlag p_flag) const {
return false;
}
void RasterizerIPhone::material_set_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) {
}
VS::MaterialBlendMode RasterizerIPhone::material_get_blend_mode(RID p_material) const {
return VS::MATERIAL_BLEND_MODE_ADD;
}
void RasterizerIPhone::material_set_line_width(RID p_material,float p_line_width) {
}
float RasterizerIPhone::material_get_line_width(RID p_material) const {
return 0;
}
/* FIXED MATERIAL */
RID RasterizerIPhone::material_create() {
return material_owner.make_rid( memnew( Material ) );
}
void RasterizerIPhone::fixed_material_set_parameter(RID p_material, VS::FixedSpatialMaterialParam p_parameter, const Variant& p_value) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->parameters[p_parameter] = p_value;
}
Variant RasterizerIPhone::fixed_material_get_parameter(RID p_material,VS::FixedSpatialMaterialParam p_parameter) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, Variant());
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant());
return m->parameters[p_parameter];
}
void RasterizerIPhone::fixed_material_set_texture(RID p_material,VS::FixedSpatialMaterialParam p_parameter, RID p_texture) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->textures[p_parameter] = p_texture;
}
RID RasterizerIPhone::fixed_material_get_texture(RID p_material,VS::FixedSpatialMaterialParam p_parameter) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, RID());
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant());
return m->textures[p_parameter];
}
void RasterizerIPhone::fixed_material_set_detail_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
m->detail_blend_mode = p_mode;
}
VS::MaterialBlendMode RasterizerIPhone::fixed_material_get_detail_blend_mode(RID p_material) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, VS::MATERIAL_BLEND_MODE_MIX);
return m->detail_blend_mode;
}
void RasterizerIPhone::fixed_material_set_texcoord_mode(RID p_material,VS::FixedSpatialMaterialParam p_parameter, VS::FixedSpatialMaterialTexCoordMode p_mode) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->texcoord_mode[p_parameter] = p_mode;
}
VS::FixedSpatialMaterialTexCoordMode RasterizerIPhone::fixed_material_get_texcoord_mode(RID p_material,VS::FixedSpatialMaterialParam p_parameter) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXCOORD_TEXGEN);
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, VS::FIXED_MATERIAL_TEXCOORD_UV);
return m->texcoord_mode[p_parameter]; // for now
}
void RasterizerIPhone::fixed_material_set_texgen_mode(RID p_material,VS::FixedSpatialMaterialTexGenMode p_mode) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
m->texgen_mode = p_mode;
};
VS::FixedSpatialMaterialTexGenMode RasterizerIPhone::fixed_material_get_texgen_mode(RID p_material) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXGEN_SPHERE);
return m->texgen_mode;
};
void RasterizerIPhone::fixed_material_set_uv_transform(RID p_material,const Transform& p_transform) {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND(!m);
m->uv_transform = p_transform;
}
Transform RasterizerIPhone::fixed_material_get_uv_transform(RID p_material) const {
Material *m=material_owner.get( p_material );
ERR_FAIL_COND_V(!m, Transform());
return m->uv_transform;
}
/* SHADER MATERIAL */
RID RasterizerIPhone::shader_material_create() const {
return RID();
}
void RasterizerIPhone::shader_material_set_vertex_shader(RID p_material,RID p_shader,bool p_owned) {
}
RID RasterizerIPhone::shader_material_get_vertex_shader(RID p_material) const {
return RID();
}
void RasterizerIPhone::shader_material_set_fragment_shader(RID p_material,RID p_shader,bool p_owned) {
}
RID RasterizerIPhone::shader_material_get_fragment_shader(RID p_material) const {
return RID();
}
/* MESH API */
RID RasterizerIPhone::mesh_create() {
return mesh_owner.make_rid( memnew( Mesh ) );
}
void RasterizerIPhone::mesh_add_surface(RID p_mesh,VS::PrimitiveType p_primitive,uint32_t p_format,int p_array_len,int p_index_array_len) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND((p_format&VS::ARRAY_FORMAT_VERTEX)==0); // mandatory
ERR_FAIL_COND( p_array_len<=0 );
ERR_FAIL_COND( p_index_array_len==0 );
ERR_FAIL_INDEX( p_primitive, VS::PRIMITIVE_MAX );
Surface *surface = memnew( Surface );
ERR_FAIL_COND( !surface );
int total_elem_size=0;
bool use_VBO=true; //glGenBuffersARB!=NULL; // TODO detect if it's in there
if (p_format&VS::ARRAY_FORMAT_WEIGHTS) {
use_VBO=false;
}
for (int i=0;i<VS::ARRAY_MAX;i++) {
Surface::ArrayData&ad=surface->array[i];
ad.size=0;
ad.configured=false;
ad.ofs=0;
int elem_size=0;
int elem_count=0;
if (!(p_format&(1<<i))) // no array
continue;
switch(i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL: {
elem_size=3*sizeof(GLfloat); // vertex
elem_count=3;
} break;
case VS::ARRAY_TANGENT: {
elem_size=4*sizeof(GLfloat); // vertex
elem_count=4;
} break;
case VS::ARRAY_COLOR: {
elem_size=4; /* RGBA */
elem_count=4;
} break;
case VS::ARRAY_TEX_UV: {
elem_size=2*sizeof(GLfloat);
elem_count=2;
} break;
case VS::ARRAY_WEIGHTS:
case VS::ARRAY_BONES: {
elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLfloat);
elem_count=VS::ARRAY_WEIGHTS_SIZE;
} break;
case VS::ARRAY_INDEX: {
if (p_index_array_len<=0) {
ERR_PRINT("p_index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 8 or 16 bits indices */
if (p_index_array_len>(1<<8)) {
elem_size=2;
} else {
elem_size=1;
}
if (use_VBO) {
glGenBuffers(1,&surface->index_id);
ERR_FAIL_COND(surface->index_id==0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,p_index_array_len*elem_size,NULL,GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind
} else {
surface->index_array_local = (uint8_t*)memalloc(p_index_array_len*elem_size);
};
surface->index_array_len=p_index_array_len; // only way it can exist
ad.ofs=0;
ad.size=elem_size;
ad.configured=false;
ad.components=1;
continue;
} break;
default: {
ERR_FAIL( );
}
}
ad.ofs=total_elem_size;
ad.size=elem_size;
ad.components=elem_count;
total_elem_size+=elem_size;
ad.configured=false;
}
surface->stride=total_elem_size;
surface->array_len=p_array_len;
surface->format=p_format;
surface->primitive=p_primitive;
/* bind the bigass buffers */
if (use_VBO) {
glGenBuffers(1,&surface->vertex_id);
ERR_FAIL_COND(surface->vertex_id==0);
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
glBufferData(GL_ARRAY_BUFFER,surface->array_len*surface->stride,NULL,GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
} else {
surface->array_local = (uint8_t*)memalloc(surface->array_len*surface->stride);
};
mesh->surfaces.push_back(surface);
}
Error RasterizerIPhone::mesh_surface_set_array(RID p_mesh, int p_surface,VS::ArrayType p_type,const Variant& p_array) {
ERR_FAIL_INDEX_V(p_type, VS::ARRAY_MAX, ERR_INVALID_PARAMETER );
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,ERR_INVALID_PARAMETER);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), ERR_INVALID_PARAMETER );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, ERR_INVALID_PARAMETER );
ERR_FAIL_COND_V( surface->array[p_type].size==0, ERR_INVALID_PARAMETER );
Surface::ArrayData &a=surface->array[p_type];
switch(p_type) {
case VS::ARRAY_INDEX: {
ERR_FAIL_COND_V( surface->index_array_len<=0, ERR_INVALID_DATA );
ERR_FAIL_COND_V( p_array.get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER );
PoolVector<int> indices = p_array;
ERR_FAIL_COND_V( indices.size() == 0, ERR_INVALID_PARAMETER );
ERR_FAIL_COND_V( indices.size() != surface->index_array_len, ERR_INVALID_PARAMETER );
/* determine wether using 16 or 32 bits indices */
if (surface->index_array_local == 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id);
};
PoolVector<int>::Read read = indices.read();
const int *src=read.ptr();
for (int i=0;i<surface->index_array_len;i++) {
if (surface->index_array_local) {
if (a.size<=(1<<8)) {
uint8_t v=src[i];
copymem(&surface->array_local[i*a.size], &v, a.size);
} else {
uint16_t v=src[i];
copymem(&surface->array_local[i*a.size], &v, a.size);
}
} else {
if (a.size<=(1<<8)) {
uint8_t v=src[i];
glBufferSubData( GL_ELEMENT_ARRAY_BUFFER, i*a.size, a.size, &v );
} else {
uint16_t v=src[i];
glBufferSubData( GL_ELEMENT_ARRAY_BUFFER, i*a.size, a.size, &v );
}
};
}
if (surface->index_array_local == 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
};
a.configured=true;
return OK;
} break;
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL: {
ERR_FAIL_COND_V( p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER );
PoolVector<Vector3> array = p_array;
ERR_FAIL_COND_V( array.size() != surface->array_len, ERR_INVALID_PARAMETER );
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
};
PoolVector<Vector3>::Read read = array.read();
const Vector3* src=read.ptr();
// setting vertices means regenerating the AABB
if (p_type==VS::ARRAY_VERTEX)
surface->aabb=AABB();
for (int i=0;i<surface->array_len;i++) {
GLfloat vector[3]={ src[i].x, src[i].y, src[i].z };
if (surface->array_local == 0) {
glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , vector );
} else {
copymem(&surface->array_local[a.ofs+i*surface->stride], vector, a.size);
}
if (p_type==VS::ARRAY_VERTEX) {
if (i==0) {
surface->aabb=AABB(src[i],Vector3());
} else {
surface->aabb.expand_to( src[i] );
}
}
}
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER,0);
};
} break;
case VS::ARRAY_TANGENT: {
ERR_FAIL_COND_V( p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
PoolVector<real_t> array = p_array;
ERR_FAIL_COND_V( array.size() != surface->array_len*4, ERR_INVALID_PARAMETER );
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
};
PoolVector<real_t>::Read read = array.read();
const real_t* src = read.ptr();
for (int i=0;i<surface->array_len;i++) {
GLfloat xyzw[4]={
src[i*4+0],
src[i*4+1],
src[i*4+2],
src[i*4+3]
};
if (surface->array_local == 0) {
glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , xyzw );
} else {
copymem(&surface->array_local[a.ofs+i*surface->stride], xyzw, a.size);
};
}
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER,0);
};
} break;
case VS::ARRAY_COLOR: {
ERR_FAIL_COND_V( p_array.get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER );
PoolVector<Color> array = p_array;
ERR_FAIL_COND_V( array.size() != surface->array_len, ERR_INVALID_PARAMETER );
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
PoolVector<Color>::Read read = array.read();
const Color* src = read.ptr();
surface->has_alpha_cache=false;
for (int i=0;i<surface->array_len;i++) {
if (src[i].a<0.98) // tolerate alpha a bit, for crappy exporters
surface->has_alpha_cache=true;
uint8_t colors[4]={ src[i].r * 255.0 , src[i].g * 255.0, src[i].b * 255.0, src[i].a * 255.0 };
// I'm not sure if this is correct, endianness-wise, i should re-check the GL spec
if (surface->array_local == 0)
glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , colors );
else
copymem(&surface->array_local[a.ofs+i*surface->stride], colors, a.size);
}
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER,0);
} break;
case VS::ARRAY_TEX_UV: {
ERR_FAIL_COND_V( p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER );
PoolVector<Vector3> array = p_array;
ERR_FAIL_COND_V( array.size() != surface->array_len , ERR_INVALID_PARAMETER);
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
PoolVector<Vector3>::Read read = array.read();
const Vector3 * src=read.ptr();
for (int i=0;i<surface->array_len;i++) {
GLfloat uv[2]={ src[i].x , src[i].y };
if (surface->array_local == 0)
glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , uv );
else
copymem(&surface->array_local[a.ofs+i*surface->stride], uv, a.size);
}
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER,0);
} break;
case VS::ARRAY_BONES:
case VS::ARRAY_WEIGHTS: {
ERR_FAIL_COND_V( p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER );
PoolVector<real_t> array = p_array;
ERR_FAIL_COND_V( array.size() != surface->array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER );
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id);
PoolVector<real_t>::Read read = array.read();
const real_t * src = read.ptr();
for (int i=0;i<surface->array_len;i++) {
GLfloat data[VS::ARRAY_WEIGHTS_SIZE];
for (int j=0;j<VS::ARRAY_WEIGHTS_SIZE;j++)
data[j]=src[i*VS::ARRAY_WEIGHTS_SIZE+j];
if (surface->array_local == 0)
glBufferSubData( GL_ARRAY_BUFFER, a.ofs+i*surface->stride, a.size , data );
else
copymem(&surface->array_local[a.ofs+i*surface->stride], data, a.size);
}
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER,0);
} break;
default: { ERR_FAIL_V(ERR_INVALID_PARAMETER);}
}
a.configured=true;
return OK;
}
Variant RasterizerIPhone::mesh_surface_get_array(RID p_mesh, int p_surface,VS::ArrayType p_type) const {
return Variant();
}
void RasterizerIPhone::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material,bool p_owned) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND( !surface);
if (surface->material_owned && surface->material.is_valid())
free(surface->material);
surface->material_owned=p_owned;
surface->material=p_material;
}
RID RasterizerIPhone::mesh_surface_get_material(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,RID());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID() );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, RID() );
return surface->material;
}
int RasterizerIPhone::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, -1 );
return surface->array_len;
}
int RasterizerIPhone::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, -1 );
return surface->index_array_len;
}
uint32_t RasterizerIPhone::mesh_surface_get_format(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0 );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, 0 );
return surface->format;
}
VS::PrimitiveType RasterizerIPhone::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,VS::PRIMITIVE_POINTS);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS );
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V( !surface, VS::PRIMITIVE_POINTS );
return surface->primitive;
}
void RasterizerIPhone::mesh_erase_surface(RID p_mesh,int p_index) {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_index, mesh->surfaces.size() );
Surface *surface = mesh->surfaces[p_index];
ERR_FAIL_COND( !surface);
memdelete( mesh->surfaces[p_index] );
mesh->surfaces.remove(p_index);
}
int RasterizerIPhone::mesh_get_surface_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,-1);
return mesh->surfaces.size();
}
AABB RasterizerIPhone::mesh_get_aabb(RID p_mesh) const {
Mesh *mesh = mesh_owner.get( p_mesh );
ERR_FAIL_COND_V(!mesh,AABB());
AABB aabb;
for (int i=0;i<mesh->surfaces.size();i++) {
if (i==0)
aabb=mesh->surfaces[i]->aabb;
else
aabb.merge_with(mesh->surfaces[i]->aabb);
}
return aabb;
}
/* MULTIMESH API */
RID RasterizerIPhone::multimesh_create() {
return RID();
}
void RasterizerIPhone::multimesh_set_instance_count(RID p_multimesh,int p_count) {
}
int RasterizerIPhone::multimesh_get_instance_count(RID p_multimesh) const {
return 0;
}
void RasterizerIPhone::multimesh_set_mesh(RID p_multimesh,RID p_mesh) {
}
void RasterizerIPhone::multimesh_set_aabb(RID p_multimesh,const AABB& p_aabb) {
}
void RasterizerIPhone::multimesh_instance_set_transform(RID p_multimesh,int p_index,const Transform& p_transform) {
}
void RasterizerIPhone::multimesh_instance_set_color(RID p_multimesh,int p_index,const Color& p_color) {
}
RID RasterizerIPhone::multimesh_get_mesh(RID p_multimesh) const {
return RID();
}
AABB RasterizerIPhone::multimesh_get_aabb(RID p_multimesh) const {
return AABB();
}
Transform RasterizerIPhone::multimesh_instance_get_transform(RID p_multimesh,int p_index) const {
return Transform();
}
Color RasterizerIPhone::multimesh_instance_get_color(RID p_multimesh,int p_index) const {
return Color();
}
/* POLY API */
RID RasterizerIPhone::poly_create() {
return RID();
}
void RasterizerIPhone::poly_set_material(RID p_poly, RID p_material,bool p_owned) {
}
void RasterizerIPhone::poly_add_primitive(RID p_poly, const Vector<Vector3>& p_points,const Vector<Vector3>& p_normals,const Vector<Color>& p_colors,const Vector<Vector3>& p_uvs) {
}
void RasterizerIPhone::poly_clear(RID p_poly) {
}
AABB RasterizerIPhone::poly_get_aabb(RID p_poly) const {
return AABB();
}
/* PARTICLES API */
RID RasterizerIPhone::particles_create() {
return RID();
}
void RasterizerIPhone::particles_set_amount(RID p_particles, int p_amount) {
}
int RasterizerIPhone::particles_get_amount(RID p_particles) const {
return 0;
}
void RasterizerIPhone::particles_set_emitting(RID p_particles, bool p_emitting) {
}
bool RasterizerIPhone::particles_is_emitting(RID p_particles) const {
return false;
}
void RasterizerIPhone::particles_set_visibility_aabb(RID p_particles, const AABB& p_visibility) {
}
AABB RasterizerIPhone::particles_get_visibility_aabb(RID p_particles) const {
return AABB();
}
void RasterizerIPhone::particles_set_emission_half_extents(RID p_particles, const Vector3& p_half_extents) {
}
Vector3 RasterizerIPhone::particles_get_emission_half_extents(RID p_particles) const {
return Vector3();
}
void RasterizerIPhone::particles_set_gravity_normal(RID p_particles, const Vector3& p_normal) {
}
Vector3 RasterizerIPhone::particles_get_gravity_normal(RID p_particles) const {
return Vector3();
}
void RasterizerIPhone::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable,float p_value) {
}
float RasterizerIPhone::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const {
return 0;
}
void RasterizerIPhone::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable,float p_randomness) {
}
float RasterizerIPhone::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const {
return 0;
}
void RasterizerIPhone::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) {
}
float RasterizerIPhone::particles_get_color_phase_pos(RID p_particles, int p_phase) const {
return 0;
}
void RasterizerIPhone::particles_set_color_phases(RID p_particles, int p_phases) {
}
int RasterizerIPhone::particles_get_color_phases(RID p_particles) const {
return 0;
}
void RasterizerIPhone::particles_set_color_phase_color(RID p_particles, int p_phase, const Color& p_color) {
}
Color RasterizerIPhone::particles_get_color_phase_color(RID p_particles, int p_phase) const {
return Color();
}
void RasterizerIPhone::particles_set_attractors(RID p_particles, int p_attractors) {
}
int RasterizerIPhone::particles_get_attractors(RID p_particles) const {
return 0;
}
void RasterizerIPhone::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3& p_pos) {
}
Vector3 RasterizerIPhone::particles_get_attractor_pos(RID p_particles,int p_attractor) const {
return Vector3();
}
void RasterizerIPhone::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) {
}
float RasterizerIPhone::particles_get_attractor_strength(RID p_particles,int p_attractor) const {
return 0;
}
void RasterizerIPhone::particles_set_material(RID p_particles, RID p_material,bool p_owned) {
}
RID RasterizerIPhone::particles_get_material(RID p_particles) const {
return RID();
}
AABB RasterizerIPhone::particles_get_aabb(RID p_particles) const {
return AABB();
}
/* BEAM API */
RID RasterizerIPhone::beam_create() {
return RID();
}
void RasterizerIPhone::beam_set_point_count(RID p_beam, int p_count) {
}
int RasterizerIPhone::beam_get_point_count(RID p_beam) const {
return 0;
}
void RasterizerIPhone::beam_clear(RID p_beam) {
}
void RasterizerIPhone::beam_set_point(RID p_beam,int p_point,Vector3& p_pos) {
}
Vector3 RasterizerIPhone::beam_get_point(RID p_beam,int p_point) const {
return Vector3();
}
void RasterizerIPhone::beam_set_primitive(RID p_beam,VS::BeamPrimitive p_primitive) {
}
VS::BeamPrimitive RasterizerIPhone::beam_get_primitive(RID p_beam) const {
return VS::BEAM_CUBIC;
}
void RasterizerIPhone::beam_set_material(RID p_beam, RID p_material) {
}
RID RasterizerIPhone::beam_get_material(RID p_beam) const {
return RID();
}
AABB RasterizerIPhone::beam_get_aabb(RID p_particles) const {
return AABB();
}
/* SKELETON API */
RID RasterizerIPhone::skeleton_create() {
Skeleton *skeleton = memnew( Skeleton );
ERR_FAIL_COND_V(!skeleton,RID());
return skeleton_owner.make_rid( skeleton );
}
void RasterizerIPhone::skeleton_resize(RID p_skeleton,int p_bones) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND(!skeleton);
if (p_bones == skeleton->bones.size()) {
return;
};
ERR_FAIL_COND( p_bones<0 || p_bones>256);
skeleton->bones.resize(p_bones);
}
int RasterizerIPhone::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND_V(!skeleton, -1);
return skeleton->bones.size();
}
void RasterizerIPhone::skeleton_bone_set_transform(RID p_skeleton,int p_bone, const Transform& p_transform) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX( p_bone, skeleton->bones.size() );
skeleton->bones[p_bone] = p_transform;
}
Transform RasterizerIPhone::skeleton_bone_get_transform(RID p_skeleton,int p_bone) {
Skeleton *skeleton = skeleton_owner.get( p_skeleton );
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V( p_bone, skeleton->bones.size(), Transform() );
// something
return skeleton->bones[p_bone];
}
/* LIGHT API */
RID RasterizerIPhone::light_create(VS::LightType p_type) {
Light *light = memnew( Light );
light->type=p_type;
return light_owner.make_rid(light);
}
VS::LightType RasterizerIPhone::light_get_type(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,VS::LIGHT_OMNI);
return light->type;
}
void RasterizerIPhone::light_set_color(RID p_light,VS::LightColor p_type, const Color& p_color) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX( p_type, 3 );
light->colors[p_type]=p_color;
}
Color RasterizerIPhone::light_get_color(RID p_light,VS::LightColor p_type) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, Color());
ERR_FAIL_INDEX_V( p_type, 3, Color() );
return light->colors[p_type];
}
void RasterizerIPhone::light_set_shadow(RID p_light,bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->shadow_enabled=p_enabled;
}
bool RasterizerIPhone::light_has_shadow(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,false);
return light->shadow_enabled;
}
void RasterizerIPhone::light_set_volumetric(RID p_light,bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->volumetric_enabled=p_enabled;
}
bool RasterizerIPhone::light_is_volumetric(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,false);
return light->volumetric_enabled;
}
void RasterizerIPhone::light_set_projector(RID p_light,RID p_texture) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->projector=p_texture;
}
RID RasterizerIPhone::light_get_projector(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light,RID());
return light->projector;
}
void RasterizerIPhone::light_set_var(RID p_light, VS::LightParam p_var, float p_value) {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX( p_var, VS::LIGHT_PARAM_MAX );
light->vars[p_var]=p_value;
}
float RasterizerIPhone::light_get_var(RID p_light, VS::LightParam p_var) const {
Light * light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,0);
ERR_FAIL_INDEX_V( p_var, VS::LIGHT_PARAM_MAX,0 );
return light->vars[p_var];
}
AABB RasterizerIPhone::light_get_aabb(RID p_light) const {
Light *light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light,AABB());
switch( light->type ) {
case VS::LIGHT_SPOT: {
float len=light->vars[VS::LIGHT_PARAM_RADIUS];
float size=Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE]))*len;
return AABB( Vector3( -size,-size,-len ), Vector3( size*2, size*2, len ) );
} break;
case VS::LIGHT_OMNI: {
float r = light->vars[VS::LIGHT_PARAM_RADIUS];
return AABB( -Vector3(r,r,r), Vector3(r,r,r)*2 );
} break;
case VS::LIGHT_DIRECTIONAL: {
return AABB();
} break;
default: {}
}
ERR_FAIL_V( AABB() );
}
RID RasterizerIPhone::light_instance_create(RID p_light) {
Light *light = light_owner.get( p_light );
ERR_FAIL_COND_V(!light, RID());
LightInstance *light_instance = memnew( LightInstance );
light_instance->light=p_light;
light_instance->base=light;
light_instance->last_pass=0;
return light_instance_owner.make_rid( light_instance );
}
void RasterizerIPhone::light_instance_set_transform(RID p_light_instance,const Transform& p_transform) {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND(!lighti);
lighti->transform=p_transform;
}
void RasterizerIPhone::light_instance_set_active_hint(RID p_light_instance) {
LightInstance *lighti = light_instance_owner.get( p_light_instance );
ERR_FAIL_COND(!lighti);
lighti->last_pass=frame;
}
bool RasterizerIPhone::light_instance_has_shadow(RID p_light_instance) const {
return false;
}
bool RasterizerIPhone::light_instance_assign_shadow(RID p_light_instance) {
return false;
}
Rasterizer::ShadowType RasterizerIPhone::light_instance_get_shadow_type(RID p_light_instance) const {
return Rasterizer::SHADOW_CUBE;
}
int RasterizerIPhone::light_instance_get_shadow_passes(RID p_light_instance) const {
return 0;
}
void RasterizerIPhone::light_instance_set_pssm_split_info(RID p_light_instance, int p_split, float p_near,float p_far, const CameraMatrix& p_camera, const Transform& p_transform) {
}
/* PARTICLES INSTANCE */
RID RasterizerIPhone::particles_instance_create(RID p_particles) {
return RID();
}
void RasterizerIPhone::particles_instance_set_transform(RID p_particles_instance,const Transform& p_transform) {
}
/* RENDER API */
/* all calls (inside begin/end shadow) are always warranted to be in the following order: */
static GLfloat rtri; // Angle For The Triangle ( NEW )
static GLfloat rquad; // Angle For The Quad ( NEW )
void RasterizerIPhone::begin_frame() {
window_size = Size2( OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height );
double time = (OS::get_singleton()->get_ticks_usec()/1000); // get msec
time/=1000.0; // make secs
time_delta=time-last_time;
last_time=time;
frame++;
glClearColor(0,0,1,1);
glClear(GL_COLOR_BUFFER_BIT);
/* nehe ?*/
#if 0
glViewport(0,0,window_size.width,window_size.height); // Reset The Current Viewport
glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix
// Calculate The Aspect Ratio Of The Window
gluPerspective(45.0f,(GLfloat)window_size.width/(GLfloat)window_size.height,0.1f,100.0f);
glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
glLoadIdentity(); // Reset The Modelview Matrix
glShadeModel(GL_SMOOTH); // Enable Smooth Shading
glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
glClearDepth(1.0f); // Depth Buffer Setup
glEnable(GL_DEPTH_TEST); // Enables Depth Testing
glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
glLoadIdentity(); // Reset The Current Modelview Matrix
glTranslatef(-1.5f,0.0f,-6.0f); // Move Left 1.5 Units And Into The Screen 6.0
glRotatef(rtri,0.0f,1.0f,0.0f); // Rotate The Triangle On The Y axis ( NEW )
glBegin(GL_TRIANGLES); // Start Drawing A Triangle
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Front)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f(-1.0f,-1.0f, 1.0f); // Left Of Triangle (Front)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f( 1.0f,-1.0f, 1.0f); // Right Of Triangle (Front)
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Right)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f( 1.0f,-1.0f, 1.0f); // Left Of Triangle (Right)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f( 1.0f,-1.0f, -1.0f); // Right Of Triangle (Right)
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Back)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f( 1.0f,-1.0f, -1.0f); // Left Of Triangle (Back)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f(-1.0f,-1.0f, -1.0f); // Right Of Triangle (Back)
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Left)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f(-1.0f,-1.0f,-1.0f); // Left Of Triangle (Left)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f(-1.0f,-1.0f, 1.0f); // Right Of Triangle (Left)
glEnd(); // Done Drawing The Pyramid
glLoadIdentity(); // Reset The Current Modelview Matrix
glTranslatef(1.5f,0.0f,-7.0f); // Move Right 1.5 Units And Into The Screen 7.0
glRotatef(rquad,1.0f,1.0f,1.0f); // Rotate The Quad On The X axis ( NEW )
glBegin(GL_QUADS); // Draw A Quad
glColor3f(0.0f,1.0f,0.0f); // Set The Color To Green
glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Top)
glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Top)
glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Quad (Top)
glVertex3f( 1.0f, 1.0f, 1.0f); // Bottom Right Of The Quad (Top)
glColor3f(1.0f,0.5f,0.0f); // Set The Color To Orange
glVertex3f( 1.0f,-1.0f, 1.0f); // Top Right Of The Quad (Bottom)
glVertex3f(-1.0f,-1.0f, 1.0f); // Top Left Of The Quad (Bottom)
glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Bottom)
glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Bottom)
glColor3f(1.0f,0.0f,0.0f); // Set The Color To Red
glVertex3f( 1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Front)
glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Front)
glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Front)
glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Front)
glColor3f(1.0f,1.0f,0.0f); // Set The Color To Yellow
glVertex3f( 1.0f,-1.0f,-1.0f); // Top Right Of The Quad (Back)
glVertex3f(-1.0f,-1.0f,-1.0f); // Top Left Of The Quad (Back)
glVertex3f(-1.0f, 1.0f,-1.0f); // Bottom Left Of The Quad (Back)
glVertex3f( 1.0f, 1.0f,-1.0f); // Bottom Right Of The Quad (Back)
glColor3f(0.0f,0.0f,1.0f); // Set The Color To Blue
glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Left)
glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Left)
glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Left)
glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Left)
glColor3f(1.0f,0.0f,1.0f); // Set The Color To Violet
glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Right)
glVertex3f( 1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Right)
glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Right)
glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Right)
glEnd(); // Done Drawing The Quad
rtri+=0.2f; // Increase The Rotation Variable For The Triangle ( NEW )
rquad-=0.15f; // Decrease The Rotation Variable For The Quad ( NEW )
#endif
}
void RasterizerIPhone::set_viewport(const VS::ViewportRect& p_viewport) {
viewport=p_viewport;
canvas_transform=Transform();
canvas_transform.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f);
canvas_transform.scale( Vector3( 2.0f / viewport.width, -2.0f / viewport.height, 1.0f ) );
glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
}
void RasterizerIPhone::begin_scene(RID p_fx,VS::ScenarioDebugMode p_debug) {
opaque_render_list.clear();
alpha_render_list.clear();
light_instance_count=0;
scene_fx = p_fx.is_valid() ? fx_owner.get(p_fx) : NULL;
};
void RasterizerIPhone::begin_shadow_map( RID p_light_instance, int p_shadow_pass ) {
}
void RasterizerIPhone::set_camera(const Transform& p_world,const CameraMatrix& p_projection) {
camera_transform=p_world;
camera_transform_inverse=camera_transform.inverse();
camera_projection=p_projection;
camera_plane = Plane( camera_transform.origin, camera_transform.basis.get_axis(2) );
camera_z_near=camera_projection.get_z_near();
camera_z_far=camera_projection.get_z_far();
camera_projection.get_viewport_size(camera_vp_size.x,camera_vp_size.y);
}
void RasterizerIPhone::add_light( RID p_light_instance ) {
#define LIGHT_FADE_TRESHOLD 0.05
ERR_FAIL_COND( light_instance_count >= MAX_LIGHTS );
LightInstance *li = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!li);
/* make light hash */
// actually, not really a hash, but helps to sort the lights
// and avoid recompiling redudant shader versions
li->hash_aux=li->base->type;
if (li->base->shadow_enabled)
li->hash_aux|=(1<<3);
if (li->base->projector.is_valid())
li->hash_aux|=(1<<4);
if (li->base->shadow_enabled && li->base->volumetric_enabled)
li->hash_aux|=(1<<5);
switch(li->base->type) {
case VisualServer::LIGHT_DIRECTIONAL: {
Vector3 dir = li->transform.basis.get_axis(2);
li->light_vector.x=dir.x;
li->light_vector.y=dir.y;
li->light_vector.z=dir.z;
} break;
case VisualServer::LIGHT_OMNI: {
float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS];
if (radius==0)
radius=0.0001;
li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius;
li->light_vector.x=li->transform.origin.x;
li->light_vector.y=li->transform.origin.y;
li->light_vector.z=li->transform.origin.z;
} break;
case VisualServer::LIGHT_SPOT: {
float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS];
if (radius==0)
radius=0.0001;
li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius;
li->light_vector.x=li->transform.origin.x;
li->light_vector.y=li->transform.origin.y;
li->light_vector.z=li->transform.origin.z;
Vector3 dir = -li->transform.basis.get_axis(2);
li->spot_vector.x=dir.x;
li->spot_vector.y=dir.y;
li->spot_vector.z=dir.z;
} break;
}
light_instances[light_instance_count++]=li;
}
void RasterizerIPhone::_add_geometry( const Geometry* p_geometry, const Transform& p_world, uint32_t p_vertex_format, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides,const Skeleton* p_skeleton, GeometryOwner *p_owner) {
Material *m=NULL;
if (p_geometry->material.is_valid())
m=material_owner.get( p_geometry->material );
if (!m) {
m=material_owner.get( default_material );
}
ERR_FAIL_COND(!m);
LightInstance *lights[RenderList::MAX_LIGHTS];
int light_count=0;
RenderList *render_list=&opaque_render_list;
if (p_geometry->has_alpha || m->detail_blend_mode!=VS::MATERIAL_BLEND_MODE_MIX) {
render_list = &alpha_render_list;
};
if (!m->flags[VS::MATERIAL_FLAG_UNSHADED]) {
light_count=p_light_count;
for(int i=0;i<light_count;i++) {
lights[i]=light_instance_owner.get( p_light_instances[i] );
}
}
render_list->add_element( p_geometry, m, p_world, lights, light_count, p_material_overrides,p_skeleton, camera_plane.distance(p_world.origin), p_owner );
}
void RasterizerIPhone::add_mesh( RID p_mesh, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides, RID p_skeleton) {
Mesh *mesh = mesh_owner.get(p_mesh);
int ssize = mesh->surfaces.size();
for (int i=0;i<ssize;i++) {
Surface *s = mesh->surfaces[i];
Skeleton *sk = p_skeleton.is_valid()?skeleton_owner.get(p_skeleton):NULL;
_add_geometry(s,*p_world,s->format,p_light_instances,p_light_count,p_material_overrides,sk,NULL);
}
mesh->last_pass=frame;
}
void RasterizerIPhone::add_multimesh( RID p_multimesh, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) {
}
void RasterizerIPhone::add_poly( RID p_poly, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) {
Poly *p = poly_owner.get(p_poly);
if (!p->primitives.empty()) {
const Poly::Primitive *pp = &p->primitives[0];
uint32_t format=VisualServer::ARRAY_FORMAT_VERTEX;
if (!pp->normals.empty())
format|=VisualServer::ARRAY_FORMAT_NORMAL;
if (!pp->colors.empty())
format|=VisualServer::ARRAY_FORMAT_COLOR;
if (!pp->uvs.empty())
format|=VisualServer::ARRAY_TEX_UV;
_add_geometry(p,*p_world,format,p_light_instances,p_light_count,p_material_overrides,NULL, NULL);
}
}
void RasterizerIPhone::add_beam( RID p_beam, const Transform* p_world, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) {
}
void RasterizerIPhone::add_particles( RID p_particle_instance, const RID* p_light_instances, int p_light_count, const ParamOverrideMap* p_material_overrides) {
}
void RasterizerIPhone::_setup_material(const Geometry *p_geometry,const Material *p_material) {
if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED])
glDisable(GL_CULL_FACE);
else {
glEnable(GL_CULL_FACE);
glCullFace( (p_material->flags[VS::MATERIAL_FLAG_INVERT_FACES])?GL_FRONT:GL_BACK);
}
glEnable(GL_COLOR_MATERIAL); /* unused, unless color array */
//glColorMaterial( GL_FRONT_AND_BACK, GL_DIFFUSE );
glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
///ambient @TODO offer global ambient group option
float ambient_rgba[4]={
1,
1,
1,
1.0
};
glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT,ambient_rgba);
///diffuse
const Color &diffuse_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE];
float diffuse_rgba[4]={
(float)diffuse_color.r,
(float)diffuse_color.g,
(float)diffuse_color.b,
(float)diffuse_color.a
};
glColor4f( diffuse_rgba[0],diffuse_rgba[1],diffuse_rgba[2],diffuse_rgba[3]);
glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,diffuse_rgba);
//specular
const Color &specular_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR];
float specular_rgba[4]={
(float)specular_color.r,
(float)specular_color.g,
(float)specular_color.b,
1.0
};
glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR,specular_rgba);
const Color &emission_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_EMISSION];
float emission_rgba[4]={
(float)emission_color.r,
(float)emission_color.g,
(float)emission_color.b,
1.0
};
glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,emission_rgba);
glMaterialf(GL_FRONT_AND_BACK,GL_SHININESS,p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR_EXP]);
if (p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) {
glDisable(GL_LIGHTING);
} else {
glEnable(GL_LIGHTING);
glDisable(GL_LIGHTING);
}
//depth test?
/*
if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME])
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
*/
if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]) {
Texture *texture = texture_owner.get( p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE] );
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
};
};
void RasterizerIPhone::_setup_light(LightInstance* p_instance, int p_idx) {
Light* ld = p_instance->base;
int glid = GL_LIGHT0 + p_idx;
glLightfv(glid , GL_AMBIENT, ld->colors[VS::LIGHT_COLOR_AMBIENT].components );
glLightfv(glid, GL_DIFFUSE, ld->colors[VS::LIGHT_COLOR_DIFFUSE].components );
glLightfv(glid, GL_SPECULAR, ld->colors[VS::LIGHT_COLOR_SPECULAR].components );
switch(ld->type) {
case VS::LIGHT_DIRECTIONAL: {
/* This doesnt have attenuation */
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
Vector3 v(0.0,0.0,-1.0); // directional lights point up by default
v = p_instance->transform.get_basis().xform( v );
v = camera_transform_inverse.get_basis().xform( v );
v.normalize(); // this sucks, so it will be optimized at some point
v = -v;
float lightpos[4]={v.x,v.y,v.z,0.0};
glLightfv(glid,GL_POSITION,lightpos); //at modelview
glPopMatrix();
} break;
case VS::LIGHT_OMNI: {
glLightf(glid,GL_SPOT_CUTOFF,180.0);
glLightf(glid,GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]);
glLightf(glid,GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]);
glLightf(glid,GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut?
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
Vector3 pos = p_instance->transform.get_origin();
pos = camera_transform_inverse.xform(pos);
float lightpos[4]={pos.x,pos.y,pos.z,1.0};
glLightfv(glid,GL_POSITION,lightpos); //at modelview
glPopMatrix();
} break;
case VS::LIGHT_SPOT: {
glLightf(glid,GL_SPOT_CUTOFF, ld->vars[VS::LIGHT_PARAM_SPOT_ANGLE]);
glLightf(glid,GL_SPOT_EXPONENT, ld->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION]);
glLightf(glid,GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]);
glLightf(glid,GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]);
glLightf(glid,GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut?
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
Vector3 v(0.0,0.0,-1.0); // directional lights point up by default
v = p_instance->transform.get_basis().xform( v );
v = camera_transform_inverse.get_basis().xform( v );
v.normalize(); // this sucks, so it will be optimized at some point
float lightdir[4]={v.x, v.y, v.z, 1.0};
glLightfv(glid,GL_SPOT_DIRECTION,lightdir); //at modelview
v = p_instance->transform.get_origin();
v = camera_transform_inverse.xform(v);
float lightpos[4]={v.x,v.y,v.z,1.0};
glLightfv(glid,GL_POSITION,lightpos); //at modelview
glPopMatrix();
} break;
default: break;
}
};
void RasterizerIPhone::_setup_lights(LightInstance **p_lights,int p_light_count) {
for (int i=0; i<MAX_LIGHTS; i++) {
if (i<p_light_count) {
glEnable(GL_LIGHT0 + i);
_setup_light(p_lights[i], i);
} else {
glDisable(GL_LIGHT0 + i);
}
}
}
static const int gl_client_states[] = {
GL_VERTEX_ARRAY,
GL_NORMAL_ARRAY,
-1, // ARRAY_TANGENT
GL_COLOR_ARRAY,
GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV
GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV2
-1, // ARRAY_BONES
-1, // ARRAY_WEIGHTS
-1, // ARRAY_INDEX
};
void RasterizerIPhone::_setup_geometry(const Geometry *p_geometry, const Material* p_material) {
switch(p_geometry->type) {
case Geometry::GEOMETRY_SURFACE: {
Surface *surf = (Surface*)p_geometry;
uint8_t *base=0;
bool use_VBO = (surf->array_local==0);
if (!use_VBO) {
base = surf->array_local;
glBindBuffer(GL_ARRAY_BUFFER, 0);
} else {
glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id);
};
const Surface::ArrayData* a=surf->array;
for (int i=0;i<VS::ARRAY_MAX;i++) {
const Surface::ArrayData& ad=surf->array[i];
if (ad.size==0) {
if (gl_client_states[i] != -1) {
glDisableClientState(gl_client_states[i]);
};
continue; // this one is disabled.
}
ERR_CONTINUE( !ad.configured );
if (gl_client_states[i] != -1) {
glEnableClientState(gl_client_states[i]);
};
switch (i) {
case VS::ARRAY_VERTEX:
if (!use_VBO)
glVertexPointer(3,GL_FLOAT,surf->stride,(GLvoid*)&base[a->ofs]);
else
if (surf->array[VS::ARRAY_BONES].size)
glVertexPointer(3, GL_FLOAT, 0, skinned_buffer);
else
glVertexPointer(3,GL_FLOAT,surf->stride,(GLvoid*)a->ofs);
break;
case VS::ARRAY_NORMAL:
if (use_VBO)
glNormalPointer(GL_FLOAT,surf->stride,(GLvoid*)a->ofs);
else
glNormalPointer(GL_FLOAT,surf->stride,(GLvoid*)&base[a->ofs]);
break;
case VS::ARRAY_TANGENT:
break;
case VS::ARRAY_COLOR:
if (use_VBO)
glColorPointer(4,GL_UNSIGNED_BYTE,surf->stride,(GLvoid*)a->ofs);
else
glColorPointer(4,GL_UNSIGNED_BYTE,surf->stride,(GLvoid*)&base[a->ofs]);
break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2:
if (use_VBO)
glTexCoordPointer(2,GL_FLOAT,surf->stride,(GLvoid*)a->ofs);
else
glTexCoordPointer(2,GL_FLOAT,surf->stride,&base[a->ofs]);
break;
case VS::ARRAY_BONES:
case VS::ARRAY_WEIGHTS:
case VS::ARRAY_INDEX:
break;
};
}
// process skeleton here
} break;
default: break;
};
};
static const GLenum gl_primitive[]={
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_LINE_LOOP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN
};
void RasterizerIPhone::_render(const Geometry *p_geometry,const Material *p_material, const Skeleton* p_skeleton) {
switch(p_geometry->type) {
case Geometry::GEOMETRY_SURFACE: {
Surface *s = (Surface*)p_geometry;
if (s->index_array_len>0) {
if (s->index_array_local) {
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->index_array_len>(1<<8))?GL_UNSIGNED_SHORT:GL_UNSIGNED_BYTE, s->index_array_local);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id);
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->index_array_len>(1<<8))?GL_UNSIGNED_SHORT:GL_UNSIGNED_BYTE,0);
}
} else {
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
};
} break;
default: break;
};
};
void RasterizerIPhone::_render_list_forward(RenderList *p_render_list) {
const Material *prev_material=NULL;
uint64_t prev_light_hash=0;
const Skeleton *prev_skeleton=NULL;
const Geometry *prev_geometry=NULL;
const ParamOverrideMap* prev_overrides=NULL; // make it diferent than NULL
Geometry::Type prev_geometry_type=Geometry::GEOMETRY_INVALID;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&camera_projection.matrix[0][0]);
for (int i=0;i<p_render_list->element_count;i++) {
RenderList::Element *e = p_render_list->elements[i];
const Material *material = e->material;
uint64_t light_hash = e->light_hash;
const Skeleton *skeleton = e->skeleton;
const Geometry *geometry = e->geometry;
const ParamOverrideMap* material_overrides=e->material_overrides;
if (material!=prev_material || geometry->type!=prev_geometry_type) {
_setup_material(e->geometry,material);
//_setup_material_overrides(e->material,NULL,material_overrides);
//_setup_material_skeleton(material,skeleton);
} else {
if (material_overrides != prev_overrides) {
//_setup_material_overrides(e->material,prev_overrides,material_overrides);
}
if (prev_skeleton!=skeleton) {
//_setup_material_skeleton(material,skeleton);
};
}
if (geometry!=prev_geometry || geometry->type!=prev_geometry_type) {
_setup_geometry(geometry, material);
};
if (i==0 || light_hash!=prev_light_hash)
_setup_lights(e->lights,e->light_count);
glMatrixMode(GL_MODELVIEW);
_gl_load_transform(camera_transform_inverse);
_gl_mult_transform(e->transform);
_render(geometry, material, skeleton);
prev_material=material;
prev_skeleton=skeleton;
prev_geometry=geometry;
prev_light_hash=e->light_hash;
prev_geometry_type=geometry->type;
prev_overrides=material_overrides;
}
};
void RasterizerIPhone::end_scene() {
glEnable(GL_BLEND);
glDepthMask(GL_FALSE);
opaque_render_list.sort_mat_light();
_render_list_forward(&opaque_render_list);
glDisable(GL_BLEND);
glDepthMask(GL_TRUE);
alpha_render_list.sort_z();
_render_list_forward(&alpha_render_list);
}
void RasterizerIPhone::end_shadow_map() {
}
void RasterizerIPhone::end_frame() {
//ContextGL::get_singleton()->swap_buffers();
}
/* CANVAS API */
void RasterizerIPhone::canvas_begin() {
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glLineWidth(1.0);
glDisable(GL_LIGHTING);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
}
void RasterizerIPhone::canvas_set_transparency(float p_transparency) {
}
void RasterizerIPhone::canvas_set_rect(const Rect2& p_rect, bool p_clip) {
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(2.0 / window_size.x, -2.0 / window_size.y, 0);
glTranslatef((-(window_size.x / 2.0)) + p_rect.pos.x, (-(window_size.y / 2.0)) + p_rect.pos.y, 0);
if (p_clip) {
glEnable(GL_SCISSOR_TEST);
glScissor(viewport.x+p_rect.pos.x,viewport.y+ (viewport.height-(p_rect.pos.y+p_rect.size.height)),
p_rect.size.width,p_rect.size.height);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
void RasterizerIPhone::canvas_draw_line(const Point2& p_from, const Point2& p_to,const Color& p_color,float p_width) {
glColor4f(1, 1, 1, 1);
float verts[6]={
p_from.x,p_from.y,0,
p_to.x,p_to.y,0
};
float colors[]={
p_color.r, p_color.g, p_color.b, p_color.a,
p_color.r, p_color.g, p_color.b, p_color.a,
};
glLineWidth(p_width);
_draw_primitive(2,verts,0,colors,0);
}
static void _draw_textured_quad(const Rect2& p_rect, const Rect2& p_src_region, const Size2& p_tex_size ) {
float texcoords[]= {
p_src_region.pos.x/p_tex_size.width,
p_src_region.pos.y/p_tex_size.height,
(p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width,
p_src_region.pos.y/p_tex_size.height,
(p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width,
(p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height,
p_src_region.pos.x/p_tex_size.width,
(p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height,
};
float coords[]= {
p_rect.pos.x, p_rect.pos.y, 0,
p_rect.pos.x+p_rect.size.width, p_rect.pos.y, 0,
p_rect.pos.x+p_rect.size.width, p_rect.pos.y+p_rect.size.height, 0,
p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0
};
_draw_primitive(4,coords,0,0,texcoords);
}
static void _draw_quad(const Rect2& p_rect) {
float coords[]= {
p_rect.pos.x,p_rect.pos.y, 0,
p_rect.pos.x+p_rect.size.width,p_rect.pos.y, 0,
p_rect.pos.x+p_rect.size.width,p_rect.pos.y+p_rect.size.height, 0,
p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0
};
_draw_primitive(4,coords,0,0,0);
}
void RasterizerIPhone::canvas_draw_rect(const Rect2& p_rect, bool p_region, const Rect2& p_source,bool p_tile,RID p_texture,const Color& p_modulate) {
glColor4f(p_modulate.r, p_modulate.g, p_modulate.b, p_modulate.a);
if ( p_texture.is_valid() ) {
glEnable(GL_TEXTURE_2D);
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
if (!p_region) {
Rect2 region = Rect2(0,0,texture->width,texture->height);
_draw_textured_quad(p_rect,region,region.size);
} else {
_draw_textured_quad(p_rect, p_source, Size2(texture->width,texture->height) );
}
} else {
_draw_quad( p_rect );
}
}
void RasterizerIPhone::canvas_draw_style_box(const Rect2& p_rect, const Rect2& p_src_region, RID p_texture,const float *p_margin, bool p_draw_center) {
glColor4f(1, 1, 1, 1);
Texture *texture = texture_owner.get( p_texture );
ERR_FAIL_COND(!texture);
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
Rect2 region = p_src_region;
if (region.size.width <= 0 )
region.size.width = texture->width;
if (region.size.height <= 0)
region.size.height = texture->height;
/* CORNERS */
_draw_textured_quad( // top left
Rect2( p_rect.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])),
Rect2( region.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // top right
Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])),
Rect2( Point2(region.pos.x+region.size.width-p_margin[MARGIN_RIGHT], region.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom left
Rect2( Point2(p_rect.pos.x,p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])),
Rect2( Point2(region.pos.x, region.pos.y+region.size.height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom right
Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])),
Rect2( Point2(region.pos.x+region.size.width-p_margin[MARGIN_RIGHT], region.pos.y+region.size.height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
Rect2 rect_center( p_rect.pos+Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] ));
Rect2 src_center( Point2(region.pos.x+p_margin[MARGIN_LEFT], region.pos.y+p_margin[MARGIN_TOP]), Size2(region.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], region.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] ));
_draw_textured_quad( // top
Rect2( Point2(rect_center.pos.x,p_rect.pos.y),Size2(rect_center.size.width,p_margin[MARGIN_TOP])),
Rect2( Point2(src_center.pos.x,region.pos.y), Size2(src_center.size.width,p_margin[MARGIN_TOP])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // bottom
Rect2( Point2(rect_center.pos.x,rect_center.pos.y+rect_center.size.height),Size2(rect_center.size.width,p_margin[MARGIN_BOTTOM])),
Rect2( Point2(src_center.pos.x,src_center.pos.y+src_center.size.height), Size2(src_center.size.width,p_margin[MARGIN_BOTTOM])),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // left
Rect2( Point2(p_rect.pos.x,rect_center.pos.y),Size2(p_margin[MARGIN_LEFT],rect_center.size.height)),
Rect2( Point2(region.pos.x,region.pos.y+p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT],src_center.size.height)),
Size2( texture->width, texture->height ) );
_draw_textured_quad( // right
Rect2( Point2(rect_center.pos.x+rect_center.size.width,rect_center.pos.y),Size2(p_margin[MARGIN_RIGHT],rect_center.size.height)),
Rect2( Point2(src_center.pos.x+src_center.size.width,region.pos.y+p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT],src_center.size.height)),
Size2( texture->width, texture->height ) );
if (p_draw_center) {
_draw_textured_quad(
rect_center,
src_center,
Size2( texture->width, texture->height ));
}
}
void RasterizerIPhone::canvas_draw_primitive(const Vector<Point2>& p_points, const Vector<Color>& p_colors,const Vector<Point2>& p_uvs, RID p_texture) {
ERR_FAIL_COND(p_points.size()<1);
float verts[12];
float uvs[8];
float colors[16];
glColor4f(1, 1, 1, 1);
int idx = 0;
for(int i=0;i<p_points.size();i++) {
verts[idx++]=p_points[i].x;
verts[idx++]=p_points[i].y;
verts[idx++]=0;
}
idx = 0;
for(int i=0;i<p_uvs.size();i++) {
uvs[idx++] = p_uvs[i].x;
uvs[idx++] = p_uvs[i].y;
}
idx = 0;
for (int i=0; i<p_colors.size(); i++) {
colors[idx++] = p_colors[i].r;
colors[idx++] = p_colors[i].g;
colors[idx++] = p_colors[i].b;
colors[idx++] = p_colors[i].a;
};
if (p_texture.is_valid()) {
glEnable(GL_TEXTURE_2D);
Texture *texture = texture_owner.get( p_texture );
if (texture) {
glActiveTexture(GL_TEXTURE0);
glBindTexture( GL_TEXTURE_2D,texture->tex_id );
}
}
_draw_primitive(p_points.size(),&verts[0],NULL,p_colors.size()?&colors[0]:NULL,p_uvs.size()?uvs:NULL);
}
/* FX */
RID RasterizerIPhone::fx_create() {
return RID();
}
void RasterizerIPhone::fx_get_effects(RID p_fx,List<String> *p_effects) const {
}
void RasterizerIPhone::fx_set_active(RID p_fx,const String& p_effect, bool p_active) {
}
bool RasterizerIPhone::fx_is_active(RID p_fx,const String& p_effect) const {
return false;
}
void RasterizerIPhone::fx_get_effect_params(RID p_fx,const String& p_effect,List<PropertyInfo> *p_params) const {
}
Variant RasterizerIPhone::fx_get_effect_param(RID p_fx,const String& p_effect,const String& p_param) const {
return Variant();
}
void RasterizerIPhone::fx_set_effect_param(RID p_fx,const String& p_effect, const String& p_param, const Variant& p_pvalue) {
}
/*MISC*/
bool RasterizerIPhone::is_texture(const RID& p_rid) const {
return texture_owner.owns(p_rid);
}
bool RasterizerIPhone::is_material(const RID& p_rid) const {
return material_owner.owns(p_rid);
}
bool RasterizerIPhone::is_mesh(const RID& p_rid) const {
return mesh_owner.owns(p_rid);
}
bool RasterizerIPhone::is_multimesh(const RID& p_rid) const {
return false;
}
bool RasterizerIPhone::is_poly(const RID& p_rid) const {
return poly_owner.owns(p_rid);
}
bool RasterizerIPhone::is_particles(const RID &p_beam) const {
return false;
}
bool RasterizerIPhone::is_beam(const RID &p_beam) const {
return false;
}
bool RasterizerIPhone::is_light(const RID& p_rid) const {
return light_owner.owns(p_rid);
}
bool RasterizerIPhone::is_light_instance(const RID& p_rid) const {
return light_instance_owner.owns(p_rid);
}
bool RasterizerIPhone::is_particles_instance(const RID& p_rid) const {
return false;
}
bool RasterizerIPhone::is_skeleton(const RID& p_rid) const {
return skeleton_owner.owns(p_rid);
}
bool RasterizerIPhone::is_fx(const RID& p_rid) const {
return fx_owner.owns(p_rid);
}
bool RasterizerIPhone::is_shader(const RID& p_rid) const {
return false;
}
void RasterizerIPhone::free(const RID& p_rid) const {
if (texture_owner.owns(p_rid)) {
// delete the texture
Texture *texture = texture_owner.get(p_rid);
glDeleteTextures( 1,&texture->tex_id );
texture_owner.free(p_rid);
memdelete(texture);
} else if (material_owner.owns(p_rid)) {
Material *material = material_owner.get( p_rid );
ERR_FAIL_COND(!material);
material_owner.free(p_rid);
memdelete(material);
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get(p_rid);
ERR_FAIL_COND(!mesh);
for (int i=0;i<mesh->surfaces.size();i++) {
Surface *surface = mesh->surfaces[i];
if (surface->array_local != 0) {
memfree(surface->array_local);
};
if (surface->index_array_local != 0) {
memfree(surface->index_array_local);
};
if (surface->vertex_id)
glDeleteBuffers(1,&surface->vertex_id);
if (surface->index_id)
glDeleteBuffers(1,&surface->index_id);
memdelete( surface );
};
mesh->surfaces.clear();
mesh_owner.free(p_rid);
memdelete(mesh);
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *skeleton = skeleton_owner.get( p_rid );
ERR_FAIL_COND(!skeleton)
skeleton_owner.free(p_rid);
memdelete(skeleton);
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get( p_rid );
ERR_FAIL_COND(!light)
light_owner.free(p_rid);
memdelete(light);
} else if (light_instance_owner.owns(p_rid)) {
LightInstance *light_instance = light_instance_owner.get( p_rid );
ERR_FAIL_COND(!light_instance);
light_instance_owner.free(p_rid);
memdelete( light_instance );
} else if (fx_owner.owns(p_rid)) {
FX *fx = fx_owner.get( p_rid );
ERR_FAIL_COND(!fx);
fx_owner.free(p_rid);
memdelete( fx );
};
}
void RasterizerIPhone::init() {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
glEnable(GL_TEXTURE_2D);
}
void RasterizerIPhone::finish() {
}
int RasterizerIPhone::get_render_info(VS::RenderInfo p_info) {
return false;
}
RasterizerIPhone::RasterizerIPhone() {
frame = 0;
};
RasterizerIPhone::~RasterizerIPhone() {
};
#endif