virtualx-engine/core/variant/dictionary.cpp
2024-09-04 10:27:26 -05:00

654 lines
23 KiB
C++

/**************************************************************************/
/* dictionary.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "dictionary.h"
#include "core/templates/hash_map.h"
#include "core/templates/safe_refcount.h"
#include "core/variant/container_type_validate.h"
#include "core/variant/variant.h"
// required in this order by VariantInternal, do not remove this comment.
#include "core/object/class_db.h"
#include "core/object/object.h"
#include "core/variant/type_info.h"
#include "core/variant/variant_internal.h"
struct DictionaryPrivate {
SafeRefCount refcount;
Variant *read_only = nullptr; // If enabled, a pointer is used to a temporary value that is used to return read-only values.
HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator> variant_map;
ContainerTypeValidate typed_key;
ContainerTypeValidate typed_value;
Variant *typed_fallback = nullptr; // Allows a typed dictionary to return dummy values when attempting an invalid access.
};
void Dictionary::get_key_list(List<Variant> *p_keys) const {
if (_p->variant_map.is_empty()) {
return;
}
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
p_keys->push_back(E.key);
}
}
Variant Dictionary::get_key_at_index(int p_index) const {
int index = 0;
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
if (index == p_index) {
return E.key;
}
index++;
}
return Variant();
}
Variant Dictionary::get_value_at_index(int p_index) const {
int index = 0;
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
if (index == p_index) {
return E.value;
}
index++;
}
return Variant();
}
Variant &Dictionary::operator[](const Variant &p_key) {
if (unlikely(_p->read_only)) {
if (likely(_p->variant_map.has(p_key))) {
*_p->read_only = _p->variant_map[p_key];
} else {
*_p->read_only = Variant();
}
return *_p->read_only;
} else {
return _p->variant_map[p_key];
}
}
const Variant &Dictionary::operator[](const Variant &p_key) const {
// Will not insert key, so no conversion is necessary.
return _p->variant_map[p_key];
}
const Variant *Dictionary::getptr(const Variant &p_key) const {
HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator>::ConstIterator E(_p->variant_map.find(p_key));
if (!E) {
return nullptr;
}
return &E->value;
}
Variant *Dictionary::getptr(const Variant &p_key) {
HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator>::Iterator E(_p->variant_map.find(p_key));
if (!E) {
return nullptr;
}
if (unlikely(_p->read_only != nullptr)) {
*_p->read_only = E->value;
return _p->read_only;
} else {
return &E->value;
}
}
Variant Dictionary::get_valid(const Variant &p_key) const {
Variant key = p_key;
ERR_FAIL_COND_V(!_p->typed_key.validate(key, "get_valid"), Variant());
HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator>::ConstIterator E(_p->variant_map.find(key));
if (!E) {
return Variant();
}
return E->value;
}
Variant Dictionary::get(const Variant &p_key, const Variant &p_default) const {
Variant key = p_key;
ERR_FAIL_COND_V(!_p->typed_key.validate(key, "get"), p_default);
const Variant *result = getptr(key);
if (!result) {
return p_default;
}
return *result;
}
Variant Dictionary::get_or_add(const Variant &p_key, const Variant &p_default) {
Variant key = p_key;
ERR_FAIL_COND_V(!_p->typed_key.validate(key, "get"), p_default);
const Variant *result = getptr(key);
if (!result) {
Variant value = p_default;
ERR_FAIL_COND_V(!_p->typed_value.validate(value, "add"), value);
operator[](key) = value;
return value;
}
return *result;
}
int Dictionary::size() const {
return _p->variant_map.size();
}
bool Dictionary::is_empty() const {
return !_p->variant_map.size();
}
bool Dictionary::has(const Variant &p_key) const {
Variant key = p_key;
ERR_FAIL_COND_V(!_p->typed_key.validate(key, "use 'has'"), false);
return _p->variant_map.has(p_key);
}
bool Dictionary::has_all(const Array &p_keys) const {
for (int i = 0; i < p_keys.size(); i++) {
Variant key = p_keys[i];
ERR_FAIL_COND_V(!_p->typed_key.validate(key, "use 'has_all'"), false);
if (!has(key)) {
return false;
}
}
return true;
}
Variant Dictionary::find_key(const Variant &p_value) const {
Variant value = p_value;
ERR_FAIL_COND_V(!_p->typed_value.validate(value, "find_key"), Variant());
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
if (E.value == value) {
return E.key;
}
}
return Variant();
}
bool Dictionary::erase(const Variant &p_key) {
Variant key = p_key;
ERR_FAIL_COND_V(!_p->typed_key.validate(key, "erase"), false);
ERR_FAIL_COND_V_MSG(_p->read_only, false, "Dictionary is in read-only state.");
return _p->variant_map.erase(key);
}
bool Dictionary::operator==(const Dictionary &p_dictionary) const {
return recursive_equal(p_dictionary, 0);
}
bool Dictionary::operator!=(const Dictionary &p_dictionary) const {
return !recursive_equal(p_dictionary, 0);
}
bool Dictionary::recursive_equal(const Dictionary &p_dictionary, int recursion_count) const {
// Cheap checks
if (_p == p_dictionary._p) {
return true;
}
if (_p->variant_map.size() != p_dictionary._p->variant_map.size()) {
return false;
}
// Heavy O(n) check
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return true;
}
recursion_count++;
for (const KeyValue<Variant, Variant> &this_E : _p->variant_map) {
HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator>::ConstIterator other_E(p_dictionary._p->variant_map.find(this_E.key));
if (!other_E || !this_E.value.hash_compare(other_E->value, recursion_count, false)) {
return false;
}
}
return true;
}
void Dictionary::_ref(const Dictionary &p_from) const {
//make a copy first (thread safe)
if (!p_from._p->refcount.ref()) {
return; // couldn't copy
}
//if this is the same, unreference the other one
if (p_from._p == _p) {
_p->refcount.unref();
return;
}
if (_p) {
_unref();
}
_p = p_from._p;
}
void Dictionary::clear() {
ERR_FAIL_COND_MSG(_p->read_only, "Dictionary is in read-only state.");
_p->variant_map.clear();
}
void Dictionary::merge(const Dictionary &p_dictionary, bool p_overwrite) {
ERR_FAIL_COND_MSG(_p->read_only, "Dictionary is in read-only state.");
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
Variant key = E.key;
Variant value = E.value;
ERR_FAIL_COND(!_p->typed_key.validate(key, "merge"));
ERR_FAIL_COND(!_p->typed_key.validate(value, "merge"));
if (p_overwrite || !has(key)) {
operator[](key) = value;
}
}
}
Dictionary Dictionary::merged(const Dictionary &p_dictionary, bool p_overwrite) const {
Dictionary ret = duplicate();
ret.merge(p_dictionary, p_overwrite);
return ret;
}
void Dictionary::_unref() const {
ERR_FAIL_NULL(_p);
if (_p->refcount.unref()) {
if (_p->read_only) {
memdelete(_p->read_only);
}
if (_p->typed_fallback) {
memdelete(_p->typed_fallback);
}
memdelete(_p);
}
_p = nullptr;
}
uint32_t Dictionary::hash() const {
return recursive_hash(0);
}
uint32_t Dictionary::recursive_hash(int recursion_count) const {
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return 0;
}
uint32_t h = hash_murmur3_one_32(Variant::DICTIONARY);
recursion_count++;
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
h = hash_murmur3_one_32(E.key.recursive_hash(recursion_count), h);
h = hash_murmur3_one_32(E.value.recursive_hash(recursion_count), h);
}
return hash_fmix32(h);
}
Array Dictionary::keys() const {
Array varr;
if (is_typed_key()) {
varr.set_typed(get_typed_key_builtin(), get_typed_key_class_name(), get_typed_key_script());
}
if (_p->variant_map.is_empty()) {
return varr;
}
varr.resize(size());
int i = 0;
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
varr[i] = E.key;
i++;
}
return varr;
}
Array Dictionary::values() const {
Array varr;
if (is_typed_value()) {
varr.set_typed(get_typed_value_builtin(), get_typed_value_class_name(), get_typed_value_script());
}
if (_p->variant_map.is_empty()) {
return varr;
}
varr.resize(size());
int i = 0;
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
varr[i] = E.value;
i++;
}
return varr;
}
void Dictionary::assign(const Dictionary &p_dictionary) {
const ContainerTypeValidate &typed_key = _p->typed_key;
const ContainerTypeValidate &typed_key_source = p_dictionary._p->typed_key;
const ContainerTypeValidate &typed_value = _p->typed_value;
const ContainerTypeValidate &typed_value_source = p_dictionary._p->typed_value;
if ((typed_key == typed_key_source || typed_key.type == Variant::NIL || (typed_key_source.type == Variant::OBJECT && typed_key.can_reference(typed_key_source))) &&
(typed_value == typed_value_source || typed_value.type == Variant::NIL || (typed_value_source.type == Variant::OBJECT && typed_value.can_reference(typed_value_source)))) {
// From same to same or,
// from anything to variants or,
// from subclasses to base classes.
_p->variant_map = p_dictionary._p->variant_map;
return;
}
int size = p_dictionary._p->variant_map.size();
HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator> variant_map = HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator>(size);
Vector<Variant> key_array;
key_array.resize(size);
Variant *key_data = key_array.ptrw();
Vector<Variant> value_array;
value_array.resize(size);
Variant *value_data = value_array.ptrw();
if (typed_key == typed_key_source || typed_key.type == Variant::NIL || (typed_key_source.type == Variant::OBJECT && typed_key.can_reference(typed_key_source))) {
// From same to same or,
// from anything to variants or,
// from subclasses to base classes.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *key = &E.key;
key_data[i++] = *key;
}
} else if ((typed_key_source.type == Variant::NIL && typed_key.type == Variant::OBJECT) || (typed_key_source.type == Variant::OBJECT && typed_key_source.can_reference(typed_key))) {
// From variants to objects or,
// from base classes to subclasses.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *key = &E.key;
if (key->get_type() != Variant::NIL && (key->get_type() != Variant::OBJECT || !typed_key.validate_object(*key, "assign"))) {
ERR_FAIL_MSG(vformat(R"(Unable to convert key from "%s" to "%s".)", Variant::get_type_name(key->get_type()), Variant::get_type_name(typed_key.type)));
}
key_data[i++] = *key;
}
} else if (typed_key.type == Variant::OBJECT || typed_key_source.type == Variant::OBJECT) {
ERR_FAIL_MSG(vformat(R"(Cannot assign contents of "Dictionary[%s, %s]" to "Dictionary[%s, %s]".)", Variant::get_type_name(typed_key_source.type), Variant::get_type_name(typed_value_source.type),
Variant::get_type_name(typed_key.type), Variant::get_type_name(typed_value.type)));
} else if (typed_key_source.type == Variant::NIL && typed_key.type != Variant::OBJECT) {
// From variants to primitives.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *key = &E.key;
if (key->get_type() == typed_key.type) {
key_data[i++] = *key;
continue;
}
if (!Variant::can_convert_strict(key->get_type(), typed_key.type)) {
ERR_FAIL_MSG(vformat(R"(Unable to convert key from "%s" to "%s".)", Variant::get_type_name(key->get_type()), Variant::get_type_name(typed_key.type)));
}
Callable::CallError ce;
Variant::construct(typed_key.type, key_data[i++], &key, 1, ce);
ERR_FAIL_COND_MSG(ce.error, vformat(R"(Unable to convert key from "%s" to "%s".)", Variant::get_type_name(key->get_type()), Variant::get_type_name(typed_key.type)));
}
} else if (Variant::can_convert_strict(typed_key_source.type, typed_key.type)) {
// From primitives to different convertible primitives.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *key = &E.key;
Callable::CallError ce;
Variant::construct(typed_key.type, key_data[i++], &key, 1, ce);
ERR_FAIL_COND_MSG(ce.error, vformat(R"(Unable to convert key from "%s" to "%s".)", Variant::get_type_name(key->get_type()), Variant::get_type_name(typed_key.type)));
}
} else {
ERR_FAIL_MSG(vformat(R"(Cannot assign contents of "Dictionary[%s, %s]" to "Dictionary[%s, %s].)", Variant::get_type_name(typed_key_source.type), Variant::get_type_name(typed_value_source.type),
Variant::get_type_name(typed_key.type), Variant::get_type_name(typed_value.type)));
}
if (typed_value == typed_value_source || typed_value.type == Variant::NIL || (typed_value_source.type == Variant::OBJECT && typed_value.can_reference(typed_value_source))) {
// From same to same or,
// from anything to variants or,
// from subclasses to base classes.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *value = &E.value;
value_data[i++] = *value;
}
} else if (((typed_value_source.type == Variant::NIL && typed_value.type == Variant::OBJECT) || (typed_value_source.type == Variant::OBJECT && typed_value_source.can_reference(typed_value)))) {
// From variants to objects or,
// from base classes to subclasses.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *value = &E.value;
if (value->get_type() != Variant::NIL && (value->get_type() != Variant::OBJECT || !typed_value.validate_object(*value, "assign"))) {
ERR_FAIL_MSG(vformat(R"(Unable to convert value at key "%s" from "%s" to "%s".)", key_data[i], Variant::get_type_name(value->get_type()), Variant::get_type_name(typed_value.type)));
}
value_data[i++] = *value;
}
} else if (typed_value.type == Variant::OBJECT || typed_value_source.type == Variant::OBJECT) {
ERR_FAIL_MSG(vformat(R"(Cannot assign contents of "Dictionary[%s, %s]" to "Dictionary[%s, %s]".)", Variant::get_type_name(typed_key_source.type), Variant::get_type_name(typed_value_source.type),
Variant::get_type_name(typed_key.type), Variant::get_type_name(typed_value.type)));
} else if (typed_value_source.type == Variant::NIL && typed_value.type != Variant::OBJECT) {
// From variants to primitives.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *value = &E.value;
if (value->get_type() == typed_value.type) {
value_data[i++] = *value;
continue;
}
if (!Variant::can_convert_strict(value->get_type(), typed_value.type)) {
ERR_FAIL_MSG(vformat(R"(Unable to convert value at key "%s" from "%s" to "%s".)", key_data[i], Variant::get_type_name(value->get_type()), Variant::get_type_name(typed_value.type)));
}
Callable::CallError ce;
Variant::construct(typed_value.type, value_data[i++], &value, 1, ce);
ERR_FAIL_COND_MSG(ce.error, vformat(R"(Unable to convert value at key "%s" from "%s" to "%s".)", key_data[i - 1], Variant::get_type_name(value->get_type()), Variant::get_type_name(typed_value.type)));
}
} else if (Variant::can_convert_strict(typed_value_source.type, typed_value.type)) {
// From primitives to different convertible primitives.
int i = 0;
for (const KeyValue<Variant, Variant> &E : p_dictionary._p->variant_map) {
const Variant *value = &E.value;
Callable::CallError ce;
Variant::construct(typed_value.type, value_data[i++], &value, 1, ce);
ERR_FAIL_COND_MSG(ce.error, vformat(R"(Unable to convert value at key "%s" from "%s" to "%s".)", key_data[i - 1], Variant::get_type_name(value->get_type()), Variant::get_type_name(typed_value.type)));
}
} else {
ERR_FAIL_MSG(vformat(R"(Cannot assign contents of "Dictionary[%s, %s]" to "Dictionary[%s, %s].)", Variant::get_type_name(typed_key_source.type), Variant::get_type_name(typed_value_source.type),
Variant::get_type_name(typed_key.type), Variant::get_type_name(typed_value.type)));
}
for (int i = 0; i < size; i++) {
variant_map.insert(key_data[i], value_data[i]);
}
_p->variant_map = variant_map;
}
const Variant *Dictionary::next(const Variant *p_key) const {
if (p_key == nullptr) {
// caller wants to get the first element
if (_p->variant_map.begin()) {
return &_p->variant_map.begin()->key;
}
return nullptr;
}
Variant key = *p_key;
ERR_FAIL_COND_V(!_p->typed_key.validate(key, "next"), nullptr);
HashMap<Variant, Variant, VariantHasher, StringLikeVariantComparator>::Iterator E = _p->variant_map.find(key);
if (!E) {
return nullptr;
}
++E;
if (E) {
return &E->key;
}
return nullptr;
}
Dictionary Dictionary::duplicate(bool p_deep) const {
return recursive_duplicate(p_deep, 0);
}
void Dictionary::make_read_only() {
if (_p->read_only == nullptr) {
_p->read_only = memnew(Variant);
}
}
bool Dictionary::is_read_only() const {
return _p->read_only != nullptr;
}
Dictionary Dictionary::recursive_duplicate(bool p_deep, int recursion_count) const {
Dictionary n;
n._p->typed_key = _p->typed_key;
n._p->typed_value = _p->typed_value;
if (recursion_count > MAX_RECURSION) {
ERR_PRINT("Max recursion reached");
return n;
}
if (p_deep) {
recursion_count++;
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
n[E.key.recursive_duplicate(true, recursion_count)] = E.value.recursive_duplicate(true, recursion_count);
}
} else {
for (const KeyValue<Variant, Variant> &E : _p->variant_map) {
n[E.key] = E.value;
}
}
return n;
}
void Dictionary::set_typed(uint32_t p_key_type, const StringName &p_key_class_name, const Variant &p_key_script, uint32_t p_value_type, const StringName &p_value_class_name, const Variant &p_value_script) {
ERR_FAIL_COND_MSG(_p->read_only, "Dictionary is in read-only state.");
ERR_FAIL_COND_MSG(_p->variant_map.size() > 0, "Type can only be set when dictionary is empty.");
ERR_FAIL_COND_MSG(_p->refcount.get() > 1, "Type can only be set when dictionary has no more than one user.");
ERR_FAIL_COND_MSG(_p->typed_key.type != Variant::NIL || _p->typed_value.type != Variant::NIL, "Type can only be set once.");
ERR_FAIL_COND_MSG((p_key_class_name != StringName() && p_key_type != Variant::OBJECT) || (p_value_class_name != StringName() && p_value_type != Variant::OBJECT), "Class names can only be set for type OBJECT.");
Ref<Script> key_script = p_key_script;
ERR_FAIL_COND_MSG(key_script.is_valid() && p_key_class_name == StringName(), "Script class can only be set together with base class name.");
Ref<Script> value_script = p_value_script;
ERR_FAIL_COND_MSG(value_script.is_valid() && p_value_class_name == StringName(), "Script class can only be set together with base class name.");
_p->typed_key.type = Variant::Type(p_key_type);
_p->typed_key.class_name = p_key_class_name;
_p->typed_key.script = key_script;
_p->typed_key.where = "TypedDictionary.Key";
_p->typed_value.type = Variant::Type(p_value_type);
_p->typed_value.class_name = p_value_class_name;
_p->typed_value.script = value_script;
_p->typed_value.where = "TypedDictionary.Value";
}
bool Dictionary::is_typed() const {
return is_typed_key() || is_typed_value();
}
bool Dictionary::is_typed_key() const {
return _p->typed_key.type != Variant::NIL;
}
bool Dictionary::is_typed_value() const {
return _p->typed_value.type != Variant::NIL;
}
bool Dictionary::is_same_typed(const Dictionary &p_other) const {
return is_same_typed_key(p_other) && is_same_typed_value(p_other);
}
bool Dictionary::is_same_typed_key(const Dictionary &p_other) const {
return _p->typed_key == p_other._p->typed_key;
}
bool Dictionary::is_same_typed_value(const Dictionary &p_other) const {
return _p->typed_value == p_other._p->typed_value;
}
uint32_t Dictionary::get_typed_key_builtin() const {
return _p->typed_key.type;
}
uint32_t Dictionary::get_typed_value_builtin() const {
return _p->typed_value.type;
}
StringName Dictionary::get_typed_key_class_name() const {
return _p->typed_key.class_name;
}
StringName Dictionary::get_typed_value_class_name() const {
return _p->typed_value.class_name;
}
Variant Dictionary::get_typed_key_script() const {
return _p->typed_key.script;
}
Variant Dictionary::get_typed_value_script() const {
return _p->typed_value.script;
}
void Dictionary::operator=(const Dictionary &p_dictionary) {
if (this == &p_dictionary) {
return;
}
_ref(p_dictionary);
}
const void *Dictionary::id() const {
return _p;
}
Dictionary::Dictionary(const Dictionary &p_base, uint32_t p_key_type, const StringName &p_key_class_name, const Variant &p_key_script, uint32_t p_value_type, const StringName &p_value_class_name, const Variant &p_value_script) {
_p = memnew(DictionaryPrivate);
_p->refcount.init();
set_typed(p_key_type, p_key_class_name, p_key_script, p_value_type, p_value_class_name, p_value_script);
assign(p_base);
}
Dictionary::Dictionary(const Dictionary &p_from) {
_p = nullptr;
_ref(p_from);
}
Dictionary::Dictionary() {
_p = memnew(DictionaryPrivate);
_p->refcount.init();
}
Dictionary::~Dictionary() {
_unref();
}