292 lines
8.4 KiB
C++
292 lines
8.4 KiB
C++
/*************************************************************************/
|
|
/* vector2.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "vector2.h"
|
|
|
|
real_t Vector2::angle() const {
|
|
return Math::atan2(y, x);
|
|
}
|
|
|
|
Vector2 Vector2::from_angle(const real_t p_angle) {
|
|
return Vector2(Math::cos(p_angle), Math::sin(p_angle));
|
|
}
|
|
|
|
real_t Vector2::length() const {
|
|
return Math::sqrt(x * x + y * y);
|
|
}
|
|
|
|
real_t Vector2::length_squared() const {
|
|
return x * x + y * y;
|
|
}
|
|
|
|
void Vector2::normalize() {
|
|
real_t l = x * x + y * y;
|
|
if (l != 0) {
|
|
l = Math::sqrt(l);
|
|
x /= l;
|
|
y /= l;
|
|
}
|
|
}
|
|
|
|
Vector2 Vector2::normalized() const {
|
|
Vector2 v = *this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
bool Vector2::is_normalized() const {
|
|
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
|
|
return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
|
|
}
|
|
|
|
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
|
|
return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
|
|
}
|
|
|
|
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
|
|
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
|
|
}
|
|
|
|
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
|
|
return Math::atan2(cross(p_vector2), dot(p_vector2));
|
|
}
|
|
|
|
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
|
|
return (p_vector2 - *this).angle();
|
|
}
|
|
|
|
real_t Vector2::dot(const Vector2 &p_other) const {
|
|
return x * p_other.x + y * p_other.y;
|
|
}
|
|
|
|
real_t Vector2::cross(const Vector2 &p_other) const {
|
|
return x * p_other.y - y * p_other.x;
|
|
}
|
|
|
|
Vector2 Vector2::sign() const {
|
|
return Vector2(SIGN(x), SIGN(y));
|
|
}
|
|
|
|
Vector2 Vector2::floor() const {
|
|
return Vector2(Math::floor(x), Math::floor(y));
|
|
}
|
|
|
|
Vector2 Vector2::ceil() const {
|
|
return Vector2(Math::ceil(x), Math::ceil(y));
|
|
}
|
|
|
|
Vector2 Vector2::round() const {
|
|
return Vector2(Math::round(x), Math::round(y));
|
|
}
|
|
|
|
Vector2 Vector2::rotated(const real_t p_by) const {
|
|
real_t sine = Math::sin(p_by);
|
|
real_t cosi = Math::cos(p_by);
|
|
return Vector2(
|
|
x * cosi - y * sine,
|
|
x * sine + y * cosi);
|
|
}
|
|
|
|
Vector2 Vector2::posmod(const real_t p_mod) const {
|
|
return Vector2(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod));
|
|
}
|
|
|
|
Vector2 Vector2::posmodv(const Vector2 &p_modv) const {
|
|
return Vector2(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y));
|
|
}
|
|
|
|
Vector2 Vector2::project(const Vector2 &p_to) const {
|
|
return p_to * (dot(p_to) / p_to.length_squared());
|
|
}
|
|
|
|
Vector2 Vector2::clamp(const Vector2 &p_min, const Vector2 &p_max) const {
|
|
return Vector2(
|
|
CLAMP(x, p_min.x, p_max.x),
|
|
CLAMP(y, p_min.y, p_max.y));
|
|
}
|
|
|
|
Vector2 Vector2::snapped(const Vector2 &p_step) const {
|
|
return Vector2(
|
|
Math::snapped(x, p_step.x),
|
|
Math::snapped(y, p_step.y));
|
|
}
|
|
|
|
Vector2 Vector2::limit_length(const real_t p_len) const {
|
|
const real_t l = length();
|
|
Vector2 v = *this;
|
|
if (l > 0 && p_len < l) {
|
|
v /= l;
|
|
v *= p_len;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const {
|
|
Vector2 p0 = p_pre_a;
|
|
Vector2 p1 = *this;
|
|
Vector2 p2 = p_b;
|
|
Vector2 p3 = p_post_b;
|
|
|
|
real_t t = p_weight;
|
|
real_t t2 = t * t;
|
|
real_t t3 = t2 * t;
|
|
|
|
Vector2 out;
|
|
out = 0.5 *
|
|
((p1 * 2.0) +
|
|
(-p0 + p2) * t +
|
|
(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
|
|
(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
|
|
return out;
|
|
}
|
|
|
|
Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
|
|
Vector2 v = *this;
|
|
Vector2 vd = p_to - v;
|
|
real_t len = vd.length();
|
|
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
|
|
}
|
|
|
|
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
|
Vector2 Vector2::slide(const Vector2 &p_normal) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
|
|
#endif
|
|
return *this - p_normal * this->dot(p_normal);
|
|
}
|
|
|
|
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
|
|
return -reflect(p_normal);
|
|
}
|
|
|
|
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
|
|
#endif
|
|
return 2.0 * p_normal * this->dot(p_normal) - *this;
|
|
}
|
|
|
|
bool Vector2::is_equal_approx(const Vector2 &p_v) const {
|
|
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
|
|
}
|
|
|
|
Vector2::operator String() const {
|
|
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ")";
|
|
}
|
|
|
|
/* Vector2i */
|
|
|
|
Vector2i Vector2i::clamp(const Vector2i &p_min, const Vector2i &p_max) const {
|
|
return Vector2i(
|
|
CLAMP(x, p_min.x, p_max.x),
|
|
CLAMP(y, p_min.y, p_max.y));
|
|
}
|
|
|
|
int64_t Vector2i::length_squared() const {
|
|
return x * (int64_t)x + y * (int64_t)y;
|
|
}
|
|
|
|
double Vector2i::length() const {
|
|
return Math::sqrt((double)length_squared());
|
|
}
|
|
|
|
Vector2i Vector2i::operator+(const Vector2i &p_v) const {
|
|
return Vector2i(x + p_v.x, y + p_v.y);
|
|
}
|
|
|
|
void Vector2i::operator+=(const Vector2i &p_v) {
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
}
|
|
|
|
Vector2i Vector2i::operator-(const Vector2i &p_v) const {
|
|
return Vector2i(x - p_v.x, y - p_v.y);
|
|
}
|
|
|
|
void Vector2i::operator-=(const Vector2i &p_v) {
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
}
|
|
|
|
Vector2i Vector2i::operator*(const Vector2i &p_v1) const {
|
|
return Vector2i(x * p_v1.x, y * p_v1.y);
|
|
}
|
|
|
|
Vector2i Vector2i::operator*(const int32_t &rvalue) const {
|
|
return Vector2i(x * rvalue, y * rvalue);
|
|
}
|
|
|
|
void Vector2i::operator*=(const int32_t &rvalue) {
|
|
x *= rvalue;
|
|
y *= rvalue;
|
|
}
|
|
|
|
Vector2i Vector2i::operator/(const Vector2i &p_v1) const {
|
|
return Vector2i(x / p_v1.x, y / p_v1.y);
|
|
}
|
|
|
|
Vector2i Vector2i::operator/(const int32_t &rvalue) const {
|
|
return Vector2i(x / rvalue, y / rvalue);
|
|
}
|
|
|
|
void Vector2i::operator/=(const int32_t &rvalue) {
|
|
x /= rvalue;
|
|
y /= rvalue;
|
|
}
|
|
|
|
Vector2i Vector2i::operator%(const Vector2i &p_v1) const {
|
|
return Vector2i(x % p_v1.x, y % p_v1.y);
|
|
}
|
|
|
|
Vector2i Vector2i::operator%(const int32_t &rvalue) const {
|
|
return Vector2i(x % rvalue, y % rvalue);
|
|
}
|
|
|
|
void Vector2i::operator%=(const int32_t &rvalue) {
|
|
x %= rvalue;
|
|
y %= rvalue;
|
|
}
|
|
|
|
Vector2i Vector2i::operator-() const {
|
|
return Vector2i(-x, -y);
|
|
}
|
|
|
|
bool Vector2i::operator==(const Vector2i &p_vec2) const {
|
|
return x == p_vec2.x && y == p_vec2.y;
|
|
}
|
|
|
|
bool Vector2i::operator!=(const Vector2i &p_vec2) const {
|
|
return x != p_vec2.x || y != p_vec2.y;
|
|
}
|
|
|
|
Vector2i::operator String() const {
|
|
return "(" + itos(x) + ", " + itos(y) + ")";
|
|
}
|