virtualx-engine/thirdparty/glslang/glslang/MachineIndependent/localintermediate.h
Rémi Verschelde 0181d005c9
vulkan: Update all components to Vulkan SDK 1.3.231.1
Updates to volk, vulkan headers, `vk_enum_string_helper.h`, glslang,
spirv-reflect.

No update to VMA which still has 3.0.1 as it's last tagged release.
2022-11-03 12:20:46 +01:00

1233 lines
49 KiB
C++

//
// Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
// Copyright (C) 2016 LunarG, Inc.
// Copyright (C) 2017 ARM Limited.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#ifndef _LOCAL_INTERMEDIATE_INCLUDED_
#define _LOCAL_INTERMEDIATE_INCLUDED_
#include "../Include/intermediate.h"
#include "../Public/ShaderLang.h"
#include "Versions.h"
#include <string>
#include <vector>
#include <algorithm>
#include <set>
#include <array>
class TInfoSink;
namespace glslang {
struct TMatrixSelector {
int coord1; // stay agnostic about column/row; this is parse order
int coord2;
};
typedef int TVectorSelector;
const int MaxSwizzleSelectors = 4;
template<typename selectorType>
class TSwizzleSelectors {
public:
TSwizzleSelectors() : size_(0) { }
void push_back(selectorType comp)
{
if (size_ < MaxSwizzleSelectors)
components[size_++] = comp;
}
void resize(int s)
{
assert(s <= size_);
size_ = s;
}
int size() const { return size_; }
selectorType operator[](int i) const
{
assert(i < MaxSwizzleSelectors);
return components[i];
}
private:
int size_;
selectorType components[MaxSwizzleSelectors];
};
//
// Some helper structures for TIntermediate. Their contents are encapsulated
// by TIntermediate.
//
// Used for call-graph algorithms for detecting recursion, missing bodies, and dead bodies.
// A "call" is a pair: <caller, callee>.
// There can be duplicates. General assumption is the list is small.
struct TCall {
TCall(const TString& pCaller, const TString& pCallee) : caller(pCaller), callee(pCallee) { }
TString caller;
TString callee;
bool visited;
bool currentPath;
bool errorGiven;
int calleeBodyPosition;
};
// A generic 1-D range.
struct TRange {
TRange(int start, int last) : start(start), last(last) { }
bool overlap(const TRange& rhs) const
{
return last >= rhs.start && start <= rhs.last;
}
int start;
int last;
};
// An IO range is a 3-D rectangle; the set of (location, component, index) triples all lying
// within the same location range, component range, and index value. Locations don't alias unless
// all other dimensions of their range overlap.
struct TIoRange {
TIoRange(TRange location, TRange component, TBasicType basicType, int index)
: location(location), component(component), basicType(basicType), index(index) { }
bool overlap(const TIoRange& rhs) const
{
return location.overlap(rhs.location) && component.overlap(rhs.component) && index == rhs.index;
}
TRange location;
TRange component;
TBasicType basicType;
int index;
};
// An offset range is a 2-D rectangle; the set of (binding, offset) pairs all lying
// within the same binding and offset range.
struct TOffsetRange {
TOffsetRange(TRange binding, TRange offset)
: binding(binding), offset(offset) { }
bool overlap(const TOffsetRange& rhs) const
{
return binding.overlap(rhs.binding) && offset.overlap(rhs.offset);
}
TRange binding;
TRange offset;
};
#ifndef GLSLANG_WEB
// Things that need to be tracked per xfb buffer.
struct TXfbBuffer {
TXfbBuffer() : stride(TQualifier::layoutXfbStrideEnd), implicitStride(0), contains64BitType(false),
contains32BitType(false), contains16BitType(false) { }
std::vector<TRange> ranges; // byte offsets that have already been assigned
unsigned int stride;
unsigned int implicitStride;
bool contains64BitType;
bool contains32BitType;
bool contains16BitType;
};
#endif
// Track a set of strings describing how the module was processed.
// This includes command line options, transforms, etc., ideally inclusive enough
// to reproduce the steps used to transform the input source to the output.
// E.g., see SPIR-V OpModuleProcessed.
// Each "process" or "transform" uses is expressed in the form:
// process arg0 arg1 arg2 ...
// process arg0 arg1 arg2 ...
// where everything is textual, and there can be zero or more arguments
class TProcesses {
public:
TProcesses() {}
~TProcesses() {}
void addProcess(const char* process)
{
processes.push_back(process);
}
void addProcess(const std::string& process)
{
processes.push_back(process);
}
void addArgument(int arg)
{
processes.back().append(" ");
std::string argString = std::to_string(arg);
processes.back().append(argString);
}
void addArgument(const char* arg)
{
processes.back().append(" ");
processes.back().append(arg);
}
void addArgument(const std::string& arg)
{
processes.back().append(" ");
processes.back().append(arg);
}
void addIfNonZero(const char* process, int value)
{
if (value != 0) {
addProcess(process);
addArgument(value);
}
}
const std::vector<std::string>& getProcesses() const { return processes; }
private:
std::vector<std::string> processes;
};
class TSymbolTable;
class TSymbol;
class TVariable;
//
// Texture and Sampler transformation mode.
//
enum ComputeDerivativeMode {
LayoutDerivativeNone, // default layout as SPV_NV_compute_shader_derivatives not enabled
LayoutDerivativeGroupQuads, // derivative_group_quadsNV
LayoutDerivativeGroupLinear, // derivative_group_linearNV
};
class TIdMaps {
public:
TMap<TString, long long>& operator[](long long i) { return maps[i]; }
const TMap<TString, long long>& operator[](long long i) const { return maps[i]; }
private:
TMap<TString, long long> maps[EsiCount];
};
class TNumericFeatures {
public:
TNumericFeatures() : features(0) { }
TNumericFeatures(const TNumericFeatures&) = delete;
TNumericFeatures& operator=(const TNumericFeatures&) = delete;
typedef enum : unsigned int {
shader_explicit_arithmetic_types = 1 << 0,
shader_explicit_arithmetic_types_int8 = 1 << 1,
shader_explicit_arithmetic_types_int16 = 1 << 2,
shader_explicit_arithmetic_types_int32 = 1 << 3,
shader_explicit_arithmetic_types_int64 = 1 << 4,
shader_explicit_arithmetic_types_float16 = 1 << 5,
shader_explicit_arithmetic_types_float32 = 1 << 6,
shader_explicit_arithmetic_types_float64 = 1 << 7,
shader_implicit_conversions = 1 << 8,
gpu_shader_fp64 = 1 << 9,
gpu_shader_int16 = 1 << 10,
gpu_shader_half_float = 1 << 11,
} feature;
void insert(feature f) { features |= f; }
void erase(feature f) { features &= ~f; }
bool contains(feature f) const { return (features & f) != 0; }
private:
unsigned int features;
};
// MustBeAssigned wraps a T, asserting that it has been assigned with
// operator =() before attempting to read with operator T() or operator ->().
// Used to catch cases where fields are read before they have been assigned.
template<typename T>
class MustBeAssigned
{
public:
MustBeAssigned() = default;
MustBeAssigned(const T& v) : value(v) {}
operator const T&() const { assert(isSet); return value; }
const T* operator ->() const { assert(isSet); return &value; }
MustBeAssigned& operator = (const T& v) { value = v; isSet = true; return *this; }
private:
T value;
bool isSet = false;
};
//
// Set of helper functions to help parse and build the tree.
//
class TIntermediate {
public:
explicit TIntermediate(EShLanguage l, int v = 0, EProfile p = ENoProfile) :
language(l),
#ifndef GLSLANG_ANGLE
profile(p), version(v),
#endif
treeRoot(0),
resources(TBuiltInResource{}),
numEntryPoints(0), numErrors(0), numPushConstants(0), recursive(false),
invertY(false),
dxPositionW(false),
enhancedMsgs(false),
debugInfo(false),
useStorageBuffer(false),
invariantAll(false),
nanMinMaxClamp(false),
depthReplacing(false),
stencilReplacing(false),
uniqueId(0),
globalUniformBlockName(""),
atomicCounterBlockName(""),
globalUniformBlockSet(TQualifier::layoutSetEnd),
globalUniformBlockBinding(TQualifier::layoutBindingEnd),
atomicCounterBlockSet(TQualifier::layoutSetEnd)
#ifndef GLSLANG_WEB
,
implicitThisName("@this"), implicitCounterName("@count"),
source(EShSourceNone),
useVulkanMemoryModel(false),
invocations(TQualifier::layoutNotSet), vertices(TQualifier::layoutNotSet),
inputPrimitive(ElgNone), outputPrimitive(ElgNone),
pixelCenterInteger(false), originUpperLeft(false),texCoordBuiltinRedeclared(false),
vertexSpacing(EvsNone), vertexOrder(EvoNone), interlockOrdering(EioNone), pointMode(false), earlyFragmentTests(false),
postDepthCoverage(false), earlyAndLateFragmentTestsAMD(false), depthLayout(EldNone), stencilLayout(ElsNone),
hlslFunctionality1(false),
blendEquations(0), xfbMode(false), multiStream(false),
layoutOverrideCoverage(false),
geoPassthroughEXT(false),
numShaderRecordBlocks(0),
computeDerivativeMode(LayoutDerivativeNone),
primitives(TQualifier::layoutNotSet),
numTaskNVBlocks(0),
layoutPrimitiveCulling(false),
numTaskEXTPayloads(0),
autoMapBindings(false),
autoMapLocations(false),
flattenUniformArrays(false),
useUnknownFormat(false),
hlslOffsets(false),
hlslIoMapping(false),
useVariablePointers(false),
textureSamplerTransformMode(EShTexSampTransKeep),
needToLegalize(false),
binaryDoubleOutput(false),
subgroupUniformControlFlow(false),
usePhysicalStorageBuffer(false),
spirvRequirement(nullptr),
spirvExecutionMode(nullptr),
uniformLocationBase(0)
#endif
{
localSize[0] = 1;
localSize[1] = 1;
localSize[2] = 1;
localSizeNotDefault[0] = false;
localSizeNotDefault[1] = false;
localSizeNotDefault[2] = false;
localSizeSpecId[0] = TQualifier::layoutNotSet;
localSizeSpecId[1] = TQualifier::layoutNotSet;
localSizeSpecId[2] = TQualifier::layoutNotSet;
#ifndef GLSLANG_WEB
xfbBuffers.resize(TQualifier::layoutXfbBufferEnd);
shiftBinding.fill(0);
#endif
}
void setVersion(int v)
{
#ifndef GLSLANG_ANGLE
version = v;
#endif
}
void setProfile(EProfile p)
{
#ifndef GLSLANG_ANGLE
profile = p;
#endif
}
int getVersion() const { return version; }
EProfile getProfile() const { return profile; }
void setSpv(const SpvVersion& s)
{
spvVersion = s;
// client processes
if (spvVersion.vulkan > 0)
processes.addProcess("client vulkan100");
if (spvVersion.openGl > 0)
processes.addProcess("client opengl100");
// target SPV
switch (spvVersion.spv) {
case 0:
break;
case EShTargetSpv_1_0:
break;
case EShTargetSpv_1_1:
processes.addProcess("target-env spirv1.1");
break;
case EShTargetSpv_1_2:
processes.addProcess("target-env spirv1.2");
break;
case EShTargetSpv_1_3:
processes.addProcess("target-env spirv1.3");
break;
case EShTargetSpv_1_4:
processes.addProcess("target-env spirv1.4");
break;
case EShTargetSpv_1_5:
processes.addProcess("target-env spirv1.5");
break;
case EShTargetSpv_1_6:
processes.addProcess("target-env spirv1.6");
break;
default:
processes.addProcess("target-env spirvUnknown");
break;
}
// target-environment processes
switch (spvVersion.vulkan) {
case 0:
break;
case EShTargetVulkan_1_0:
processes.addProcess("target-env vulkan1.0");
break;
case EShTargetVulkan_1_1:
processes.addProcess("target-env vulkan1.1");
break;
case EShTargetVulkan_1_2:
processes.addProcess("target-env vulkan1.2");
break;
case EShTargetVulkan_1_3:
processes.addProcess("target-env vulkan1.3");
break;
default:
processes.addProcess("target-env vulkanUnknown");
break;
}
if (spvVersion.openGl > 0)
processes.addProcess("target-env opengl");
}
const SpvVersion& getSpv() const { return spvVersion; }
EShLanguage getStage() const { return language; }
void addRequestedExtension(const char* extension) { requestedExtensions.insert(extension); }
const std::set<std::string>& getRequestedExtensions() const { return requestedExtensions; }
bool isRayTracingStage() const {
return language >= EShLangRayGen && language <= EShLangCallableNV;
}
void setTreeRoot(TIntermNode* r) { treeRoot = r; }
TIntermNode* getTreeRoot() const { return treeRoot; }
void incrementEntryPointCount() { ++numEntryPoints; }
int getNumEntryPoints() const { return numEntryPoints; }
int getNumErrors() const { return numErrors; }
void addPushConstantCount() { ++numPushConstants; }
void setLimits(const TBuiltInResource& r) { resources = r; }
const TBuiltInResource& getLimits() const { return resources; }
bool postProcess(TIntermNode*, EShLanguage);
void removeTree();
void setEntryPointName(const char* ep)
{
entryPointName = ep;
processes.addProcess("entry-point");
processes.addArgument(entryPointName);
}
void setEntryPointMangledName(const char* ep) { entryPointMangledName = ep; }
const std::string& getEntryPointName() const { return entryPointName; }
const std::string& getEntryPointMangledName() const { return entryPointMangledName; }
void setDebugInfo(bool debuginfo)
{
debugInfo = debuginfo;
}
bool getDebugInfo() const { return debugInfo; }
void setInvertY(bool invert)
{
invertY = invert;
if (invertY)
processes.addProcess("invert-y");
}
bool getInvertY() const { return invertY; }
void setDxPositionW(bool dxPosW)
{
dxPositionW = dxPosW;
if (dxPositionW)
processes.addProcess("dx-position-w");
}
bool getDxPositionW() const { return dxPositionW; }
void setEnhancedMsgs()
{
enhancedMsgs = true;
}
bool getEnhancedMsgs() const { return enhancedMsgs && getSource() == EShSourceGlsl; }
#ifdef ENABLE_HLSL
void setSource(EShSource s) { source = s; }
EShSource getSource() const { return source; }
#else
void setSource(EShSource s) { assert(s == EShSourceGlsl); (void)s; }
EShSource getSource() const { return EShSourceGlsl; }
#endif
bool isRecursive() const { return recursive; }
TIntermSymbol* addSymbol(const TVariable&);
TIntermSymbol* addSymbol(const TVariable&, const TSourceLoc&);
TIntermSymbol* addSymbol(const TType&, const TSourceLoc&);
TIntermSymbol* addSymbol(const TIntermSymbol&);
TIntermTyped* addConversion(TOperator, const TType&, TIntermTyped*);
std::tuple<TIntermTyped*, TIntermTyped*> addPairConversion(TOperator op, TIntermTyped* node0, TIntermTyped* node1);
TIntermTyped* addUniShapeConversion(TOperator, const TType&, TIntermTyped*);
TIntermTyped* addConversion(TBasicType convertTo, TIntermTyped* node) const;
void addBiShapeConversion(TOperator, TIntermTyped*& lhsNode, TIntermTyped*& rhsNode);
TIntermTyped* addShapeConversion(const TType&, TIntermTyped*);
TIntermTyped* addBinaryMath(TOperator, TIntermTyped* left, TIntermTyped* right, const TSourceLoc&);
TIntermTyped* addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc&);
TIntermTyped* addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, const TSourceLoc&);
TIntermTyped* addUnaryMath(TOperator, TIntermTyped* child, const TSourceLoc&);
TIntermTyped* addBuiltInFunctionCall(const TSourceLoc& line, TOperator, bool unary, TIntermNode*, const TType& returnType);
bool canImplicitlyPromote(TBasicType from, TBasicType to, TOperator op = EOpNull) const;
bool isIntegralPromotion(TBasicType from, TBasicType to) const;
bool isFPPromotion(TBasicType from, TBasicType to) const;
bool isIntegralConversion(TBasicType from, TBasicType to) const;
bool isFPConversion(TBasicType from, TBasicType to) const;
bool isFPIntegralConversion(TBasicType from, TBasicType to) const;
TOperator mapTypeToConstructorOp(const TType&) const;
TIntermAggregate* growAggregate(TIntermNode* left, TIntermNode* right);
TIntermAggregate* growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc&);
TIntermAggregate* makeAggregate(TIntermNode* node);
TIntermAggregate* makeAggregate(TIntermNode* node, const TSourceLoc&);
TIntermAggregate* makeAggregate(const TSourceLoc&);
TIntermTyped* setAggregateOperator(TIntermNode*, TOperator, const TType& type, const TSourceLoc&);
bool areAllChildConst(TIntermAggregate* aggrNode);
TIntermSelection* addSelection(TIntermTyped* cond, TIntermNodePair code, const TSourceLoc&);
TIntermTyped* addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc&);
TIntermTyped* addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc&);
TIntermTyped* addMethod(TIntermTyped*, const TType&, const TString*, const TSourceLoc&);
TIntermConstantUnion* addConstantUnion(const TConstUnionArray&, const TType&, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(signed char, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(unsigned char, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(signed short, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(unsigned short, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(int, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(unsigned int, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(long long, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(unsigned long long, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(bool, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(double, TBasicType, const TSourceLoc&, bool literal = false) const;
TIntermConstantUnion* addConstantUnion(const TString*, const TSourceLoc&, bool literal = false) const;
TIntermTyped* promoteConstantUnion(TBasicType, TIntermConstantUnion*) const;
bool parseConstTree(TIntermNode*, TConstUnionArray, TOperator, const TType&, bool singleConstantParam = false);
TIntermLoop* addLoop(TIntermNode*, TIntermTyped*, TIntermTyped*, bool testFirst, const TSourceLoc&);
TIntermAggregate* addForLoop(TIntermNode*, TIntermNode*, TIntermTyped*, TIntermTyped*, bool testFirst,
const TSourceLoc&, TIntermLoop*&);
TIntermBranch* addBranch(TOperator, const TSourceLoc&);
TIntermBranch* addBranch(TOperator, TIntermTyped*, const TSourceLoc&);
template<typename selectorType> TIntermTyped* addSwizzle(TSwizzleSelectors<selectorType>&, const TSourceLoc&);
// Low level functions to add nodes (no conversions or other higher level transformations)
// If a type is provided, the node's type will be set to it.
TIntermBinary* addBinaryNode(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc&) const;
TIntermBinary* addBinaryNode(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc&,
const TType&) const;
TIntermUnary* addUnaryNode(TOperator op, TIntermTyped* child, const TSourceLoc&) const;
TIntermUnary* addUnaryNode(TOperator op, TIntermTyped* child, const TSourceLoc&, const TType&) const;
// Constant folding (in Constant.cpp)
TIntermTyped* fold(TIntermAggregate* aggrNode);
TIntermTyped* foldConstructor(TIntermAggregate* aggrNode);
TIntermTyped* foldDereference(TIntermTyped* node, int index, const TSourceLoc&);
TIntermTyped* foldSwizzle(TIntermTyped* node, TSwizzleSelectors<TVectorSelector>& fields, const TSourceLoc&);
// Tree ops
static const TIntermTyped* findLValueBase(const TIntermTyped*, bool swizzleOkay , bool BufferReferenceOk = false);
// Linkage related
void addSymbolLinkageNodes(TIntermAggregate*& linkage, EShLanguage, TSymbolTable&);
void addSymbolLinkageNode(TIntermAggregate*& linkage, const TSymbol&);
TIntermAggregate* findLinkerObjects() const;
void setGlobalUniformBlockName(const char* name) { globalUniformBlockName = std::string(name); }
const char* getGlobalUniformBlockName() const { return globalUniformBlockName.c_str(); }
void setGlobalUniformSet(unsigned int set) { globalUniformBlockSet = set; }
unsigned int getGlobalUniformSet() const { return globalUniformBlockSet; }
void setGlobalUniformBinding(unsigned int binding) { globalUniformBlockBinding = binding; }
unsigned int getGlobalUniformBinding() const { return globalUniformBlockBinding; }
void setAtomicCounterBlockName(const char* name) { atomicCounterBlockName = std::string(name); }
const char* getAtomicCounterBlockName() const { return atomicCounterBlockName.c_str(); }
void setAtomicCounterBlockSet(unsigned int set) { atomicCounterBlockSet = set; }
unsigned int getAtomicCounterBlockSet() const { return atomicCounterBlockSet; }
void setUseStorageBuffer() { useStorageBuffer = true; }
bool usingStorageBuffer() const { return useStorageBuffer; }
void setInvariantAll() { invariantAll = true; }
bool isInvariantAll() const { return invariantAll; }
void setDepthReplacing() { depthReplacing = true; }
bool isDepthReplacing() const { return depthReplacing; }
void setStencilReplacing() { stencilReplacing = true; }
bool isStencilReplacing() const { return stencilReplacing; }
bool setLocalSize(int dim, int size)
{
if (localSizeNotDefault[dim])
return size == localSize[dim];
localSizeNotDefault[dim] = true;
localSize[dim] = size;
return true;
}
unsigned int getLocalSize(int dim) const { return localSize[dim]; }
bool isLocalSizeSet() const
{
// Return true if any component has been set (i.e. any component is not default).
return localSizeNotDefault[0] || localSizeNotDefault[1] || localSizeNotDefault[2];
}
bool setLocalSizeSpecId(int dim, int id)
{
if (localSizeSpecId[dim] != TQualifier::layoutNotSet)
return id == localSizeSpecId[dim];
localSizeSpecId[dim] = id;
return true;
}
int getLocalSizeSpecId(int dim) const { return localSizeSpecId[dim]; }
bool isLocalSizeSpecialized() const
{
// Return true if any component has been specialized.
return localSizeSpecId[0] != TQualifier::layoutNotSet ||
localSizeSpecId[1] != TQualifier::layoutNotSet ||
localSizeSpecId[2] != TQualifier::layoutNotSet;
}
#ifdef GLSLANG_WEB
void output(TInfoSink&, bool tree) { }
bool isEsProfile() const { return false; }
bool getXfbMode() const { return false; }
bool isMultiStream() const { return false; }
TLayoutGeometry getOutputPrimitive() const { return ElgNone; }
bool getPostDepthCoverage() const { return false; }
bool getEarlyFragmentTests() const { return false; }
TLayoutDepth getDepth() const { return EldNone; }
bool getPixelCenterInteger() const { return false; }
void setOriginUpperLeft() { }
bool getOriginUpperLeft() const { return true; }
TInterlockOrdering getInterlockOrdering() const { return EioNone; }
bool getAutoMapBindings() const { return false; }
bool getAutoMapLocations() const { return false; }
int getNumPushConstants() const { return 0; }
void addShaderRecordCount() { }
void addTaskNVCount() { }
void addTaskPayloadEXTCount() { }
void setUseVulkanMemoryModel() { }
bool usingVulkanMemoryModel() const { return false; }
bool usingPhysicalStorageBuffer() const { return false; }
bool usingVariablePointers() const { return false; }
unsigned getXfbStride(int buffer) const { return 0; }
bool hasLayoutDerivativeModeNone() const { return false; }
ComputeDerivativeMode getLayoutDerivativeModeNone() const { return LayoutDerivativeNone; }
#else
void output(TInfoSink&, bool tree);
bool isEsProfile() const { return profile == EEsProfile; }
void setShiftBinding(TResourceType res, unsigned int shift)
{
shiftBinding[res] = shift;
const char* name = getResourceName(res);
if (name != nullptr)
processes.addIfNonZero(name, shift);
}
unsigned int getShiftBinding(TResourceType res) const { return shiftBinding[res]; }
void setShiftBindingForSet(TResourceType res, unsigned int shift, unsigned int set)
{
if (shift == 0) // ignore if there's no shift: it's a no-op.
return;
shiftBindingForSet[res][set] = shift;
const char* name = getResourceName(res);
if (name != nullptr) {
processes.addProcess(name);
processes.addArgument(shift);
processes.addArgument(set);
}
}
int getShiftBindingForSet(TResourceType res, unsigned int set) const
{
const auto shift = shiftBindingForSet[res].find(set);
return shift == shiftBindingForSet[res].end() ? -1 : shift->second;
}
bool hasShiftBindingForSet(TResourceType res) const { return !shiftBindingForSet[res].empty(); }
void setResourceSetBinding(const std::vector<std::string>& shift)
{
resourceSetBinding = shift;
if (shift.size() > 0) {
processes.addProcess("resource-set-binding");
for (int s = 0; s < (int)shift.size(); ++s)
processes.addArgument(shift[s]);
}
}
const std::vector<std::string>& getResourceSetBinding() const { return resourceSetBinding; }
void setAutoMapBindings(bool map)
{
autoMapBindings = map;
if (autoMapBindings)
processes.addProcess("auto-map-bindings");
}
bool getAutoMapBindings() const { return autoMapBindings; }
void setAutoMapLocations(bool map)
{
autoMapLocations = map;
if (autoMapLocations)
processes.addProcess("auto-map-locations");
}
bool getAutoMapLocations() const { return autoMapLocations; }
#ifdef ENABLE_HLSL
void setFlattenUniformArrays(bool flatten)
{
flattenUniformArrays = flatten;
if (flattenUniformArrays)
processes.addProcess("flatten-uniform-arrays");
}
bool getFlattenUniformArrays() const { return flattenUniformArrays; }
#endif
void setNoStorageFormat(bool b)
{
useUnknownFormat = b;
if (useUnknownFormat)
processes.addProcess("no-storage-format");
}
bool getNoStorageFormat() const { return useUnknownFormat; }
void setUseVulkanMemoryModel()
{
useVulkanMemoryModel = true;
processes.addProcess("use-vulkan-memory-model");
}
bool usingVulkanMemoryModel() const { return useVulkanMemoryModel; }
void setUsePhysicalStorageBuffer()
{
usePhysicalStorageBuffer = true;
}
bool usingPhysicalStorageBuffer() const { return usePhysicalStorageBuffer; }
void setUseVariablePointers()
{
useVariablePointers = true;
processes.addProcess("use-variable-pointers");
}
bool usingVariablePointers() const { return useVariablePointers; }
#ifdef ENABLE_HLSL
template<class T> T addCounterBufferName(const T& name) const { return name + implicitCounterName; }
bool hasCounterBufferName(const TString& name) const {
size_t len = strlen(implicitCounterName);
return name.size() > len &&
name.compare(name.size() - len, len, implicitCounterName) == 0;
}
#endif
void setTextureSamplerTransformMode(EShTextureSamplerTransformMode mode) { textureSamplerTransformMode = mode; }
int getNumPushConstants() const { return numPushConstants; }
void addShaderRecordCount() { ++numShaderRecordBlocks; }
void addTaskNVCount() { ++numTaskNVBlocks; }
void addTaskPayloadEXTCount() { ++numTaskEXTPayloads; }
bool setInvocations(int i)
{
if (invocations != TQualifier::layoutNotSet)
return invocations == i;
invocations = i;
return true;
}
int getInvocations() const { return invocations; }
bool setVertices(int m)
{
if (vertices != TQualifier::layoutNotSet)
return vertices == m;
vertices = m;
return true;
}
int getVertices() const { return vertices; }
bool setInputPrimitive(TLayoutGeometry p)
{
if (inputPrimitive != ElgNone)
return inputPrimitive == p;
inputPrimitive = p;
return true;
}
TLayoutGeometry getInputPrimitive() const { return inputPrimitive; }
bool setVertexSpacing(TVertexSpacing s)
{
if (vertexSpacing != EvsNone)
return vertexSpacing == s;
vertexSpacing = s;
return true;
}
TVertexSpacing getVertexSpacing() const { return vertexSpacing; }
bool setVertexOrder(TVertexOrder o)
{
if (vertexOrder != EvoNone)
return vertexOrder == o;
vertexOrder = o;
return true;
}
TVertexOrder getVertexOrder() const { return vertexOrder; }
void setPointMode() { pointMode = true; }
bool getPointMode() const { return pointMode; }
bool setInterlockOrdering(TInterlockOrdering o)
{
if (interlockOrdering != EioNone)
return interlockOrdering == o;
interlockOrdering = o;
return true;
}
TInterlockOrdering getInterlockOrdering() const { return interlockOrdering; }
void setXfbMode() { xfbMode = true; }
bool getXfbMode() const { return xfbMode; }
void setMultiStream() { multiStream = true; }
bool isMultiStream() const { return multiStream; }
bool setOutputPrimitive(TLayoutGeometry p)
{
if (outputPrimitive != ElgNone)
return outputPrimitive == p;
outputPrimitive = p;
return true;
}
TLayoutGeometry getOutputPrimitive() const { return outputPrimitive; }
void setPostDepthCoverage() { postDepthCoverage = true; }
bool getPostDepthCoverage() const { return postDepthCoverage; }
void setEarlyFragmentTests() { earlyFragmentTests = true; }
void setEarlyAndLateFragmentTestsAMD() { earlyAndLateFragmentTestsAMD = true; }
bool getEarlyFragmentTests() const { return earlyFragmentTests; }
bool getEarlyAndLateFragmentTestsAMD() const { return earlyAndLateFragmentTestsAMD; }
bool setDepth(TLayoutDepth d)
{
if (depthLayout != EldNone)
return depthLayout == d;
depthLayout = d;
return true;
}
bool setStencil(TLayoutStencil s)
{
if (stencilLayout != ElsNone)
return stencilLayout == s;
stencilLayout = s;
return true;
}
TLayoutDepth getDepth() const { return depthLayout; }
TLayoutStencil getStencil() const { return stencilLayout; }
void setOriginUpperLeft() { originUpperLeft = true; }
bool getOriginUpperLeft() const { return originUpperLeft; }
void setPixelCenterInteger() { pixelCenterInteger = true; }
bool getPixelCenterInteger() const { return pixelCenterInteger; }
void setTexCoordRedeclared() { texCoordBuiltinRedeclared = true; }
bool getTexCoordRedeclared() const { return texCoordBuiltinRedeclared; }
void addBlendEquation(TBlendEquationShift b) { blendEquations |= (1 << b); }
unsigned int getBlendEquations() const { return blendEquations; }
bool setXfbBufferStride(int buffer, unsigned stride)
{
if (xfbBuffers[buffer].stride != TQualifier::layoutXfbStrideEnd)
return xfbBuffers[buffer].stride == stride;
xfbBuffers[buffer].stride = stride;
return true;
}
unsigned getXfbStride(int buffer) const { return xfbBuffers[buffer].stride; }
int addXfbBufferOffset(const TType&);
unsigned int computeTypeXfbSize(const TType&, bool& contains64BitType, bool& contains32BitType, bool& contains16BitType) const;
unsigned int computeTypeXfbSize(const TType&, bool& contains64BitType) const;
void setLayoutOverrideCoverage() { layoutOverrideCoverage = true; }
bool getLayoutOverrideCoverage() const { return layoutOverrideCoverage; }
void setGeoPassthroughEXT() { geoPassthroughEXT = true; }
bool getGeoPassthroughEXT() const { return geoPassthroughEXT; }
void setLayoutDerivativeMode(ComputeDerivativeMode mode) { computeDerivativeMode = mode; }
bool hasLayoutDerivativeModeNone() const { return computeDerivativeMode != LayoutDerivativeNone; }
ComputeDerivativeMode getLayoutDerivativeModeNone() const { return computeDerivativeMode; }
void setLayoutPrimitiveCulling() { layoutPrimitiveCulling = true; }
bool getLayoutPrimitiveCulling() const { return layoutPrimitiveCulling; }
bool setPrimitives(int m)
{
if (primitives != TQualifier::layoutNotSet)
return primitives == m;
primitives = m;
return true;
}
int getPrimitives() const { return primitives; }
const char* addSemanticName(const TString& name)
{
return semanticNameSet.insert(name).first->c_str();
}
void addUniformLocationOverride(const char* nameStr, int location)
{
std::string name = nameStr;
uniformLocationOverrides[name] = location;
}
int getUniformLocationOverride(const char* nameStr) const
{
std::string name = nameStr;
auto pos = uniformLocationOverrides.find(name);
if (pos == uniformLocationOverrides.end())
return -1;
else
return pos->second;
}
void setUniformLocationBase(int base) { uniformLocationBase = base; }
int getUniformLocationBase() const { return uniformLocationBase; }
void setNeedsLegalization() { needToLegalize = true; }
bool needsLegalization() const { return needToLegalize; }
void setBinaryDoubleOutput() { binaryDoubleOutput = true; }
bool getBinaryDoubleOutput() { return binaryDoubleOutput; }
void setSubgroupUniformControlFlow() { subgroupUniformControlFlow = true; }
bool getSubgroupUniformControlFlow() const { return subgroupUniformControlFlow; }
// GL_EXT_spirv_intrinsics
void insertSpirvRequirement(const TSpirvRequirement* spirvReq);
bool hasSpirvRequirement() const { return spirvRequirement != nullptr; }
const TSpirvRequirement& getSpirvRequirement() const { return *spirvRequirement; }
void insertSpirvExecutionMode(int executionMode, const TIntermAggregate* args = nullptr);
void insertSpirvExecutionModeId(int executionMode, const TIntermAggregate* args);
bool hasSpirvExecutionMode() const { return spirvExecutionMode != nullptr; }
const TSpirvExecutionMode& getSpirvExecutionMode() const { return *spirvExecutionMode; }
#endif // GLSLANG_WEB
void addBlockStorageOverride(const char* nameStr, TBlockStorageClass backing)
{
std::string name(nameStr);
blockBackingOverrides[name] = backing;
}
TBlockStorageClass getBlockStorageOverride(const char* nameStr) const
{
std::string name = nameStr;
auto pos = blockBackingOverrides.find(name);
if (pos == blockBackingOverrides.end())
return EbsNone;
else
return pos->second;
}
#ifdef ENABLE_HLSL
void setHlslFunctionality1() { hlslFunctionality1 = true; }
bool getHlslFunctionality1() const { return hlslFunctionality1; }
void setHlslOffsets()
{
hlslOffsets = true;
if (hlslOffsets)
processes.addProcess("hlsl-offsets");
}
bool usingHlslOffsets() const { return hlslOffsets; }
void setHlslIoMapping(bool b)
{
hlslIoMapping = b;
if (hlslIoMapping)
processes.addProcess("hlsl-iomap");
}
bool usingHlslIoMapping() { return hlslIoMapping; }
#else
bool getHlslFunctionality1() const { return false; }
bool usingHlslOffsets() const { return false; }
bool usingHlslIoMapping() { return false; }
#endif
bool usingScalarBlockLayout() const {
for (auto extIt = requestedExtensions.begin(); extIt != requestedExtensions.end(); ++extIt) {
if (*extIt == E_GL_EXT_scalar_block_layout)
return true;
}
return false;
}
bool IsRequestedExtension(const char* extension) const
{
return (requestedExtensions.find(extension) != requestedExtensions.end());
}
void addToCallGraph(TInfoSink&, const TString& caller, const TString& callee);
void merge(TInfoSink&, TIntermediate&);
void finalCheck(TInfoSink&, bool keepUncalled);
void mergeGlobalUniformBlocks(TInfoSink& infoSink, TIntermediate& unit, bool mergeExistingOnly);
void mergeUniformObjects(TInfoSink& infoSink, TIntermediate& unit);
void checkStageIO(TInfoSink&, TIntermediate&);
bool buildConvertOp(TBasicType dst, TBasicType src, TOperator& convertOp) const;
TIntermTyped* createConversion(TBasicType convertTo, TIntermTyped* node) const;
void addIoAccessed(const TString& name) { ioAccessed.insert(name); }
bool inIoAccessed(const TString& name) const { return ioAccessed.find(name) != ioAccessed.end(); }
int addUsedLocation(const TQualifier&, const TType&, bool& typeCollision);
int checkLocationRange(int set, const TIoRange& range, const TType&, bool& typeCollision);
int checkLocationRT(int set, int location);
int addUsedOffsets(int binding, int offset, int numOffsets);
bool addUsedConstantId(int id);
static int computeTypeLocationSize(const TType&, EShLanguage);
static int computeTypeUniformLocationSize(const TType&);
static int getBaseAlignmentScalar(const TType&, int& size);
static int getBaseAlignment(const TType&, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor);
static int getScalarAlignment(const TType&, int& size, int& stride, bool rowMajor);
static int getMemberAlignment(const TType&, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor);
static bool improperStraddle(const TType& type, int size, int offset);
static void updateOffset(const TType& parentType, const TType& memberType, int& offset, int& memberSize);
static int getOffset(const TType& type, int index);
static int getBlockSize(const TType& blockType);
static int computeBufferReferenceTypeSize(const TType&);
static bool isIoResizeArray(const TType& type, EShLanguage language);
bool promote(TIntermOperator*);
void setNanMinMaxClamp(bool setting) { nanMinMaxClamp = setting; }
bool getNanMinMaxClamp() const { return nanMinMaxClamp; }
void setSourceFile(const char* file) { if (file != nullptr) sourceFile = file; }
const std::string& getSourceFile() const { return sourceFile; }
void addSourceText(const char* text, size_t len) { sourceText.append(text, len); }
const std::string& getSourceText() const { return sourceText; }
const std::map<std::string, std::string>& getIncludeText() const { return includeText; }
void addIncludeText(const char* name, const char* text, size_t len) { includeText[name].assign(text,len); }
void addProcesses(const std::vector<std::string>& p)
{
for (int i = 0; i < (int)p.size(); ++i)
processes.addProcess(p[i]);
}
void addProcess(const std::string& process) { processes.addProcess(process); }
void addProcessArgument(const std::string& arg) { processes.addArgument(arg); }
const std::vector<std::string>& getProcesses() const { return processes.getProcesses(); }
unsigned long long getUniqueId() const { return uniqueId; }
void setUniqueId(unsigned long long id) { uniqueId = id; }
// Certain explicit conversions are allowed conditionally
#ifdef GLSLANG_WEB
bool getArithemeticInt8Enabled() const { return false; }
bool getArithemeticInt16Enabled() const { return false; }
bool getArithemeticFloat16Enabled() const { return false; }
void updateNumericFeature(TNumericFeatures::feature f, bool on) { }
#else
bool getArithemeticInt8Enabled() const {
return numericFeatures.contains(TNumericFeatures::shader_explicit_arithmetic_types) ||
numericFeatures.contains(TNumericFeatures::shader_explicit_arithmetic_types_int8);
}
bool getArithemeticInt16Enabled() const {
return numericFeatures.contains(TNumericFeatures::shader_explicit_arithmetic_types) ||
numericFeatures.contains(TNumericFeatures::gpu_shader_int16) ||
numericFeatures.contains(TNumericFeatures::shader_explicit_arithmetic_types_int16);
}
bool getArithemeticFloat16Enabled() const {
return numericFeatures.contains(TNumericFeatures::shader_explicit_arithmetic_types) ||
numericFeatures.contains(TNumericFeatures::gpu_shader_half_float) ||
numericFeatures.contains(TNumericFeatures::shader_explicit_arithmetic_types_float16);
}
void updateNumericFeature(TNumericFeatures::feature f, bool on)
{ on ? numericFeatures.insert(f) : numericFeatures.erase(f); }
#endif
protected:
TIntermSymbol* addSymbol(long long Id, const TString&, const TType&, const TConstUnionArray&, TIntermTyped* subtree, const TSourceLoc&);
void error(TInfoSink& infoSink, const char*, EShLanguage unitStage = EShLangCount);
void warn(TInfoSink& infoSink, const char*, EShLanguage unitStage = EShLangCount);
void mergeCallGraphs(TInfoSink&, TIntermediate&);
void mergeModes(TInfoSink&, TIntermediate&);
void mergeTrees(TInfoSink&, TIntermediate&);
void seedIdMap(TIdMaps& idMaps, long long& IdShift);
void remapIds(const TIdMaps& idMaps, long long idShift, TIntermediate&);
void mergeBodies(TInfoSink&, TIntermSequence& globals, const TIntermSequence& unitGlobals);
void mergeLinkerObjects(TInfoSink&, TIntermSequence& linkerObjects, const TIntermSequence& unitLinkerObjects, EShLanguage);
void mergeBlockDefinitions(TInfoSink&, TIntermSymbol* block, TIntermSymbol* unitBlock, TIntermediate* unitRoot);
void mergeImplicitArraySizes(TType&, const TType&);
void mergeErrorCheck(TInfoSink&, const TIntermSymbol&, const TIntermSymbol&, EShLanguage);
void checkCallGraphCycles(TInfoSink&);
void checkCallGraphBodies(TInfoSink&, bool keepUncalled);
void inOutLocationCheck(TInfoSink&);
void sharedBlockCheck(TInfoSink&);
bool userOutputUsed() const;
bool isSpecializationOperation(const TIntermOperator&) const;
bool isNonuniformPropagating(TOperator) const;
bool promoteUnary(TIntermUnary&);
bool promoteBinary(TIntermBinary&);
void addSymbolLinkageNode(TIntermAggregate*& linkage, TSymbolTable&, const TString&);
bool promoteAggregate(TIntermAggregate&);
void pushSelector(TIntermSequence&, const TVectorSelector&, const TSourceLoc&);
void pushSelector(TIntermSequence&, const TMatrixSelector&, const TSourceLoc&);
bool specConstantPropagates(const TIntermTyped&, const TIntermTyped&);
void performTextureUpgradeAndSamplerRemovalTransformation(TIntermNode* root);
bool isConversionAllowed(TOperator op, TIntermTyped* node) const;
std::tuple<TBasicType, TBasicType> getConversionDestinationType(TBasicType type0, TBasicType type1, TOperator op) const;
static const char* getResourceName(TResourceType);
const EShLanguage language; // stage, known at construction time
std::string entryPointName;
std::string entryPointMangledName;
typedef std::list<TCall> TGraph;
TGraph callGraph;
#ifdef GLSLANG_ANGLE
const EProfile profile = ECoreProfile;
const int version = 450;
#else
EProfile profile; // source profile
int version; // source version
#endif
SpvVersion spvVersion;
TIntermNode* treeRoot;
std::set<std::string> requestedExtensions; // cumulation of all enabled or required extensions; not connected to what subset of the shader used them
MustBeAssigned<TBuiltInResource> resources;
int numEntryPoints;
int numErrors;
int numPushConstants;
bool recursive;
bool invertY;
bool dxPositionW;
bool enhancedMsgs;
bool debugInfo;
bool useStorageBuffer;
bool invariantAll;
bool nanMinMaxClamp; // true if desiring min/max/clamp to favor non-NaN over NaN
bool depthReplacing;
bool stencilReplacing;
int localSize[3];
bool localSizeNotDefault[3];
int localSizeSpecId[3];
unsigned long long uniqueId;
std::string globalUniformBlockName;
std::string atomicCounterBlockName;
unsigned int globalUniformBlockSet;
unsigned int globalUniformBlockBinding;
unsigned int atomicCounterBlockSet;
#ifndef GLSLANG_WEB
public:
const char* const implicitThisName;
const char* const implicitCounterName;
protected:
EShSource source; // source language, known a bit later
bool useVulkanMemoryModel;
int invocations;
int vertices;
TLayoutGeometry inputPrimitive;
TLayoutGeometry outputPrimitive;
bool pixelCenterInteger;
bool originUpperLeft;
bool texCoordBuiltinRedeclared;
TVertexSpacing vertexSpacing;
TVertexOrder vertexOrder;
TInterlockOrdering interlockOrdering;
bool pointMode;
bool earlyFragmentTests;
bool postDepthCoverage;
bool earlyAndLateFragmentTestsAMD;
TLayoutDepth depthLayout;
TLayoutStencil stencilLayout;
bool hlslFunctionality1;
int blendEquations; // an 'or'ing of masks of shifts of TBlendEquationShift
bool xfbMode;
std::vector<TXfbBuffer> xfbBuffers; // all the data we need to track per xfb buffer
bool multiStream;
bool layoutOverrideCoverage;
bool geoPassthroughEXT;
int numShaderRecordBlocks;
ComputeDerivativeMode computeDerivativeMode;
int primitives;
int numTaskNVBlocks;
bool layoutPrimitiveCulling;
int numTaskEXTPayloads;
// Base shift values
std::array<unsigned int, EResCount> shiftBinding;
// Per-descriptor-set shift values
std::array<std::map<int, int>, EResCount> shiftBindingForSet;
std::vector<std::string> resourceSetBinding;
bool autoMapBindings;
bool autoMapLocations;
bool flattenUniformArrays;
bool useUnknownFormat;
bool hlslOffsets;
bool hlslIoMapping;
bool useVariablePointers;
std::set<TString> semanticNameSet;
EShTextureSamplerTransformMode textureSamplerTransformMode;
bool needToLegalize;
bool binaryDoubleOutput;
bool subgroupUniformControlFlow;
bool usePhysicalStorageBuffer;
TSpirvRequirement* spirvRequirement;
TSpirvExecutionMode* spirvExecutionMode;
std::unordered_map<std::string, int> uniformLocationOverrides;
int uniformLocationBase;
TNumericFeatures numericFeatures;
#endif
std::unordered_map<std::string, TBlockStorageClass> blockBackingOverrides;
std::unordered_set<int> usedConstantId; // specialization constant ids used
std::vector<TOffsetRange> usedAtomics; // sets of bindings used by atomic counters
std::vector<TIoRange> usedIo[4]; // sets of used locations, one for each of in, out, uniform, and buffers
std::vector<TRange> usedIoRT[2]; // sets of used location, one for rayPayload/rayPayloadIN and other
// for callableData/callableDataIn
// set of names of statically read/written I/O that might need extra checking
std::set<TString> ioAccessed;
// source code of shader, useful as part of debug information
std::string sourceFile;
std::string sourceText;
// Included text. First string is a name, second is the included text
std::map<std::string, std::string> includeText;
// for OpModuleProcessed, or equivalent
TProcesses processes;
private:
void operator=(TIntermediate&); // prevent assignments
};
} // end namespace glslang
#endif // _LOCAL_INTERMEDIATE_INCLUDED_