virtualx-engine/thirdparty/recastnavigation/Recast/Source/RecastMeshDetail.cpp
Graham Pentheny 36de150c74 Updated Recast to 4fef044
In some cases Godot can generate input parameters to Recast that cause it to crash.  Specifically when baking NavigationMeshes for input meshes that have axis extents less than half the NavigationMesh CellSize.

This has been fixed upstream in Recast (in 3901c5854c).  Updating Godot's Recast integration fixes this crash issue in Godot as well.
2022-11-27 19:22:33 -05:00

1464 lines
39 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
static const unsigned RC_UNSET_HEIGHT = 0xffff;
struct rcHeightPatch
{
inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
inline ~rcHeightPatch() { rcFree(data); }
unsigned short* data;
int xmin, ymin, width, height;
};
inline float vdot2(const float* a, const float* b)
{
return a[0]*b[0] + a[2]*b[2];
}
inline float vdistSq2(const float* p, const float* q)
{
const float dx = q[0] - p[0];
const float dy = q[2] - p[2];
return dx*dx + dy*dy;
}
inline float vdist2(const float* p, const float* q)
{
return sqrtf(vdistSq2(p,q));
}
inline float vcross2(const float* p1, const float* p2, const float* p3)
{
const float u1 = p2[0] - p1[0];
const float v1 = p2[2] - p1[2];
const float u2 = p3[0] - p1[0];
const float v2 = p3[2] - p1[2];
return u1 * v2 - v1 * u2;
}
static bool circumCircle(const float* p1, const float* p2, const float* p3,
float* c, float& r)
{
static const float EPS = 1e-6f;
// Calculate the circle relative to p1, to avoid some precision issues.
const float v1[3] = {0,0,0};
float v2[3], v3[3];
rcVsub(v2, p2,p1);
rcVsub(v3, p3,p1);
const float cp = vcross2(v1, v2, v3);
if (fabsf(cp) > EPS)
{
const float v1Sq = vdot2(v1,v1);
const float v2Sq = vdot2(v2,v2);
const float v3Sq = vdot2(v3,v3);
c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
c[1] = 0;
c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
r = vdist2(c, v1);
rcVadd(c, c, p1);
return true;
}
rcVcopy(c, p1);
r = 0;
return false;
}
static float distPtTri(const float* p, const float* a, const float* b, const float* c)
{
float v0[3], v1[3], v2[3];
rcVsub(v0, c,a);
rcVsub(v1, b,a);
rcVsub(v2, p,a);
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
const float dot11 = vdot2(v1, v1);
const float dot12 = vdot2(v1, v2);
// Compute barycentric coordinates
const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// If point lies inside the triangle, return interpolated y-coord.
static const float EPS = 1e-4f;
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
{
const float y = a[1] + v0[1]*u + v1[1]*v;
return fabsf(y-p[1]);
}
return FLT_MAX;
}
static float distancePtSeg(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
float pqy = q[1] - p[1];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dy = pt[1] - p[1];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqy*pqy + pqz*pqz;
float t = pqx*dx + pqy*dy + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dy = p[1] + t*pqy - pt[1];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dy*dy + dz*dz;
}
static float distancePtSeg2d(const float* pt, const float* p, const float* q)
{
float pqx = q[0] - p[0];
float pqz = q[2] - p[2];
float dx = pt[0] - p[0];
float dz = pt[2] - p[2];
float d = pqx*pqx + pqz*pqz;
float t = pqx*dx + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = p[0] + t*pqx - pt[0];
dz = p[2] + t*pqz - pt[2];
return dx*dx + dz*dz;
}
static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
{
float dmin = FLT_MAX;
for (int i = 0; i < ntris; ++i)
{
const float* va = &verts[tris[i*4+0]*3];
const float* vb = &verts[tris[i*4+1]*3];
const float* vc = &verts[tris[i*4+2]*3];
float d = distPtTri(p, va,vb,vc);
if (d < dmin)
dmin = d;
}
if (dmin == FLT_MAX) return -1;
return dmin;
}
static float distToPoly(int nvert, const float* verts, const float* p)
{
float dmin = FLT_MAX;
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++)
{
const float* vi = &verts[i*3];
const float* vj = &verts[j*3];
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
c = !c;
dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
}
return c ? -dmin : dmin;
}
static unsigned short getHeight(const float fx, const float fy, const float fz,
const float /*cs*/, const float ics, const float ch,
const int radius, const rcHeightPatch& hp)
{
int ix = (int)floorf(fx*ics + 0.01f);
int iz = (int)floorf(fz*ics + 0.01f);
ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
unsigned short h = hp.data[ix+iz*hp.width];
if (h == RC_UNSET_HEIGHT)
{
// Special case when data might be bad.
// Walk adjacent cells in a spiral up to 'radius', and look
// for a pixel which has a valid height.
int x = 1, z = 0, dx = 1, dz = 0;
int maxSize = radius * 2 + 1;
int maxIter = maxSize * maxSize - 1;
int nextRingIterStart = 8;
int nextRingIters = 16;
float dmin = FLT_MAX;
for (int i = 0; i < maxIter; i++)
{
const int nx = ix + x;
const int nz = iz + z;
if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
{
const unsigned short nh = hp.data[nx + nz*hp.width];
if (nh != RC_UNSET_HEIGHT)
{
const float d = fabsf(nh*ch - fy);
if (d < dmin)
{
h = nh;
dmin = d;
}
}
}
// We are searching in a grid which looks approximately like this:
// __________
// |2 ______ 2|
// | |1 __ 1| |
// | | |__| | |
// | |______| |
// |__________|
// We want to find the best height as close to the center cell as possible. This means that
// if we find a height in one of the neighbor cells to the center, we don't want to
// expand further out than the 8 neighbors - we want to limit our search to the closest
// of these "rings", but the best height in the ring.
// For example, the center is just 1 cell. We checked that at the entrance to the function.
// The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
// The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
// can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
// Here we detect if we are about to enter the next ring, and if we are and we have found
// a height, we abort the search.
if (i + 1 == nextRingIterStart)
{
if (h != RC_UNSET_HEIGHT)
break;
nextRingIterStart += nextRingIters;
nextRingIters += 8;
}
if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
{
int tmp = dx;
dx = -dz;
dz = tmp;
}
x += dx;
z += dz;
}
}
return h;
}
enum EdgeValues
{
EV_UNDEF = -1,
EV_HULL = -2
};
static int findEdge(const int* edges, int nedges, int s, int t)
{
for (int i = 0; i < nedges; i++)
{
const int* e = &edges[i*4];
if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
return i;
}
return EV_UNDEF;
}
static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
{
if (nedges >= maxEdges)
{
ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
return EV_UNDEF;
}
// Add edge if not already in the triangulation.
int e = findEdge(edges, nedges, s, t);
if (e == EV_UNDEF)
{
int* edge = &edges[nedges*4];
edge[0] = s;
edge[1] = t;
edge[2] = l;
edge[3] = r;
return nedges++;
}
else
{
return EV_UNDEF;
}
}
static void updateLeftFace(int* e, int s, int t, int f)
{
if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
e[2] = f;
else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
e[3] = f;
}
static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
{
const float a1 = vcross2(a, b, d);
const float a2 = vcross2(a, b, c);
if (a1*a2 < 0.0f)
{
float a3 = vcross2(c, d, a);
float a4 = a3 + a2 - a1;
if (a3 * a4 < 0.0f)
return 1;
}
return 0;
}
static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
{
for (int i = 0; i < nedges; ++i)
{
const int s0 = edges[i*4+0];
const int t0 = edges[i*4+1];
// Same or connected edges do not overlap.
if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
continue;
if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
return true;
}
return false;
}
static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
{
static const float EPS = 1e-5f;
int* edge = &edges[e*4];
// Cache s and t.
int s,t;
if (edge[2] == EV_UNDEF)
{
s = edge[0];
t = edge[1];
}
else if (edge[3] == EV_UNDEF)
{
s = edge[1];
t = edge[0];
}
else
{
// Edge already completed.
return;
}
// Find best point on left of edge.
int pt = npts;
float c[3] = {0,0,0};
float r = -1;
for (int u = 0; u < npts; ++u)
{
if (u == s || u == t) continue;
if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
{
if (r < 0)
{
// The circle is not updated yet, do it now.
pt = u;
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
continue;
}
const float d = vdist2(c, &pts[u*3]);
const float tol = 0.001f;
if (d > r*(1+tol))
{
// Outside current circumcircle, skip.
continue;
}
else if (d < r*(1-tol))
{
// Inside safe circumcircle, update circle.
pt = u;
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
}
else
{
// Inside epsilon circum circle, do extra tests to make sure the edge is valid.
// s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
if (overlapEdges(pts, edges, nedges, s,u))
continue;
if (overlapEdges(pts, edges, nedges, t,u))
continue;
// Edge is valid.
pt = u;
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
}
}
}
// Add new triangle or update edge info if s-t is on hull.
if (pt < npts)
{
// Update face information of edge being completed.
updateLeftFace(&edges[e*4], s, t, nfaces);
// Add new edge or update face info of old edge.
e = findEdge(edges, nedges, pt, s);
if (e == EV_UNDEF)
addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
else
updateLeftFace(&edges[e*4], pt, s, nfaces);
// Add new edge or update face info of old edge.
e = findEdge(edges, nedges, t, pt);
if (e == EV_UNDEF)
addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
else
updateLeftFace(&edges[e*4], t, pt, nfaces);
nfaces++;
}
else
{
updateLeftFace(&edges[e*4], s, t, EV_HULL);
}
}
static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
const int nhull, const int* hull,
rcIntArray& tris, rcIntArray& edges)
{
int nfaces = 0;
int nedges = 0;
const int maxEdges = npts*10;
edges.resize(maxEdges*4);
for (int i = 0, j = nhull-1; i < nhull; j=i++)
addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
int currentEdge = 0;
while (currentEdge < nedges)
{
if (edges[currentEdge*4+2] == EV_UNDEF)
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
if (edges[currentEdge*4+3] == EV_UNDEF)
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
currentEdge++;
}
// Create tris
tris.resize(nfaces*4);
for (int i = 0; i < nfaces*4; ++i)
tris[i] = -1;
for (int i = 0; i < nedges; ++i)
{
const int* e = &edges[i*4];
if (e[3] >= 0)
{
// Left face
int* t = &tris[e[3]*4];
if (t[0] == -1)
{
t[0] = e[0];
t[1] = e[1];
}
else if (t[0] == e[1])
t[2] = e[0];
else if (t[1] == e[0])
t[2] = e[1];
}
if (e[2] >= 0)
{
// Right
int* t = &tris[e[2]*4];
if (t[0] == -1)
{
t[0] = e[1];
t[1] = e[0];
}
else if (t[0] == e[0])
t[2] = e[1];
else if (t[1] == e[1])
t[2] = e[0];
}
}
for (int i = 0; i < tris.size()/4; ++i)
{
int* t = &tris[i*4];
if (t[0] == -1 || t[1] == -1 || t[2] == -1)
{
ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
t[0] = tris[tris.size()-4];
t[1] = tris[tris.size()-3];
t[2] = tris[tris.size()-2];
t[3] = tris[tris.size()-1];
tris.resize(tris.size()-4);
--i;
}
}
}
// Calculate minimum extend of the polygon.
static float polyMinExtent(const float* verts, const int nverts)
{
float minDist = FLT_MAX;
for (int i = 0; i < nverts; i++)
{
const int ni = (i+1) % nverts;
const float* p1 = &verts[i*3];
const float* p2 = &verts[ni*3];
float maxEdgeDist = 0;
for (int j = 0; j < nverts; j++)
{
if (j == i || j == ni) continue;
float d = distancePtSeg2d(&verts[j*3], p1,p2);
maxEdgeDist = rcMax(maxEdgeDist, d);
}
minDist = rcMin(minDist, maxEdgeDist);
}
return rcSqrt(minDist);
}
// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris)
{
int start = 0, left = 1, right = nhull-1;
// Start from an ear with shortest perimeter.
// This tends to favor well formed triangles as starting point.
float dmin = FLT_MAX;
for (int i = 0; i < nhull; i++)
{
if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges
int pi = prev(i, nhull);
int ni = next(i, nhull);
const float* pv = &verts[hull[pi]*3];
const float* cv = &verts[hull[i]*3];
const float* nv = &verts[hull[ni]*3];
const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
if (d < dmin)
{
start = i;
left = ni;
right = pi;
dmin = d;
}
}
// Add first triangle
tris.push(hull[start]);
tris.push(hull[left]);
tris.push(hull[right]);
tris.push(0);
// Triangulate the polygon by moving left or right,
// depending on which triangle has shorter perimeter.
// This heuristic was chose emprically, since it seems
// handle tesselated straight edges well.
while (next(left, nhull) != right)
{
// Check to see if se should advance left or right.
int nleft = next(left, nhull);
int nright = prev(right, nhull);
const float* cvleft = &verts[hull[left]*3];
const float* nvleft = &verts[hull[nleft]*3];
const float* cvright = &verts[hull[right]*3];
const float* nvright = &verts[hull[nright]*3];
const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
if (dleft < dright)
{
tris.push(hull[left]);
tris.push(hull[nleft]);
tris.push(hull[right]);
tris.push(0);
left = nleft;
}
else
{
tris.push(hull[left]);
tris.push(hull[nright]);
tris.push(hull[right]);
tris.push(0);
right = nright;
}
}
}
inline float getJitterX(const int i)
{
return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
}
inline float getJitterY(const int i)
{
return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
}
static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
const float sampleDist, const float sampleMaxError,
const int heightSearchRadius, const rcCompactHeightfield& chf,
const rcHeightPatch& hp, float* verts, int& nverts,
rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
{
static const int MAX_VERTS = 127;
static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
static const int MAX_VERTS_PER_EDGE = 32;
float edge[(MAX_VERTS_PER_EDGE+1)*3];
int hull[MAX_VERTS];
int nhull = 0;
nverts = nin;
for (int i = 0; i < nin; ++i)
rcVcopy(&verts[i*3], &in[i*3]);
edges.clear();
tris.clear();
const float cs = chf.cs;
const float ics = 1.0f/cs;
// Calculate minimum extents of the polygon based on input data.
float minExtent = polyMinExtent(verts, nverts);
// Tessellate outlines.
// This is done in separate pass in order to ensure
// seamless height values across the ply boundaries.
if (sampleDist > 0)
{
for (int i = 0, j = nin-1; i < nin; j=i++)
{
const float* vj = &in[j*3];
const float* vi = &in[i*3];
bool swapped = false;
// Make sure the segments are always handled in same order
// using lexological sort or else there will be seams.
if (fabsf(vj[0]-vi[0]) < 1e-6f)
{
if (vj[2] > vi[2])
{
rcSwap(vj,vi);
swapped = true;
}
}
else
{
if (vj[0] > vi[0])
{
rcSwap(vj,vi);
swapped = true;
}
}
// Create samples along the edge.
float dx = vi[0] - vj[0];
float dy = vi[1] - vj[1];
float dz = vi[2] - vj[2];
float d = sqrtf(dx*dx + dz*dz);
int nn = 1 + (int)floorf(d/sampleDist);
if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
if (nverts+nn >= MAX_VERTS)
nn = MAX_VERTS-1-nverts;
for (int k = 0; k <= nn; ++k)
{
float u = (float)k/(float)nn;
float* pos = &edge[k*3];
pos[0] = vj[0] + dx*u;
pos[1] = vj[1] + dy*u;
pos[2] = vj[2] + dz*u;
pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
}
// Simplify samples.
int idx[MAX_VERTS_PER_EDGE] = {0,nn};
int nidx = 2;
for (int k = 0; k < nidx-1; )
{
const int a = idx[k];
const int b = idx[k+1];
const float* va = &edge[a*3];
const float* vb = &edge[b*3];
// Find maximum deviation along the segment.
float maxd = 0;
int maxi = -1;
for (int m = a+1; m < b; ++m)
{
float dev = distancePtSeg(&edge[m*3],va,vb);
if (dev > maxd)
{
maxd = dev;
maxi = m;
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (maxi != -1 && maxd > rcSqr(sampleMaxError))
{
for (int m = nidx; m > k; --m)
idx[m] = idx[m-1];
idx[k+1] = maxi;
nidx++;
}
else
{
++k;
}
}
hull[nhull++] = j;
// Add new vertices.
if (swapped)
{
for (int k = nidx-2; k > 0; --k)
{
rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
hull[nhull++] = nverts;
nverts++;
}
}
else
{
for (int k = 1; k < nidx-1; ++k)
{
rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
hull[nhull++] = nverts;
nverts++;
}
}
}
}
// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
if (minExtent < sampleDist*2)
{
triangulateHull(nverts, verts, nhull, hull, nin, tris);
return true;
}
// Tessellate the base mesh.
// We're using the triangulateHull instead of delaunayHull as it tends to
// create a bit better triangulation for long thin triangles when there
// are no internal points.
triangulateHull(nverts, verts, nhull, hull, nin, tris);
if (tris.size() == 0)
{
// Could not triangulate the poly, make sure there is some valid data there.
ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
return true;
}
if (sampleDist > 0)
{
// Create sample locations in a grid.
float bmin[3], bmax[3];
rcVcopy(bmin, in);
rcVcopy(bmax, in);
for (int i = 1; i < nin; ++i)
{
rcVmin(bmin, &in[i*3]);
rcVmax(bmax, &in[i*3]);
}
int x0 = (int)floorf(bmin[0]/sampleDist);
int x1 = (int)ceilf(bmax[0]/sampleDist);
int z0 = (int)floorf(bmin[2]/sampleDist);
int z1 = (int)ceilf(bmax[2]/sampleDist);
samples.clear();
for (int z = z0; z < z1; ++z)
{
for (int x = x0; x < x1; ++x)
{
float pt[3];
pt[0] = x*sampleDist;
pt[1] = (bmax[1]+bmin[1])*0.5f;
pt[2] = z*sampleDist;
// Make sure the samples are not too close to the edges.
if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
samples.push(x);
samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
samples.push(z);
samples.push(0); // Not added
}
}
// Add the samples starting from the one that has the most
// error. The procedure stops when all samples are added
// or when the max error is within treshold.
const int nsamples = samples.size()/4;
for (int iter = 0; iter < nsamples; ++iter)
{
if (nverts >= MAX_VERTS)
break;
// Find sample with most error.
float bestpt[3] = {0,0,0};
float bestd = 0;
int besti = -1;
for (int i = 0; i < nsamples; ++i)
{
const int* s = &samples[i*4];
if (s[3]) continue; // skip added.
float pt[3];
// The sample location is jittered to get rid of some bad triangulations
// which are cause by symmetrical data from the grid structure.
pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
pt[1] = s[1]*chf.ch;
pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
if (d < 0) continue; // did not hit the mesh.
if (d > bestd)
{
bestd = d;
besti = i;
rcVcopy(bestpt,pt);
}
}
// If the max error is within accepted threshold, stop tesselating.
if (bestd <= sampleMaxError || besti == -1)
break;
// Mark sample as added.
samples[besti*4+3] = 1;
// Add the new sample point.
rcVcopy(&verts[nverts*3],bestpt);
nverts++;
// Create new triangulation.
// TODO: Incremental add instead of full rebuild.
edges.clear();
tris.clear();
delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
}
}
const int ntris = tris.size()/4;
if (ntris > MAX_TRIS)
{
tris.resize(MAX_TRIS*4);
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
}
return true;
}
static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
const unsigned short* poly, const int npoly,
const unsigned short* verts, const int bs,
rcHeightPatch& hp, rcIntArray& array)
{
// Note: Reads to the compact heightfield are offset by border size (bs)
// since border size offset is already removed from the polymesh vertices.
static const int offset[9*2] =
{
0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
};
// Find cell closest to a poly vertex
int startCellX = 0, startCellY = 0, startSpanIndex = -1;
int dmin = RC_UNSET_HEIGHT;
for (int j = 0; j < npoly && dmin > 0; ++j)
{
for (int k = 0; k < 9 && dmin > 0; ++k)
{
const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
const int ay = (int)verts[poly[j]*3+1];
const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
az < hp.ymin || az >= hp.ymin+hp.height)
continue;
const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int d = rcAbs(ay - (int)s.y);
if (d < dmin)
{
startCellX = ax;
startCellY = az;
startSpanIndex = i;
dmin = d;
}
}
}
}
rcAssert(startSpanIndex != -1);
// Find center of the polygon
int pcx = 0, pcy = 0;
for (int j = 0; j < npoly; ++j)
{
pcx += (int)verts[poly[j]*3+0];
pcy += (int)verts[poly[j]*3+2];
}
pcx /= npoly;
pcy /= npoly;
// Use seeds array as a stack for DFS
array.clear();
array.push(startCellX);
array.push(startCellY);
array.push(startSpanIndex);
int dirs[] = { 0, 1, 2, 3 };
memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
// DFS to move to the center. Note that we need a DFS here and can not just move
// directly towards the center without recording intermediate nodes, even though the polygons
// are convex. In very rare we can get stuck due to contour simplification if we do not
// record nodes.
int cx = -1, cy = -1, ci = -1;
while (true)
{
if (array.size() < 3)
{
ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
break;
}
ci = array.pop();
cy = array.pop();
cx = array.pop();
if (cx == pcx && cy == pcy)
break;
// If we are already at the correct X-position, prefer direction
// directly towards the center in the Y-axis; otherwise prefer
// direction in the X-axis
int directDir;
if (cx == pcx)
directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
else
directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
// Push the direct dir last so we start with this on next iteration
rcSwap(dirs[directDir], dirs[3]);
const rcCompactSpan& cs = chf.spans[ci];
for (int i = 0; i < 4; i++)
{
int dir = dirs[i];
if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
continue;
int newX = cx + rcGetDirOffsetX(dir);
int newY = cy + rcGetDirOffsetY(dir);
int hpx = newX - hp.xmin;
int hpy = newY - hp.ymin;
if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
continue;
if (hp.data[hpx+hpy*hp.width] != 0)
continue;
hp.data[hpx+hpy*hp.width] = 1;
array.push(newX);
array.push(newY);
array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
}
rcSwap(dirs[directDir], dirs[3]);
}
array.clear();
// getHeightData seeds are given in coordinates with borders
array.push(cx+bs);
array.push(cy+bs);
array.push(ci);
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
const rcCompactSpan& cs = chf.spans[ci];
hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
}
static void push3(rcIntArray& queue, int v1, int v2, int v3)
{
queue.resize(queue.size() + 3);
queue[queue.size() - 3] = v1;
queue[queue.size() - 2] = v2;
queue[queue.size() - 1] = v3;
}
static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
const unsigned short* poly, const int npoly,
const unsigned short* verts, const int bs,
rcHeightPatch& hp, rcIntArray& queue,
int region)
{
// Note: Reads to the compact heightfield are offset by border size (bs)
// since border size offset is already removed from the polymesh vertices.
queue.clear();
// Set all heights to RC_UNSET_HEIGHT.
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
bool empty = true;
// We cannot sample from this poly if it was created from polys
// of different regions. If it was then it could potentially be overlapping
// with polys of that region and the heights sampled here could be wrong.
if (region != RC_MULTIPLE_REGS)
{
// Copy the height from the same region, and mark region borders
// as seed points to fill the rest.
for (int hy = 0; hy < hp.height; hy++)
{
int y = hp.ymin + hy + bs;
for (int hx = 0; hx < hp.width; hx++)
{
int x = hp.xmin + hx + bs;
const rcCompactCell& c = chf.cells[x + y*chf.width];
for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (s.reg == region)
{
// Store height
hp.data[hx + hy*hp.width] = s.y;
empty = false;
// If any of the neighbours is not in same region,
// add the current location as flood fill start
bool border = false;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
const rcCompactSpan& as = chf.spans[ai];
if (as.reg != region)
{
border = true;
break;
}
}
}
if (border)
push3(queue, x, y, i);
break;
}
}
}
}
}
// if the polygon does not contain any points from the current region (rare, but happens)
// or if it could potentially be overlapping polygons of the same region,
// then use the center as the seed point.
if (empty)
seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
static const int RETRACT_SIZE = 256;
int head = 0;
// We assume the seed is centered in the polygon, so a BFS to collect
// height data will ensure we do not move onto overlapping polygons and
// sample wrong heights.
while (head*3 < queue.size())
{
int cx = queue[head*3+0];
int cy = queue[head*3+1];
int ci = queue[head*3+2];
head++;
if (head >= RETRACT_SIZE)
{
head = 0;
if (queue.size() > RETRACT_SIZE*3)
memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
queue.resize(queue.size()-RETRACT_SIZE*3);
}
const rcCompactSpan& cs = chf.spans[ci];
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
const int hx = ax - hp.xmin - bs;
const int hy = ay - hp.ymin - bs;
if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
continue;
if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
continue;
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
const rcCompactSpan& as = chf.spans[ai];
hp.data[hx + hy*hp.width] = as.y;
push3(queue, ax, ay, ai);
}
}
}
static unsigned char getEdgeFlags(const float* va, const float* vb,
const float* vpoly, const int npoly)
{
// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
// Figure out if edge (va,vb) is part of the polygon boundary.
static const float thrSqr = rcSqr(0.001f);
for (int i = 0, j = npoly-1; i < npoly; j=i++)
{
if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
return 1;
}
return 0;
}
static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
const float* vpoly, const int npoly)
{
unsigned char flags = 0;
flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
return flags;
}
/// @par
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh)
{
rcAssert(ctx);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
if (mesh.nverts == 0 || mesh.npolys == 0)
return true;
const int nvp = mesh.nvp;
const float cs = mesh.cs;
const float ch = mesh.ch;
const float* orig = mesh.bmin;
const int borderSize = mesh.borderSize;
const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
rcIntArray edges(64);
rcIntArray tris(512);
rcIntArray arr(512);
rcIntArray samples(512);
float verts[256*3];
rcHeightPatch hp;
int nPolyVerts = 0;
int maxhw = 0, maxhh = 0;
rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
if (!bounds)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
return false;
}
rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
if (!poly)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
return false;
}
// Find max size for a polygon area.
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
int& xmin = bounds[i*4+0];
int& xmax = bounds[i*4+1];
int& ymin = bounds[i*4+2];
int& ymax = bounds[i*4+3];
xmin = chf.width;
xmax = 0;
ymin = chf.height;
ymax = 0;
for (int j = 0; j < nvp; ++j)
{
if(p[j] == RC_MESH_NULL_IDX) break;
const unsigned short* v = &mesh.verts[p[j]*3];
xmin = rcMin(xmin, (int)v[0]);
xmax = rcMax(xmax, (int)v[0]);
ymin = rcMin(ymin, (int)v[2]);
ymax = rcMax(ymax, (int)v[2]);
nPolyVerts++;
}
xmin = rcMax(0,xmin-1);
xmax = rcMin(chf.width,xmax+1);
ymin = rcMax(0,ymin-1);
ymax = rcMin(chf.height,ymax+1);
if (xmin >= xmax || ymin >= ymax) continue;
maxhw = rcMax(maxhw, xmax-xmin);
maxhh = rcMax(maxhh, ymax-ymin);
}
hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
if (!hp.data)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
return false;
}
dmesh.nmeshes = mesh.npolys;
dmesh.nverts = 0;
dmesh.ntris = 0;
dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
if (!dmesh.meshes)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
return false;
}
int vcap = nPolyVerts+nPolyVerts/2;
int tcap = vcap*2;
dmesh.nverts = 0;
dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!dmesh.verts)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
return false;
}
dmesh.ntris = 0;
dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
if (!dmesh.tris)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
return false;
}
for (int i = 0; i < mesh.npolys; ++i)
{
const unsigned short* p = &mesh.polys[i*nvp*2];
// Store polygon vertices for processing.
int npoly = 0;
for (int j = 0; j < nvp; ++j)
{
if(p[j] == RC_MESH_NULL_IDX) break;
const unsigned short* v = &mesh.verts[p[j]*3];
poly[j*3+0] = v[0]*cs;
poly[j*3+1] = v[1]*ch;
poly[j*3+2] = v[2]*cs;
npoly++;
}
// Get the height data from the area of the polygon.
hp.xmin = bounds[i*4+0];
hp.ymin = bounds[i*4+2];
hp.width = bounds[i*4+1]-bounds[i*4+0];
hp.height = bounds[i*4+3]-bounds[i*4+2];
getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
// Build detail mesh.
int nverts = 0;
if (!buildPolyDetail(ctx, poly, npoly,
sampleDist, sampleMaxError,
heightSearchRadius, chf, hp,
verts, nverts, tris,
edges, samples))
{
return false;
}
// Move detail verts to world space.
for (int j = 0; j < nverts; ++j)
{
verts[j*3+0] += orig[0];
verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
verts[j*3+2] += orig[2];
}
// Offset poly too, will be used to flag checking.
for (int j = 0; j < npoly; ++j)
{
poly[j*3+0] += orig[0];
poly[j*3+1] += orig[1];
poly[j*3+2] += orig[2];
}
// Store detail submesh.
const int ntris = tris.size()/4;
dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
dmesh.meshes[i*4+1] = (unsigned int)nverts;
dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
dmesh.meshes[i*4+3] = (unsigned int)ntris;
// Store vertices, allocate more memory if necessary.
if (dmesh.nverts+nverts > vcap)
{
while (dmesh.nverts+nverts > vcap)
vcap += 256;
float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
if (!newv)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
return false;
}
if (dmesh.nverts)
memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
rcFree(dmesh.verts);
dmesh.verts = newv;
}
for (int j = 0; j < nverts; ++j)
{
dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
dmesh.nverts++;
}
// Store triangles, allocate more memory if necessary.
if (dmesh.ntris+ntris > tcap)
{
while (dmesh.ntris+ntris > tcap)
tcap += 256;
unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
if (!newt)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
return false;
}
if (dmesh.ntris)
memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
rcFree(dmesh.tris);
dmesh.tris = newt;
}
for (int j = 0; j < ntris; ++j)
{
const int* t = &tris[j*4];
dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
dmesh.ntris++;
}
}
return true;
}
/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
{
rcAssert(ctx);
rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
int maxVerts = 0;
int maxTris = 0;
int maxMeshes = 0;
for (int i = 0; i < nmeshes; ++i)
{
if (!meshes[i]) continue;
maxVerts += meshes[i]->nverts;
maxTris += meshes[i]->ntris;
maxMeshes += meshes[i]->nmeshes;
}
mesh.nmeshes = 0;
mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
if (!mesh.meshes)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
return false;
}
mesh.ntris = 0;
mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
if (!mesh.tris)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
return false;
}
mesh.nverts = 0;
mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
if (!mesh.verts)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
return false;
}
// Merge datas.
for (int i = 0; i < nmeshes; ++i)
{
rcPolyMeshDetail* dm = meshes[i];
if (!dm) continue;
for (int j = 0; j < dm->nmeshes; ++j)
{
unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
unsigned int* src = &dm->meshes[j*4];
dst[0] = (unsigned int)mesh.nverts+src[0];
dst[1] = src[1];
dst[2] = (unsigned int)mesh.ntris+src[2];
dst[3] = src[3];
mesh.nmeshes++;
}
for (int k = 0; k < dm->nverts; ++k)
{
rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
mesh.nverts++;
}
for (int k = 0; k < dm->ntris; ++k)
{
mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
mesh.ntris++;
}
}
return true;
}