480 lines
15 KiB
C++
480 lines
15 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
/* Hinge Constraint by Dirk Gregorius. Limits added by Marcus Hennix at Starbreeze Studios */
|
|
|
|
#ifndef BT_HINGECONSTRAINT_H
|
|
#define BT_HINGECONSTRAINT_H
|
|
|
|
#define _BT_USE_CENTER_LIMIT_ 1
|
|
|
|
#include "LinearMath/btVector3.h"
|
|
#include "btJacobianEntry.h"
|
|
#include "btTypedConstraint.h"
|
|
|
|
class btRigidBody;
|
|
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define btHingeConstraintData btHingeConstraintDoubleData2 //rename to 2 for backwards compatibility, so we can still load the 'btHingeConstraintDoubleData' version
|
|
#define btHingeConstraintDataName "btHingeConstraintDoubleData2"
|
|
#else
|
|
#define btHingeConstraintData btHingeConstraintFloatData
|
|
#define btHingeConstraintDataName "btHingeConstraintFloatData"
|
|
#endif //BT_USE_DOUBLE_PRECISION
|
|
|
|
enum btHingeFlags
|
|
{
|
|
BT_HINGE_FLAGS_CFM_STOP = 1,
|
|
BT_HINGE_FLAGS_ERP_STOP = 2,
|
|
BT_HINGE_FLAGS_CFM_NORM = 4,
|
|
BT_HINGE_FLAGS_ERP_NORM = 8
|
|
};
|
|
|
|
/// hinge constraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
|
|
/// axis defines the orientation of the hinge axis
|
|
ATTRIBUTE_ALIGNED16(class)
|
|
btHingeConstraint : public btTypedConstraint
|
|
{
|
|
#ifdef IN_PARALLELL_SOLVER
|
|
public:
|
|
#endif
|
|
btJacobianEntry m_jac[3]; //3 orthogonal linear constraints
|
|
btJacobianEntry m_jacAng[3]; //2 orthogonal angular constraints+ 1 for limit/motor
|
|
|
|
btTransform m_rbAFrame; // constraint axii. Assumes z is hinge axis.
|
|
btTransform m_rbBFrame;
|
|
|
|
btScalar m_motorTargetVelocity;
|
|
btScalar m_maxMotorImpulse;
|
|
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
btAngularLimit m_limit;
|
|
#else
|
|
btScalar m_lowerLimit;
|
|
btScalar m_upperLimit;
|
|
btScalar m_limitSign;
|
|
btScalar m_correction;
|
|
|
|
btScalar m_limitSoftness;
|
|
btScalar m_biasFactor;
|
|
btScalar m_relaxationFactor;
|
|
|
|
bool m_solveLimit;
|
|
#endif
|
|
|
|
btScalar m_kHinge;
|
|
|
|
btScalar m_accLimitImpulse;
|
|
btScalar m_hingeAngle;
|
|
btScalar m_referenceSign;
|
|
|
|
bool m_angularOnly;
|
|
bool m_enableAngularMotor;
|
|
bool m_useSolveConstraintObsolete;
|
|
bool m_useOffsetForConstraintFrame;
|
|
bool m_useReferenceFrameA;
|
|
|
|
btScalar m_accMotorImpulse;
|
|
|
|
int m_flags;
|
|
btScalar m_normalCFM;
|
|
btScalar m_normalERP;
|
|
btScalar m_stopCFM;
|
|
btScalar m_stopERP;
|
|
|
|
public:
|
|
BT_DECLARE_ALIGNED_ALLOCATOR();
|
|
|
|
btHingeConstraint(btRigidBody & rbA, btRigidBody & rbB, const btVector3& pivotInA, const btVector3& pivotInB, const btVector3& axisInA, const btVector3& axisInB, bool useReferenceFrameA = false);
|
|
|
|
btHingeConstraint(btRigidBody & rbA, const btVector3& pivotInA, const btVector3& axisInA, bool useReferenceFrameA = false);
|
|
|
|
btHingeConstraint(btRigidBody & rbA, btRigidBody & rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA = false);
|
|
|
|
btHingeConstraint(btRigidBody & rbA, const btTransform& rbAFrame, bool useReferenceFrameA = false);
|
|
|
|
virtual void buildJacobian();
|
|
|
|
virtual void getInfo1(btConstraintInfo1 * info);
|
|
|
|
void getInfo1NonVirtual(btConstraintInfo1 * info);
|
|
|
|
virtual void getInfo2(btConstraintInfo2 * info);
|
|
|
|
void getInfo2NonVirtual(btConstraintInfo2 * info, const btTransform& transA, const btTransform& transB, const btVector3& angVelA, const btVector3& angVelB);
|
|
|
|
void getInfo2Internal(btConstraintInfo2 * info, const btTransform& transA, const btTransform& transB, const btVector3& angVelA, const btVector3& angVelB);
|
|
void getInfo2InternalUsingFrameOffset(btConstraintInfo2 * info, const btTransform& transA, const btTransform& transB, const btVector3& angVelA, const btVector3& angVelB);
|
|
|
|
void updateRHS(btScalar timeStep);
|
|
|
|
const btRigidBody& getRigidBodyA() const
|
|
{
|
|
return m_rbA;
|
|
}
|
|
const btRigidBody& getRigidBodyB() const
|
|
{
|
|
return m_rbB;
|
|
}
|
|
|
|
btRigidBody& getRigidBodyA()
|
|
{
|
|
return m_rbA;
|
|
}
|
|
|
|
btRigidBody& getRigidBodyB()
|
|
{
|
|
return m_rbB;
|
|
}
|
|
|
|
btTransform& getFrameOffsetA()
|
|
{
|
|
return m_rbAFrame;
|
|
}
|
|
|
|
btTransform& getFrameOffsetB()
|
|
{
|
|
return m_rbBFrame;
|
|
}
|
|
|
|
void setFrames(const btTransform& frameA, const btTransform& frameB);
|
|
|
|
void setAngularOnly(bool angularOnly)
|
|
{
|
|
m_angularOnly = angularOnly;
|
|
}
|
|
|
|
void enableAngularMotor(bool enableMotor, btScalar targetVelocity, btScalar maxMotorImpulse)
|
|
{
|
|
m_enableAngularMotor = enableMotor;
|
|
m_motorTargetVelocity = targetVelocity;
|
|
m_maxMotorImpulse = maxMotorImpulse;
|
|
}
|
|
|
|
// extra motor API, including ability to set a target rotation (as opposed to angular velocity)
|
|
// note: setMotorTarget sets angular velocity under the hood, so you must call it every tick to
|
|
// maintain a given angular target.
|
|
void enableMotor(bool enableMotor) { m_enableAngularMotor = enableMotor; }
|
|
void setMaxMotorImpulse(btScalar maxMotorImpulse) { m_maxMotorImpulse = maxMotorImpulse; }
|
|
void setMotorTargetVelocity(btScalar motorTargetVelocity) { m_motorTargetVelocity = motorTargetVelocity; }
|
|
void setMotorTarget(const btQuaternion& qAinB, btScalar dt); // qAinB is rotation of body A wrt body B.
|
|
void setMotorTarget(btScalar targetAngle, btScalar dt);
|
|
|
|
void setLimit(btScalar low, btScalar high, btScalar _softness = 0.9f, btScalar _biasFactor = 0.3f, btScalar _relaxationFactor = 1.0f)
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
m_limit.set(low, high, _softness, _biasFactor, _relaxationFactor);
|
|
#else
|
|
m_lowerLimit = btNormalizeAngle(low);
|
|
m_upperLimit = btNormalizeAngle(high);
|
|
m_limitSoftness = _softness;
|
|
m_biasFactor = _biasFactor;
|
|
m_relaxationFactor = _relaxationFactor;
|
|
#endif
|
|
}
|
|
|
|
btScalar getLimitSoftness() const
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.getSoftness();
|
|
#else
|
|
return m_limitSoftness;
|
|
#endif
|
|
}
|
|
|
|
btScalar getLimitBiasFactor() const
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.getBiasFactor();
|
|
#else
|
|
return m_biasFactor;
|
|
#endif
|
|
}
|
|
|
|
btScalar getLimitRelaxationFactor() const
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.getRelaxationFactor();
|
|
#else
|
|
return m_relaxationFactor;
|
|
#endif
|
|
}
|
|
|
|
void setAxis(btVector3 & axisInA)
|
|
{
|
|
btVector3 rbAxisA1, rbAxisA2;
|
|
btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);
|
|
btVector3 pivotInA = m_rbAFrame.getOrigin();
|
|
// m_rbAFrame.getOrigin() = pivotInA;
|
|
m_rbAFrame.getBasis().setValue(rbAxisA1.getX(), rbAxisA2.getX(), axisInA.getX(),
|
|
rbAxisA1.getY(), rbAxisA2.getY(), axisInA.getY(),
|
|
rbAxisA1.getZ(), rbAxisA2.getZ(), axisInA.getZ());
|
|
|
|
btVector3 axisInB = m_rbA.getCenterOfMassTransform().getBasis() * axisInA;
|
|
|
|
btQuaternion rotationArc = shortestArcQuat(axisInA, axisInB);
|
|
btVector3 rbAxisB1 = quatRotate(rotationArc, rbAxisA1);
|
|
btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
|
|
|
|
m_rbBFrame.getOrigin() = m_rbB.getCenterOfMassTransform().inverse()(m_rbA.getCenterOfMassTransform()(pivotInA));
|
|
|
|
m_rbBFrame.getBasis().setValue(rbAxisB1.getX(), rbAxisB2.getX(), axisInB.getX(),
|
|
rbAxisB1.getY(), rbAxisB2.getY(), axisInB.getY(),
|
|
rbAxisB1.getZ(), rbAxisB2.getZ(), axisInB.getZ());
|
|
m_rbBFrame.getBasis() = m_rbB.getCenterOfMassTransform().getBasis().inverse() * m_rbBFrame.getBasis();
|
|
}
|
|
|
|
bool hasLimit() const
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.getHalfRange() > 0;
|
|
#else
|
|
return m_lowerLimit <= m_upperLimit;
|
|
#endif
|
|
}
|
|
|
|
btScalar getLowerLimit() const
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.getLow();
|
|
#else
|
|
return m_lowerLimit;
|
|
#endif
|
|
}
|
|
|
|
btScalar getUpperLimit() const
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.getHigh();
|
|
#else
|
|
return m_upperLimit;
|
|
#endif
|
|
}
|
|
|
|
///The getHingeAngle gives the hinge angle in range [-PI,PI]
|
|
btScalar getHingeAngle();
|
|
|
|
btScalar getHingeAngle(const btTransform& transA, const btTransform& transB);
|
|
|
|
void testLimit(const btTransform& transA, const btTransform& transB);
|
|
|
|
const btTransform& getAFrame() const { return m_rbAFrame; };
|
|
const btTransform& getBFrame() const { return m_rbBFrame; };
|
|
|
|
btTransform& getAFrame() { return m_rbAFrame; };
|
|
btTransform& getBFrame() { return m_rbBFrame; };
|
|
|
|
inline int getSolveLimit()
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.isLimit();
|
|
#else
|
|
return m_solveLimit;
|
|
#endif
|
|
}
|
|
|
|
inline btScalar getLimitSign()
|
|
{
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
return m_limit.getSign();
|
|
#else
|
|
return m_limitSign;
|
|
#endif
|
|
}
|
|
|
|
inline bool getAngularOnly()
|
|
{
|
|
return m_angularOnly;
|
|
}
|
|
inline bool getEnableAngularMotor()
|
|
{
|
|
return m_enableAngularMotor;
|
|
}
|
|
inline btScalar getMotorTargetVelocity()
|
|
{
|
|
return m_motorTargetVelocity;
|
|
}
|
|
inline btScalar getMaxMotorImpulse()
|
|
{
|
|
return m_maxMotorImpulse;
|
|
}
|
|
// access for UseFrameOffset
|
|
bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; }
|
|
void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
|
|
// access for UseReferenceFrameA
|
|
bool getUseReferenceFrameA() const { return m_useReferenceFrameA; }
|
|
void setUseReferenceFrameA(bool useReferenceFrameA) { m_useReferenceFrameA = useReferenceFrameA; }
|
|
|
|
///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
|
|
///If no axis is provided, it uses the default axis for this constraint.
|
|
virtual void setParam(int num, btScalar value, int axis = -1);
|
|
///return the local value of parameter
|
|
virtual btScalar getParam(int num, int axis = -1) const;
|
|
|
|
virtual int getFlags() const
|
|
{
|
|
return m_flags;
|
|
}
|
|
|
|
virtual int calculateSerializeBufferSize() const;
|
|
|
|
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
|
virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
|
|
};
|
|
|
|
//only for backward compatibility
|
|
#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
|
|
///this structure is not used, except for loading pre-2.82 .bullet files
|
|
struct btHingeConstraintDoubleData
|
|
{
|
|
btTypedConstraintData m_typeConstraintData;
|
|
btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
|
|
btTransformDoubleData m_rbBFrame;
|
|
int m_useReferenceFrameA;
|
|
int m_angularOnly;
|
|
int m_enableAngularMotor;
|
|
float m_motorTargetVelocity;
|
|
float m_maxMotorImpulse;
|
|
|
|
float m_lowerLimit;
|
|
float m_upperLimit;
|
|
float m_limitSoftness;
|
|
float m_biasFactor;
|
|
float m_relaxationFactor;
|
|
};
|
|
#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
|
|
|
|
///The getAccumulatedHingeAngle returns the accumulated hinge angle, taking rotation across the -PI/PI boundary into account
|
|
ATTRIBUTE_ALIGNED16(class)
|
|
btHingeAccumulatedAngleConstraint : public btHingeConstraint
|
|
{
|
|
protected:
|
|
btScalar m_accumulatedAngle;
|
|
|
|
public:
|
|
BT_DECLARE_ALIGNED_ALLOCATOR();
|
|
|
|
btHingeAccumulatedAngleConstraint(btRigidBody & rbA, btRigidBody & rbB, const btVector3& pivotInA, const btVector3& pivotInB, const btVector3& axisInA, const btVector3& axisInB, bool useReferenceFrameA = false)
|
|
: btHingeConstraint(rbA, rbB, pivotInA, pivotInB, axisInA, axisInB, useReferenceFrameA)
|
|
{
|
|
m_accumulatedAngle = getHingeAngle();
|
|
}
|
|
|
|
btHingeAccumulatedAngleConstraint(btRigidBody & rbA, const btVector3& pivotInA, const btVector3& axisInA, bool useReferenceFrameA = false)
|
|
: btHingeConstraint(rbA, pivotInA, axisInA, useReferenceFrameA)
|
|
{
|
|
m_accumulatedAngle = getHingeAngle();
|
|
}
|
|
|
|
btHingeAccumulatedAngleConstraint(btRigidBody & rbA, btRigidBody & rbB, const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA = false)
|
|
: btHingeConstraint(rbA, rbB, rbAFrame, rbBFrame, useReferenceFrameA)
|
|
{
|
|
m_accumulatedAngle = getHingeAngle();
|
|
}
|
|
|
|
btHingeAccumulatedAngleConstraint(btRigidBody & rbA, const btTransform& rbAFrame, bool useReferenceFrameA = false)
|
|
: btHingeConstraint(rbA, rbAFrame, useReferenceFrameA)
|
|
{
|
|
m_accumulatedAngle = getHingeAngle();
|
|
}
|
|
btScalar getAccumulatedHingeAngle();
|
|
void setAccumulatedHingeAngle(btScalar accAngle);
|
|
virtual void getInfo1(btConstraintInfo1 * info);
|
|
};
|
|
|
|
struct btHingeConstraintFloatData
|
|
{
|
|
btTypedConstraintData m_typeConstraintData;
|
|
btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
|
|
btTransformFloatData m_rbBFrame;
|
|
int m_useReferenceFrameA;
|
|
int m_angularOnly;
|
|
|
|
int m_enableAngularMotor;
|
|
float m_motorTargetVelocity;
|
|
float m_maxMotorImpulse;
|
|
|
|
float m_lowerLimit;
|
|
float m_upperLimit;
|
|
float m_limitSoftness;
|
|
float m_biasFactor;
|
|
float m_relaxationFactor;
|
|
};
|
|
|
|
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
|
|
struct btHingeConstraintDoubleData2
|
|
{
|
|
btTypedConstraintDoubleData m_typeConstraintData;
|
|
btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
|
|
btTransformDoubleData m_rbBFrame;
|
|
int m_useReferenceFrameA;
|
|
int m_angularOnly;
|
|
int m_enableAngularMotor;
|
|
double m_motorTargetVelocity;
|
|
double m_maxMotorImpulse;
|
|
|
|
double m_lowerLimit;
|
|
double m_upperLimit;
|
|
double m_limitSoftness;
|
|
double m_biasFactor;
|
|
double m_relaxationFactor;
|
|
char m_padding1[4];
|
|
};
|
|
|
|
SIMD_FORCE_INLINE int btHingeConstraint::calculateSerializeBufferSize() const
|
|
{
|
|
return sizeof(btHingeConstraintData);
|
|
}
|
|
|
|
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
|
SIMD_FORCE_INLINE const char* btHingeConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
|
|
{
|
|
btHingeConstraintData* hingeData = (btHingeConstraintData*)dataBuffer;
|
|
btTypedConstraint::serialize(&hingeData->m_typeConstraintData, serializer);
|
|
|
|
m_rbAFrame.serialize(hingeData->m_rbAFrame);
|
|
m_rbBFrame.serialize(hingeData->m_rbBFrame);
|
|
|
|
hingeData->m_angularOnly = m_angularOnly;
|
|
hingeData->m_enableAngularMotor = m_enableAngularMotor;
|
|
hingeData->m_maxMotorImpulse = float(m_maxMotorImpulse);
|
|
hingeData->m_motorTargetVelocity = float(m_motorTargetVelocity);
|
|
hingeData->m_useReferenceFrameA = m_useReferenceFrameA;
|
|
#ifdef _BT_USE_CENTER_LIMIT_
|
|
hingeData->m_lowerLimit = float(m_limit.getLow());
|
|
hingeData->m_upperLimit = float(m_limit.getHigh());
|
|
hingeData->m_limitSoftness = float(m_limit.getSoftness());
|
|
hingeData->m_biasFactor = float(m_limit.getBiasFactor());
|
|
hingeData->m_relaxationFactor = float(m_limit.getRelaxationFactor());
|
|
#else
|
|
hingeData->m_lowerLimit = float(m_lowerLimit);
|
|
hingeData->m_upperLimit = float(m_upperLimit);
|
|
hingeData->m_limitSoftness = float(m_limitSoftness);
|
|
hingeData->m_biasFactor = float(m_biasFactor);
|
|
hingeData->m_relaxationFactor = float(m_relaxationFactor);
|
|
#endif
|
|
|
|
// Fill padding with zeros to appease msan.
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
hingeData->m_padding1[0] = 0;
|
|
hingeData->m_padding1[1] = 0;
|
|
hingeData->m_padding1[2] = 0;
|
|
hingeData->m_padding1[3] = 0;
|
|
#endif
|
|
|
|
return btHingeConstraintDataName;
|
|
}
|
|
|
|
#endif //BT_HINGECONSTRAINT_H
|