virtualx-engine/core/math/basis.cpp
Aaron Franke 554c776e08
Reformat structure string operators
The order of numbers is not changed except for Transform2D. All logic is done inside of their structures (and not in Variant).

For the number of decimals printed, they now use String::num_real which works best with real_t, except for Color which is fixed at 4 decimals (this is a reliable number of float digits when converting from 16-bpc so it seems like a good choice)
2021-06-11 10:53:20 -04:00

1131 lines
36 KiB
C++

/*************************************************************************/
/* basis.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "basis.h"
#include "core/math/math_funcs.h"
#include "core/string/print_string.h"
#define cofac(row1, col1, row2, col2) \
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
void Basis::from_z(const Vector3 &p_z) {
if (Math::abs(p_z.z) > Math_SQRT12) {
// choose p in y-z plane
real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
real_t k = 1.0 / Math::sqrt(a);
elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
} else {
// choose p in x-y plane
real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
real_t k = 1.0 / Math::sqrt(a);
elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
}
elements[2] = p_z;
}
void Basis::invert() {
real_t co[3] = {
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
};
real_t det = elements[0][0] * co[0] +
elements[0][1] * co[1] +
elements[0][2] * co[2];
#ifdef MATH_CHECKS
ERR_FAIL_COND(det == 0);
#endif
real_t s = 1.0 / det;
set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}
void Basis::orthonormalize() {
// Gram-Schmidt Process
Vector3 x = get_axis(0);
Vector3 y = get_axis(1);
Vector3 z = get_axis(2);
x.normalize();
y = (y - x * (x.dot(y)));
y.normalize();
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
z.normalize();
set_axis(0, x);
set_axis(1, y);
set_axis(2, z);
}
Basis Basis::orthonormalized() const {
Basis c = *this;
c.orthonormalize();
return c;
}
bool Basis::is_orthogonal() const {
Basis identity;
Basis m = (*this) * transposed();
return m.is_equal_approx(identity);
}
bool Basis::is_diagonal() const {
return (
Math::is_zero_approx(elements[0][1]) && Math::is_zero_approx(elements[0][2]) &&
Math::is_zero_approx(elements[1][0]) && Math::is_zero_approx(elements[1][2]) &&
Math::is_zero_approx(elements[2][0]) && Math::is_zero_approx(elements[2][1]));
}
bool Basis::is_rotation() const {
return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
}
#ifdef MATH_CHECKS
// This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
bool Basis::is_symmetric() const {
if (!Math::is_equal_approx(elements[0][1], elements[1][0])) {
return false;
}
if (!Math::is_equal_approx(elements[0][2], elements[2][0])) {
return false;
}
if (!Math::is_equal_approx(elements[1][2], elements[2][1])) {
return false;
}
return true;
}
#endif
Basis Basis::diagonalize() {
//NOTE: only implemented for symmetric matrices
//with the Jacobi iterative method
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!is_symmetric(), Basis());
#endif
const int ite_max = 1024;
real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
int ite = 0;
Basis acc_rot;
while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
real_t el01_2 = elements[0][1] * elements[0][1];
real_t el02_2 = elements[0][2] * elements[0][2];
real_t el12_2 = elements[1][2] * elements[1][2];
// Find the pivot element
int i, j;
if (el01_2 > el02_2) {
if (el12_2 > el01_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 1;
}
} else {
if (el12_2 > el02_2) {
i = 1;
j = 2;
} else {
i = 0;
j = 2;
}
}
// Compute the rotation angle
real_t angle;
if (Math::is_equal_approx(elements[j][j], elements[i][i])) {
angle = Math_PI / 4;
} else {
angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
}
// Compute the rotation matrix
Basis rot;
rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle));
// Update the off matrix norm
off_matrix_norm_2 -= elements[i][j] * elements[i][j];
// Apply the rotation
*this = rot * *this * rot.transposed();
acc_rot = rot * acc_rot;
}
return acc_rot;
}
Basis Basis::inverse() const {
Basis inv = *this;
inv.invert();
return inv;
}
void Basis::transpose() {
SWAP(elements[0][1], elements[1][0]);
SWAP(elements[0][2], elements[2][0]);
SWAP(elements[1][2], elements[2][1]);
}
Basis Basis::transposed() const {
Basis tr = *this;
tr.transpose();
return tr;
}
// Multiplies the matrix from left by the scaling matrix: M -> S.M
// See the comment for Basis::rotated for further explanation.
void Basis::scale(const Vector3 &p_scale) {
elements[0][0] *= p_scale.x;
elements[0][1] *= p_scale.x;
elements[0][2] *= p_scale.x;
elements[1][0] *= p_scale.y;
elements[1][1] *= p_scale.y;
elements[1][2] *= p_scale.y;
elements[2][0] *= p_scale.z;
elements[2][1] *= p_scale.z;
elements[2][2] *= p_scale.z;
}
Basis Basis::scaled(const Vector3 &p_scale) const {
Basis m = *this;
m.scale(p_scale);
return m;
}
void Basis::scale_local(const Vector3 &p_scale) {
// performs a scaling in object-local coordinate system:
// M -> (M.S.Minv).M = M.S.
*this = scaled_local(p_scale);
}
float Basis::get_uniform_scale() const {
return (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0;
}
void Basis::make_scale_uniform() {
float l = (elements[0].length() + elements[1].length() + elements[2].length()) / 3.0;
for (int i = 0; i < 3; i++) {
elements[i].normalize();
elements[i] *= l;
}
}
Basis Basis::scaled_local(const Vector3 &p_scale) const {
Basis b;
b.set_diagonal(p_scale);
return (*this) * b;
}
Vector3 Basis::get_scale_abs() const {
return Vector3(
Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}
Vector3 Basis::get_scale_local() const {
real_t det_sign = SGN(determinant());
return det_sign * Vector3(elements[0].length(), elements[1].length(), elements[2].length());
}
// get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
Vector3 Basis::get_scale() const {
// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
//
// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
// Therefore, we are going to do this decomposition by sticking to a particular convention.
// This may lead to confusion for some users though.
//
// The convention we use here is to absorb the sign flip into the scaling matrix.
// The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
//
// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
// matrix elements.
//
// The rotation part of this decomposition is returned by get_rotation* functions.
real_t det_sign = SGN(determinant());
return det_sign * Vector3(
Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
}
// Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
// Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
// This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(determinant() == 0, Vector3());
Basis m = transposed() * (*this);
ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
#endif
Vector3 scale = get_scale();
Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
rotref = (*this) * inv_scale;
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
#endif
return scale.abs();
}
// Multiplies the matrix from left by the rotation matrix: M -> R.M
// Note that this does *not* rotate the matrix itself.
//
// The main use of Basis is as Transform.basis, which is used by the transformation matrix
// of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
// not the matrix itself (which is R * (*this) * R.transposed()).
Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
return Basis(p_axis, p_phi) * (*this);
}
void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
*this = rotated(p_axis, p_phi);
}
void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) {
// performs a rotation in object-local coordinate system:
// M -> (M.R.Minv).M = M.R.
*this = rotated_local(p_axis, p_phi);
}
Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const {
return (*this) * Basis(p_axis, p_phi);
}
Basis Basis::rotated(const Vector3 &p_euler) const {
return Basis(p_euler) * (*this);
}
void Basis::rotate(const Vector3 &p_euler) {
*this = rotated(p_euler);
}
Basis Basis::rotated(const Quaternion &p_quaternion) const {
return Basis(p_quaternion) * (*this);
}
void Basis::rotate(const Quaternion &p_quaternion) {
*this = rotated(p_quaternion);
}
Vector3 Basis::get_rotation_euler() const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
return m.get_euler();
}
Quaternion Basis::get_rotation_quaternion() const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
return m.get_quaternion();
}
void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = orthonormalized();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
m.get_axis_angle(p_axis, p_angle);
}
void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
// See the comment in get_scale() for further information.
Basis m = transposed();
m.orthonormalize();
real_t det = m.determinant();
if (det < 0) {
// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
m.scale(Vector3(-1, -1, -1));
}
m.get_axis_angle(p_axis, p_angle);
p_angle = -p_angle;
}
// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
//
// The current implementation uses XYZ convention (Z is the first rotation),
// so euler.z is the angle of the (first) rotation around Z axis and so on,
//
// And thus, assuming the matrix is a rotation matrix, this function returns
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
// around the z-axis by a and so on.
Vector3 Basis::get_euler_xyz() const {
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
Vector3 euler;
real_t sy = elements[0][2];
if (sy < (1.0 - CMP_EPSILON)) {
if (sy > -(1.0 - CMP_EPSILON)) {
// is this a pure Y rotation?
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = 0;
euler.y = atan2(elements[0][2], elements[0][0]);
euler.z = 0;
} else {
euler.x = Math::atan2(-elements[1][2], elements[2][2]);
euler.y = Math::asin(sy);
euler.z = Math::atan2(-elements[0][1], elements[0][0]);
}
} else {
euler.x = Math::atan2(elements[2][1], elements[1][1]);
euler.y = -Math_PI / 2.0;
euler.z = 0.0;
}
} else {
euler.x = Math::atan2(elements[2][1], elements[1][1]);
euler.y = Math_PI / 2.0;
euler.z = 0.0;
}
return euler;
}
// set_euler_xyz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses XYZ convention (Z is the first rotation).
void Basis::set_euler_xyz(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = xmat * (ymat * zmat);
}
Vector3 Basis::get_euler_xzy() const {
// Euler angles in XZY convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy -sz cz*sy
// sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
// cy*sx*sz cz*sx cx*cy+sx*sz*sy
Vector3 euler;
real_t sz = elements[0][1];
if (sz < (1.0 - CMP_EPSILON)) {
if (sz > -(1.0 - CMP_EPSILON)) {
euler.x = Math::atan2(elements[2][1], elements[1][1]);
euler.y = Math::atan2(elements[0][2], elements[0][0]);
euler.z = Math::asin(-sz);
} else {
// It's -1
euler.x = -Math::atan2(elements[1][2], elements[2][2]);
euler.y = 0.0;
euler.z = Math_PI / 2.0;
}
} else {
// It's 1
euler.x = -Math::atan2(elements[1][2], elements[2][2]);
euler.y = 0.0;
euler.z = -Math_PI / 2.0;
}
return euler;
}
void Basis::set_euler_xzy(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
*this = xmat * zmat * ymat;
}
Vector3 Basis::get_euler_yzx() const {
// Euler angles in YZX convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
// sz cz*cx -cz*sx
// -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
Vector3 euler;
real_t sz = elements[1][0];
if (sz < (1.0 - CMP_EPSILON)) {
if (sz > -(1.0 - CMP_EPSILON)) {
euler.x = Math::atan2(-elements[1][2], elements[1][1]);
euler.y = Math::atan2(-elements[2][0], elements[0][0]);
euler.z = Math::asin(sz);
} else {
// It's -1
euler.x = Math::atan2(elements[2][1], elements[2][2]);
euler.y = 0.0;
euler.z = -Math_PI / 2.0;
}
} else {
// It's 1
euler.x = Math::atan2(elements[2][1], elements[2][2]);
euler.y = 0.0;
euler.z = Math_PI / 2.0;
}
return euler;
}
void Basis::set_euler_yzx(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
*this = ymat * zmat * xmat;
}
// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
// as the x, y, and z components of a Vector3 respectively.
Vector3 Basis::get_euler_yxz() const {
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
Vector3 euler;
real_t m12 = elements[1][2];
if (m12 < (1 - CMP_EPSILON)) {
if (m12 > -(1 - CMP_EPSILON)) {
// is this a pure X rotation?
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = atan2(-m12, elements[1][1]);
euler.y = 0;
euler.z = 0;
} else {
euler.x = asin(-m12);
euler.y = atan2(elements[0][2], elements[2][2]);
euler.z = atan2(elements[1][0], elements[1][1]);
}
} else { // m12 == -1
euler.x = Math_PI * 0.5;
euler.y = atan2(elements[0][1], elements[0][0]);
euler.z = 0;
}
} else { // m12 == 1
euler.x = -Math_PI * 0.5;
euler.y = -atan2(elements[0][1], elements[0][0]);
euler.z = 0;
}
return euler;
}
// set_euler_yxz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses YXZ convention (Z is the first rotation).
void Basis::set_euler_yxz(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = ymat * xmat * zmat;
}
Vector3 Basis::get_euler_zxy() const {
// Euler angles in ZXY convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
// cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
// -cx*sy sx cx*cy
Vector3 euler;
real_t sx = elements[2][1];
if (sx < (1.0 - CMP_EPSILON)) {
if (sx > -(1.0 - CMP_EPSILON)) {
euler.x = Math::asin(sx);
euler.y = Math::atan2(-elements[2][0], elements[2][2]);
euler.z = Math::atan2(-elements[0][1], elements[1][1]);
} else {
// It's -1
euler.x = -Math_PI / 2.0;
euler.y = Math::atan2(elements[0][2], elements[0][0]);
euler.z = 0;
}
} else {
// It's 1
euler.x = Math_PI / 2.0;
euler.y = Math::atan2(elements[0][2], elements[0][0]);
euler.z = 0;
}
return euler;
}
void Basis::set_euler_zxy(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
*this = zmat * xmat * ymat;
}
Vector3 Basis::get_euler_zyx() const {
// Euler angles in ZYX convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
// cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
// -sy cy*sx cy*cx
Vector3 euler;
real_t sy = elements[2][0];
if (sy < (1.0 - CMP_EPSILON)) {
if (sy > -(1.0 - CMP_EPSILON)) {
euler.x = Math::atan2(elements[2][1], elements[2][2]);
euler.y = Math::asin(-sy);
euler.z = Math::atan2(elements[1][0], elements[0][0]);
} else {
// It's -1
euler.x = 0;
euler.y = Math_PI / 2.0;
euler.z = -Math::atan2(elements[0][1], elements[1][1]);
}
} else {
// It's 1
euler.x = 0;
euler.y = -Math_PI / 2.0;
euler.z = -Math::atan2(elements[0][1], elements[1][1]);
}
return euler;
}
void Basis::set_euler_zyx(const Vector3 &p_euler) {
real_t c, s;
c = Math::cos(p_euler.x);
s = Math::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = Math::cos(p_euler.y);
s = Math::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = Math::cos(p_euler.z);
s = Math::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
*this = zmat * ymat * xmat;
}
bool Basis::is_equal_approx(const Basis &p_basis) const {
return elements[0].is_equal_approx(p_basis.elements[0]) && elements[1].is_equal_approx(p_basis.elements[1]) && elements[2].is_equal_approx(p_basis.elements[2]);
}
bool Basis::operator==(const Basis &p_matrix) const {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (elements[i][j] != p_matrix.elements[i][j]) {
return false;
}
}
}
return true;
}
bool Basis::operator!=(const Basis &p_matrix) const {
return (!(*this == p_matrix));
}
Basis::operator String() const {
return "[X: " + get_axis(0).operator String() +
", Y: " + get_axis(1).operator String() +
", Z: " + get_axis(2).operator String() + "]";
}
Quaternion Basis::get_quaternion() const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() instead.");
#endif
/* Allow getting a quaternion from an unnormalized transform */
Basis m = *this;
real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
real_t temp[4];
if (trace > 0.0) {
real_t s = Math::sqrt(trace + 1.0);
temp[3] = (s * 0.5);
s = 0.5 / s;
temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s);
temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
} else {
int i = m.elements[0][0] < m.elements[1][1] ?
(m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
(m.elements[0][0] < m.elements[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0);
temp[i] = s * 0.5;
s = 0.5 / s;
temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
}
return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}
static const Basis _ortho_bases[24] = {
Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
};
int Basis::get_orthogonal_index() const {
//could be sped up if i come up with a way
Basis orth = *this;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
real_t v = orth[i][j];
if (v > 0.5) {
v = 1.0;
} else if (v < -0.5) {
v = -1.0;
} else {
v = 0;
}
orth[i][j] = v;
}
}
for (int i = 0; i < 24; i++) {
if (_ortho_bases[i] == orth) {
return i;
}
}
return 0;
}
void Basis::set_orthogonal_index(int p_index) {
//there only exist 24 orthogonal bases in r3
ERR_FAIL_INDEX(p_index, 24);
*this = _ortho_bases[p_index];
}
void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
/* checking this is a bad idea, because obtaining from scaled transform is a valid use case
#ifdef MATH_CHECKS
ERR_FAIL_COND(!is_rotation());
#endif
*/
real_t angle, x, y, z; // variables for result
real_t epsilon = 0.01; // margin to allow for rounding errors
real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
// singularity found
// first check for identity matrix which must have +1 for all terms
// in leading diagonal and zero in other terms
if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
// this singularity is identity matrix so angle = 0
r_axis = Vector3(0, 1, 0);
r_angle = 0;
return;
}
// otherwise this singularity is angle = 180
angle = Math_PI;
real_t xx = (elements[0][0] + 1) / 2;
real_t yy = (elements[1][1] + 1) / 2;
real_t zz = (elements[2][2] + 1) / 2;
real_t xy = (elements[1][0] + elements[0][1]) / 4;
real_t xz = (elements[2][0] + elements[0][2]) / 4;
real_t yz = (elements[2][1] + elements[1][2]) / 4;
if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
if (xx < epsilon) {
x = 0;
y = Math_SQRT12;
z = Math_SQRT12;
} else {
x = Math::sqrt(xx);
y = xy / x;
z = xz / x;
}
} else if (yy > zz) { // elements[1][1] is the largest diagonal term
if (yy < epsilon) {
x = Math_SQRT12;
y = 0;
z = Math_SQRT12;
} else {
y = Math::sqrt(yy);
x = xy / y;
z = yz / y;
}
} else { // elements[2][2] is the largest diagonal term so base result on this
if (zz < epsilon) {
x = Math_SQRT12;
y = Math_SQRT12;
z = 0;
} else {
z = Math::sqrt(zz);
x = xz / z;
y = yz / z;
}
}
r_axis = Vector3(x, y, z);
r_angle = angle;
return;
}
// as we have reached here there are no singularities so we can handle normally
real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
if (angle < 0) {
s = -s;
}
x = (elements[2][1] - elements[1][2]) / s;
y = (elements[0][2] - elements[2][0]) / s;
z = (elements[1][0] - elements[0][1]) / s;
r_axis = Vector3(x, y, z);
r_angle = angle;
}
void Basis::set_quaternion(const Quaternion &p_quaternion) {
real_t d = p_quaternion.length_squared();
real_t s = 2.0 / d;
real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
set(1.0 - (yy + zz), xy - wz, xz + wy,
xy + wz, 1.0 - (xx + zz), yz - wx,
xz - wy, yz + wx, 1.0 - (xx + yy));
}
void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
#ifdef MATH_CHECKS
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
#endif
Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
real_t cosine = Math::cos(p_phi);
elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
real_t sine = Math::sin(p_phi);
real_t t = 1 - cosine;
real_t xyzt = p_axis.x * p_axis.y * t;
real_t zyxs = p_axis.z * sine;
elements[0][1] = xyzt - zyxs;
elements[1][0] = xyzt + zyxs;
xyzt = p_axis.x * p_axis.z * t;
zyxs = p_axis.y * sine;
elements[0][2] = xyzt + zyxs;
elements[2][0] = xyzt - zyxs;
xyzt = p_axis.y * p_axis.z * t;
zyxs = p_axis.x * sine;
elements[1][2] = xyzt - zyxs;
elements[2][1] = xyzt + zyxs;
}
void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) {
set_diagonal(p_scale);
rotate(p_axis, p_phi);
}
void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) {
set_diagonal(p_scale);
rotate(p_euler);
}
void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
set_diagonal(p_scale);
rotate(p_quaternion);
}
void Basis::set_diagonal(const Vector3 &p_diag) {
elements[0][0] = p_diag.x;
elements[0][1] = 0;
elements[0][2] = 0;
elements[1][0] = 0;
elements[1][1] = p_diag.y;
elements[1][2] = 0;
elements[2][0] = 0;
elements[2][1] = 0;
elements[2][2] = p_diag.z;
}
Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
//consider scale
Quaternion from(*this);
Quaternion to(p_to);
Basis b(from.slerp(to, p_weight));
b.elements[0] *= Math::lerp(elements[0].length(), p_to.elements[0].length(), p_weight);
b.elements[1] *= Math::lerp(elements[1].length(), p_to.elements[1].length(), p_weight);
b.elements[2] *= Math::lerp(elements[2].length(), p_to.elements[2].length(), p_weight);
return b;
}
void Basis::rotate_sh(real_t *p_values) {
// code by John Hable
// http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/
// this code is Public Domain
const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi))
const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi))
const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi))
const static real_t s_c_scale = 1.0 / 0.91529123286551084;
const static real_t s_c_scale_inv = 0.91529123286551084;
const static real_t s_rc2 = 1.5853309190550713 * s_c_scale;
const static real_t s_c4_div_c3 = s_c4 / s_c3;
const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0;
const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;
real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
real_t m00 = elements[0][0];
real_t m01 = elements[0][1];
real_t m02 = elements[0][2];
real_t m10 = elements[1][0];
real_t m11 = elements[1][1];
real_t m12 = elements[1][2];
real_t m20 = elements[2][0];
real_t m21 = elements[2][1];
real_t m22 = elements[2][2];
p_values[0] = src[0];
p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3];
p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3];
real_t sh0 = src[7] + src[8] + src[8] - src[5];
real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8];
real_t sh2 = src[4];
real_t sh3 = -src[7];
real_t sh4 = -src[5];
// Rotations. R0 and R1 just use the raw matrix columns
real_t r2x = m00 + m01;
real_t r2y = m10 + m11;
real_t r2z = m20 + m21;
real_t r3x = m00 + m02;
real_t r3y = m10 + m12;
real_t r3z = m20 + m22;
real_t r4x = m01 + m02;
real_t r4y = m11 + m12;
real_t r4z = m21 + m22;
// dense matrix multiplication one column at a time
// column 0
real_t sh0_x = sh0 * m00;
real_t sh0_y = sh0 * m10;
real_t d0 = sh0_x * m10;
real_t d1 = sh0_y * m20;
real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3);
real_t d3 = sh0_x * m20;
real_t d4 = sh0_x * m00 - sh0_y * m10;
// column 1
real_t sh1_x = sh1 * m02;
real_t sh1_y = sh1 * m12;
d0 += sh1_x * m12;
d1 += sh1_y * m22;
d2 += sh1 * (m22 * m22 + s_c4_div_c3);
d3 += sh1_x * m22;
d4 += sh1_x * m02 - sh1_y * m12;
// column 2
real_t sh2_x = sh2 * r2x;
real_t sh2_y = sh2 * r2y;
d0 += sh2_x * r2y;
d1 += sh2_y * r2z;
d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2);
d3 += sh2_x * r2z;
d4 += sh2_x * r2x - sh2_y * r2y;
// column 3
real_t sh3_x = sh3 * r3x;
real_t sh3_y = sh3 * r3y;
d0 += sh3_x * r3y;
d1 += sh3_y * r3z;
d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2);
d3 += sh3_x * r3z;
d4 += sh3_x * r3x - sh3_y * r3y;
// column 4
real_t sh4_x = sh4 * r4x;
real_t sh4_y = sh4 * r4y;
d0 += sh4_x * r4y;
d1 += sh4_y * r4z;
d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2);
d3 += sh4_x * r4z;
d4 += sh4_x * r4x - sh4_y * r4y;
// extra multipliers
p_values[4] = d0;
p_values[5] = -d1;
p_values[6] = d2 * s_scale_dst2;
p_values[7] = -d3;
p_values[8] = d4 * s_scale_dst4;
}