virtualx-engine/thirdparty/libvpx/vp9/common/vp9_reconintra.c
Błażej Szczygieł 5268443fdf Add libvpx thirdparty library
Only necessary files
2016-10-19 13:34:28 +02:00

445 lines
16 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#if CONFIG_VP9_HIGHBITDEPTH
#include "vpx_dsp/vpx_dsp_common.h"
#endif // CONFIG_VP9_HIGHBITDEPTH
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/vpx_once.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_onyxc_int.h"
const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES] = {
DCT_DCT, // DC
ADST_DCT, // V
DCT_ADST, // H
DCT_DCT, // D45
ADST_ADST, // D135
ADST_DCT, // D117
DCT_ADST, // D153
DCT_ADST, // D207
ADST_DCT, // D63
ADST_ADST, // TM
};
enum {
NEED_LEFT = 1 << 1,
NEED_ABOVE = 1 << 2,
NEED_ABOVERIGHT = 1 << 3,
};
static const uint8_t extend_modes[INTRA_MODES] = {
NEED_ABOVE | NEED_LEFT, // DC
NEED_ABOVE, // V
NEED_LEFT, // H
NEED_ABOVERIGHT, // D45
NEED_LEFT | NEED_ABOVE, // D135
NEED_LEFT | NEED_ABOVE, // D117
NEED_LEFT | NEED_ABOVE, // D153
NEED_LEFT, // D207
NEED_ABOVERIGHT, // D63
NEED_LEFT | NEED_ABOVE, // TM
};
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left);
static intra_pred_fn pred[INTRA_MODES][TX_SIZES];
static intra_pred_fn dc_pred[2][2][TX_SIZES];
#if CONFIG_VP9_HIGHBITDEPTH
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd);
static intra_high_pred_fn pred_high[INTRA_MODES][4];
static intra_high_pred_fn dc_pred_high[2][2][4];
#endif // CONFIG_VP9_HIGHBITDEPTH
static void vp9_init_intra_predictors_internal(void) {
#define INIT_ALL_SIZES(p, type) \
p[TX_4X4] = vpx_##type##_predictor_4x4; \
p[TX_8X8] = vpx_##type##_predictor_8x8; \
p[TX_16X16] = vpx_##type##_predictor_16x16; \
p[TX_32X32] = vpx_##type##_predictor_32x32
INIT_ALL_SIZES(pred[V_PRED], v);
INIT_ALL_SIZES(pred[H_PRED], h);
INIT_ALL_SIZES(pred[D207_PRED], d207);
INIT_ALL_SIZES(pred[D45_PRED], d45);
INIT_ALL_SIZES(pred[D63_PRED], d63);
INIT_ALL_SIZES(pred[D117_PRED], d117);
INIT_ALL_SIZES(pred[D135_PRED], d135);
INIT_ALL_SIZES(pred[D153_PRED], d153);
INIT_ALL_SIZES(pred[TM_PRED], tm);
INIT_ALL_SIZES(dc_pred[0][0], dc_128);
INIT_ALL_SIZES(dc_pred[0][1], dc_top);
INIT_ALL_SIZES(dc_pred[1][0], dc_left);
INIT_ALL_SIZES(dc_pred[1][1], dc);
#if CONFIG_VP9_HIGHBITDEPTH
INIT_ALL_SIZES(pred_high[V_PRED], highbd_v);
INIT_ALL_SIZES(pred_high[H_PRED], highbd_h);
INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207);
INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45);
INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63);
INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117);
INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135);
INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153);
INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm);
INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128);
INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top);
INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left);
INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc);
#endif // CONFIG_VP9_HIGHBITDEPTH
#undef intra_pred_allsizes
}
#if CONFIG_VP9_HIGHBITDEPTH
static void build_intra_predictors_high(const MACROBLOCKD *xd,
const uint8_t *ref8,
int ref_stride,
uint8_t *dst8,
int dst_stride,
PREDICTION_MODE mode,
TX_SIZE tx_size,
int up_available,
int left_available,
int right_available,
int x, int y,
int plane, int bd) {
int i;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
DECLARE_ALIGNED(16, uint16_t, left_col[32]);
DECLARE_ALIGNED(16, uint16_t, above_data[64 + 16]);
uint16_t *above_row = above_data + 16;
const uint16_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int need_left = extend_modes[mode] & NEED_LEFT;
const int need_above = extend_modes[mode] & NEED_ABOVE;
const int need_aboveright = extend_modes[mode] & NEED_ABOVERIGHT;
int base = 128 << (bd - 8);
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// For 10 bit and 12 bit, 127 and 129 are replaced by base -1 and base + 1.
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
// NEED_LEFT
if (need_left) {
if (left_available) {
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
} else {
const int extend_bottom = frame_height - y0;
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref[i * ref_stride - 1];
for (; i < bs; ++i)
left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
}
} else {
vpx_memset16(left_col, base + 1, bs);
}
}
// NEED_ABOVE
if (need_above) {
if (up_available) {
const uint16_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + bs <= frame_width) {
memcpy(above_row, above_ref, bs * sizeof(above_row[0]));
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
memcpy(above_row, above_ref, r * sizeof(above_row[0]));
vpx_memset16(above_row + r, above_row[r - 1], x0 + bs - frame_width);
}
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
memcpy(above_row, above_ref, bs * sizeof(above_row[0]));
}
}
above_row[-1] = left_available ? above_ref[-1] : (base + 1);
} else {
vpx_memset16(above_row, base - 1, bs);
above_row[-1] = base - 1;
}
}
// NEED_ABOVERIGHT
if (need_aboveright) {
if (up_available) {
const uint16_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
memcpy(above_row, above_ref, 2 * bs * sizeof(above_row[0]));
} else {
memcpy(above_row, above_ref, bs * sizeof(above_row[0]));
vpx_memset16(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
memcpy(above_row, above_ref, r * sizeof(above_row[0]));
vpx_memset16(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
memcpy(above_row, above_ref, bs * sizeof(above_row[0]));
vpx_memset16(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
memcpy(above_row, above_ref, r * sizeof(above_row[0]));
vpx_memset16(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
}
above_row[-1] = left_available ? above_ref[-1] : (base + 1);
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
memcpy(above_row, above_ref, bs * sizeof(above_row[0]));
if (bs == 4 && right_available)
memcpy(above_row + bs, above_ref + bs, bs * sizeof(above_row[0]));
else
vpx_memset16(above_row + bs, above_row[bs - 1], bs);
above_row[-1] = left_available ? above_ref[-1] : (base + 1);
}
}
} else {
vpx_memset16(above_row, base - 1, bs * 2);
above_row[-1] = base - 1;
}
}
// predict
if (mode == DC_PRED) {
dc_pred_high[left_available][up_available][tx_size](dst, dst_stride,
const_above_row,
left_col, xd->bd);
} else {
pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col,
xd->bd);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int up_available, int left_available,
int right_available, int x, int y,
int plane) {
int i;
DECLARE_ALIGNED(16, uint8_t, left_col[32]);
DECLARE_ALIGNED(16, uint8_t, above_data[64 + 16]);
uint8_t *above_row = above_data + 16;
const uint8_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
// NEED_LEFT
if (extend_modes[mode] & NEED_LEFT) {
if (left_available) {
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
} else {
const int extend_bottom = frame_height - y0;
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref[i * ref_stride - 1];
for (; i < bs; ++i)
left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
}
} else {
memset(left_col, 129, bs);
}
}
// NEED_ABOVE
if (extend_modes[mode] & NEED_ABOVE) {
if (up_available) {
const uint8_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + bs <= frame_width) {
memcpy(above_row, above_ref, bs);
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
memcpy(above_row, above_ref, r);
memset(above_row + r, above_row[r - 1], x0 + bs - frame_width);
}
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
memcpy(above_row, above_ref, bs);
}
}
above_row[-1] = left_available ? above_ref[-1] : 129;
} else {
memset(above_row, 127, bs);
above_row[-1] = 127;
}
}
// NEED_ABOVERIGHT
if (extend_modes[mode] & NEED_ABOVERIGHT) {
if (up_available) {
const uint8_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
memcpy(above_row, above_ref, 2 * bs);
} else {
memcpy(above_row, above_ref, bs);
memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
memcpy(above_row, above_ref, r);
memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width);
} else {
memcpy(above_row, above_ref, bs);
memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
memcpy(above_row, above_ref, r);
memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width);
}
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
memcpy(above_row, above_ref, bs);
if (bs == 4 && right_available)
memcpy(above_row + bs, above_ref + bs, bs);
else
memset(above_row + bs, above_row[bs - 1], bs);
}
}
above_row[-1] = left_available ? above_ref[-1] : 129;
} else {
memset(above_row, 127, bs * 2);
above_row[-1] = 127;
}
}
// predict
if (mode == DC_PRED) {
dc_pred[left_available][up_available][tx_size](dst, dst_stride,
const_above_row, left_col);
} else {
pred[mode][tx_size](dst, dst_stride, const_above_row, left_col);
}
}
void vp9_predict_intra_block(const MACROBLOCKD *xd, int bwl_in,
TX_SIZE tx_size, PREDICTION_MODE mode,
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
int aoff, int loff, int plane) {
const int bw = (1 << bwl_in);
const int txw = (1 << tx_size);
const int have_top = loff || (xd->above_mi != NULL);
const int have_left = aoff || (xd->left_mi != NULL);
const int have_right = (aoff + txw) < bw;
const int x = aoff * 4;
const int y = loff * 4;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
build_intra_predictors_high(xd, ref, ref_stride, dst, dst_stride, mode,
tx_size, have_top, have_left, have_right,
x, y, plane, xd->bd);
return;
}
#endif
build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top, have_left, have_right, x, y, plane);
}
void vp9_init_intra_predictors(void) {
once(vp9_init_intra_predictors_internal);
}