virtualx-engine/thirdparty/icu4c/common/ucnv_io.cpp

1360 lines
48 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
*
* Copyright (C) 1999-2015, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
*
*
* ucnv_io.cpp:
* initializes global variables and defines functions pertaining to converter
* name resolution aspect of the conversion code.
*
* new implementation:
*
* created on: 1999nov22
* created by: Markus W. Scherer
*
* Use the binary cnvalias.icu (created from convrtrs.txt) to work
* with aliases for converter names.
*
* Date Name Description
* 11/22/1999 markus Created
* 06/28/2002 grhoten Major overhaul of the converter alias design.
* Now an alias can map to different converters
* depending on the specified standard.
*******************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION
#include "unicode/ucnv.h"
#include "unicode/udata.h"
#include "umutex.h"
#include "uarrsort.h"
#include "uassert.h"
#include "udataswp.h"
#include "cstring.h"
#include "cmemory.h"
#include "ucnv_io.h"
#include "uenumimp.h"
#include "ucln_cmn.h"
/* Format of cnvalias.icu -----------------------------------------------------
*
* cnvalias.icu is a binary, memory-mappable form of convrtrs.txt.
* This binary form contains several tables. All indexes are to uint16_t
* units, and not to the bytes (uint8_t units). Addressing everything on
* 16-bit boundaries allows us to store more information with small index
* numbers, which are also 16-bit in size. The majority of the table (except
* the string table) are 16-bit numbers.
*
* First there is the size of the Table of Contents (TOC). The TOC
* entries contain the size of each section. In order to find the offset
* you just need to sum up the previous offsets.
* The TOC length and entries are an array of uint32_t values.
* The first section after the TOC starts immediately after the TOC.
*
* 1) This section contains a list of converters. This list contains indexes
* into the string table for the converter name. The index of this list is
* also used by other sections, which are mentioned later on.
* This list is not sorted.
*
* 2) This section contains a list of tags. This list contains indexes
* into the string table for the tag name. The index of this list is
* also used by other sections, which are mentioned later on.
* This list is in priority order of standards.
*
* 3) This section contains a list of sorted unique aliases. This
* list contains indexes into the string table for the alias name. The
* index of this list is also used by other sections, like the 4th section.
* The index for the 3rd and 4th section is used to get the
* alias -> converter name mapping. Section 3 and 4 form a two column table.
* Some of the most significant bits of each index may contain other
* information (see findConverter for details).
*
* 4) This section contains a list of mapped converter names. Consider this
* as a table that maps the 3rd section to the 1st section. This list contains
* indexes into the 1st section. The index of this list is the same index in
* the 3rd section. There is also some extra information in the high bits of
* each converter index in this table. Currently it's only used to say that
* an alias mapped to this converter is ambiguous. See UCNV_CONVERTER_INDEX_MASK
* and UCNV_AMBIGUOUS_ALIAS_MAP_BIT for more information. This section is
* the predigested form of the 5th section so that an alias lookup can be fast.
*
* 5) This section contains a 2D array with indexes to the 6th section. This
* section is the full form of all alias mappings. The column index is the
* index into the converter list (column header). The row index is the index
* to tag list (row header). This 2D array is the top part a 3D array. The
* third dimension is in the 6th section.
*
* 6) This is blob of variable length arrays. Each array starts with a size,
* and is followed by indexes to alias names in the string table. This is
* the third dimension to the section 5. No other section should be referencing
* this section.
*
* 7) Starting in ICU 3.6, this can be a UConverterAliasOptions struct. Its
* presence indicates that a section 9 exists. UConverterAliasOptions specifies
* what type of string normalization is used among other potential things in the
* future.
*
* 8) This is the string table. All strings are indexed on an even address.
* There are two reasons for this. First many chip architectures locate strings
* faster on even address boundaries. Second, since all indexes are 16-bit
* numbers, this string table can be 128KB in size instead of 64KB when we
* only have strings starting on an even address.
*
* 9) When present this is a set of prenormalized strings from section 8. This
* table contains normalized strings with the dashes and spaces stripped out,
* and all strings lowercased. In the future, the options in section 7 may state
* other types of normalization.
*
* Here is the concept of section 5 and 6. It's a 3D cube. Each tag
* has a unique alias among all converters. That same alias can
* be mentioned in other standards on different converters,
* but only one alias per tag can be unique.
*
*
* Converter Names (Usually in TR22 form)
* -------------------------------------------.
* T / /|
* a / / |
* g / / |
* s / / |
* / / |
* ------------------------------------------/ |
* A | | |
* l | | |
* i | | /
* a | | /
* s | | /
* e | | /
* s | |/
* -------------------------------------------
*
*
*
* Here is what it really looks like. It's like swiss cheese.
* There are holes. Some converters aren't recognized by
* a standard, or they are really old converters that the
* standard doesn't recognize anymore.
*
* Converter Names (Usually in TR22 form)
* -------------------------------------------.
* T /##########################################/|
* a / # # /#
* g / # ## ## ### # ### ### ### #/
* s / # ##### #### ## ## #/#
* / ### # # ## # # # ### # # #/##
* ------------------------------------------/# #
* A |### # # ## # # # ### # # #|# #
* l |# # # # # ## # #|# #
* i |# # # # # # #|#
* a |# #|#
* s | #|#
* e
* s
*
*/
/**
* Used by the UEnumeration API
*/
typedef struct UAliasContext {
uint32_t listOffset;
uint32_t listIdx;
} UAliasContext;
static const char DATA_NAME[] = "cnvalias";
static const char DATA_TYPE[] = "icu";
static UDataMemory *gAliasData=NULL;
static icu::UInitOnce gAliasDataInitOnce = U_INITONCE_INITIALIZER;
enum {
tocLengthIndex=0,
converterListIndex=1,
tagListIndex=2,
aliasListIndex=3,
untaggedConvArrayIndex=4,
taggedAliasArrayIndex=5,
taggedAliasListsIndex=6,
tableOptionsIndex=7,
stringTableIndex=8,
normalizedStringTableIndex=9,
offsetsCount, /* length of the swapper's temporary offsets[] */
minTocLength=8 /* min. tocLength in the file, does not count the tocLengthIndex! */
};
static const UConverterAliasOptions defaultTableOptions = {
UCNV_IO_UNNORMALIZED,
0 /* containsCnvOptionInfo */
};
static UConverterAlias gMainTable;
#define GET_STRING(idx) (const char *)(gMainTable.stringTable + (idx))
#define GET_NORMALIZED_STRING(idx) (const char *)(gMainTable.normalizedStringTable + (idx))
static UBool U_CALLCONV
isAcceptable(void * /*context*/,
const char * /*type*/, const char * /*name*/,
const UDataInfo *pInfo) {
return (UBool)(
pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==0x43 && /* dataFormat="CvAl" */
pInfo->dataFormat[1]==0x76 &&
pInfo->dataFormat[2]==0x41 &&
pInfo->dataFormat[3]==0x6c &&
pInfo->formatVersion[0]==3);
}
static UBool U_CALLCONV ucnv_io_cleanup(void)
{
if (gAliasData) {
udata_close(gAliasData);
gAliasData = NULL;
}
gAliasDataInitOnce.reset();
uprv_memset(&gMainTable, 0, sizeof(gMainTable));
return TRUE; /* Everything was cleaned up */
}
static void U_CALLCONV initAliasData(UErrorCode &errCode) {
UDataMemory *data;
const uint16_t *table;
const uint32_t *sectionSizes;
uint32_t tableStart;
uint32_t currOffset;
ucln_common_registerCleanup(UCLN_COMMON_UCNV_IO, ucnv_io_cleanup);
U_ASSERT(gAliasData == NULL);
data = udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &errCode);
if(U_FAILURE(errCode)) {
return;
}
sectionSizes = (const uint32_t *)udata_getMemory(data);
table = (const uint16_t *)sectionSizes;
tableStart = sectionSizes[0];
if (tableStart < minTocLength) {
errCode = U_INVALID_FORMAT_ERROR;
udata_close(data);
return;
}
gAliasData = data;
gMainTable.converterListSize = sectionSizes[1];
gMainTable.tagListSize = sectionSizes[2];
gMainTable.aliasListSize = sectionSizes[3];
gMainTable.untaggedConvArraySize = sectionSizes[4];
gMainTable.taggedAliasArraySize = sectionSizes[5];
gMainTable.taggedAliasListsSize = sectionSizes[6];
gMainTable.optionTableSize = sectionSizes[7];
gMainTable.stringTableSize = sectionSizes[8];
if (tableStart > 8) {
gMainTable.normalizedStringTableSize = sectionSizes[9];
}
currOffset = tableStart * (sizeof(uint32_t)/sizeof(uint16_t)) + (sizeof(uint32_t)/sizeof(uint16_t));
gMainTable.converterList = table + currOffset;
currOffset += gMainTable.converterListSize;
gMainTable.tagList = table + currOffset;
currOffset += gMainTable.tagListSize;
gMainTable.aliasList = table + currOffset;
currOffset += gMainTable.aliasListSize;
gMainTable.untaggedConvArray = table + currOffset;
currOffset += gMainTable.untaggedConvArraySize;
gMainTable.taggedAliasArray = table + currOffset;
/* aliasLists is a 1's based array, but it has a padding character */
currOffset += gMainTable.taggedAliasArraySize;
gMainTable.taggedAliasLists = table + currOffset;
currOffset += gMainTable.taggedAliasListsSize;
if (gMainTable.optionTableSize > 0
&& ((const UConverterAliasOptions *)(table + currOffset))->stringNormalizationType < UCNV_IO_NORM_TYPE_COUNT)
{
/* Faster table */
gMainTable.optionTable = (const UConverterAliasOptions *)(table + currOffset);
}
else {
/* Smaller table, or I can't handle this normalization mode!
Use the original slower table lookup. */
gMainTable.optionTable = &defaultTableOptions;
}
currOffset += gMainTable.optionTableSize;
gMainTable.stringTable = table + currOffset;
currOffset += gMainTable.stringTableSize;
gMainTable.normalizedStringTable = ((gMainTable.optionTable->stringNormalizationType == UCNV_IO_UNNORMALIZED)
? gMainTable.stringTable : (table + currOffset));
}
static UBool
haveAliasData(UErrorCode *pErrorCode) {
umtx_initOnce(gAliasDataInitOnce, &initAliasData, *pErrorCode);
return U_SUCCESS(*pErrorCode);
}
static inline UBool
isAlias(const char *alias, UErrorCode *pErrorCode) {
if(alias==NULL) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return FALSE;
}
return (UBool)(*alias!=0);
}
static uint32_t getTagNumber(const char *tagname) {
if (gMainTable.tagList) {
uint32_t tagNum;
for (tagNum = 0; tagNum < gMainTable.tagListSize; tagNum++) {
if (!uprv_stricmp(GET_STRING(gMainTable.tagList[tagNum]), tagname)) {
return tagNum;
}
}
}
return UINT32_MAX;
}
/* character types relevant for ucnv_compareNames() */
enum {
UIGNORE,
ZERO,
NONZERO,
MINLETTER /* any values from here on are lowercase letter mappings */
};
/* character types for ASCII 00..7F */
static const uint8_t asciiTypes[128] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
ZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, 0, 0, 0, 0, 0, 0,
0, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0, 0, 0, 0, 0,
0, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0, 0, 0, 0, 0
};
#define GET_ASCII_TYPE(c) ((int8_t)(c) >= 0 ? asciiTypes[(uint8_t)c] : (uint8_t)UIGNORE)
/* character types for EBCDIC 80..FF */
static const uint8_t ebcdicTypes[128] = {
0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0, 0, 0, 0, 0, 0,
0, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0, 0, 0, 0, 0, 0,
0, 0, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0, 0, 0, 0, 0, 0,
0, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0, 0, 0, 0, 0, 0,
0, 0, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0, 0, 0, 0, 0, 0,
ZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, NONZERO, 0, 0, 0, 0, 0, 0
};
#define GET_EBCDIC_TYPE(c) ((int8_t)(c) < 0 ? ebcdicTypes[(c)&0x7f] : (uint8_t)UIGNORE)
#if U_CHARSET_FAMILY==U_ASCII_FAMILY
# define GET_CHAR_TYPE(c) GET_ASCII_TYPE(c)
#elif U_CHARSET_FAMILY==U_EBCDIC_FAMILY
# define GET_CHAR_TYPE(c) GET_EBCDIC_TYPE(c)
#else
# error U_CHARSET_FAMILY is not valid
#endif
/* @see ucnv_compareNames */
U_CAPI char * U_CALLCONV
ucnv_io_stripASCIIForCompare(char *dst, const char *name) {
char *dstItr = dst;
uint8_t type, nextType;
char c1;
UBool afterDigit = FALSE;
while ((c1 = *name++) != 0) {
type = GET_ASCII_TYPE(c1);
switch (type) {
case UIGNORE:
afterDigit = FALSE;
continue; /* ignore all but letters and digits */
case ZERO:
if (!afterDigit) {
nextType = GET_ASCII_TYPE(*name);
if (nextType == ZERO || nextType == NONZERO) {
continue; /* ignore leading zero before another digit */
}
}
break;
case NONZERO:
afterDigit = TRUE;
break;
default:
c1 = (char)type; /* lowercased letter */
afterDigit = FALSE;
break;
}
*dstItr++ = c1;
}
*dstItr = 0;
return dst;
}
U_CAPI char * U_CALLCONV
ucnv_io_stripEBCDICForCompare(char *dst, const char *name) {
char *dstItr = dst;
uint8_t type, nextType;
char c1;
UBool afterDigit = FALSE;
while ((c1 = *name++) != 0) {
type = GET_EBCDIC_TYPE(c1);
switch (type) {
case UIGNORE:
afterDigit = FALSE;
continue; /* ignore all but letters and digits */
case ZERO:
if (!afterDigit) {
nextType = GET_EBCDIC_TYPE(*name);
if (nextType == ZERO || nextType == NONZERO) {
continue; /* ignore leading zero before another digit */
}
}
break;
case NONZERO:
afterDigit = TRUE;
break;
default:
c1 = (char)type; /* lowercased letter */
afterDigit = FALSE;
break;
}
*dstItr++ = c1;
}
*dstItr = 0;
return dst;
}
/**
* Do a fuzzy compare of two converter/alias names.
* The comparison is case-insensitive, ignores leading zeroes if they are not
* followed by further digits, and ignores all but letters and digits.
* Thus the strings "UTF-8", "utf_8", "u*T@f08" and "Utf 8" are exactly equivalent.
* See section 1.4, Charset Alias Matching in Unicode Technical Standard #22
* at http://www.unicode.org/reports/tr22/
*
* This is a symmetrical (commutative) operation; order of arguments
* is insignificant. This is an important property for sorting the
* list (when the list is preprocessed into binary form) and for
* performing binary searches on it at run time.
*
* @param name1 a converter name or alias, zero-terminated
* @param name2 a converter name or alias, zero-terminated
* @return 0 if the names match, or a negative value if the name1
* lexically precedes name2, or a positive value if the name1
* lexically follows name2.
*
* @see ucnv_io_stripForCompare
*/
U_CAPI int U_EXPORT2
ucnv_compareNames(const char *name1, const char *name2) {
int rc;
uint8_t type, nextType;
char c1, c2;
UBool afterDigit1 = FALSE, afterDigit2 = FALSE;
for (;;) {
while ((c1 = *name1++) != 0) {
type = GET_CHAR_TYPE(c1);
switch (type) {
case UIGNORE:
afterDigit1 = FALSE;
continue; /* ignore all but letters and digits */
case ZERO:
if (!afterDigit1) {
nextType = GET_CHAR_TYPE(*name1);
if (nextType == ZERO || nextType == NONZERO) {
continue; /* ignore leading zero before another digit */
}
}
break;
case NONZERO:
afterDigit1 = TRUE;
break;
default:
c1 = (char)type; /* lowercased letter */
afterDigit1 = FALSE;
break;
}
break; /* deliver c1 */
}
while ((c2 = *name2++) != 0) {
type = GET_CHAR_TYPE(c2);
switch (type) {
case UIGNORE:
afterDigit2 = FALSE;
continue; /* ignore all but letters and digits */
case ZERO:
if (!afterDigit2) {
nextType = GET_CHAR_TYPE(*name2);
if (nextType == ZERO || nextType == NONZERO) {
continue; /* ignore leading zero before another digit */
}
}
break;
case NONZERO:
afterDigit2 = TRUE;
break;
default:
c2 = (char)type; /* lowercased letter */
afterDigit2 = FALSE;
break;
}
break; /* deliver c2 */
}
/* If we reach the ends of both strings then they match */
if ((c1|c2)==0) {
return 0;
}
/* Case-insensitive comparison */
rc = (int)(unsigned char)c1 - (int)(unsigned char)c2;
if (rc != 0) {
return rc;
}
}
}
/*
* search for an alias
* return the converter number index for gConverterList
*/
static inline uint32_t
findConverter(const char *alias, UBool *containsOption, UErrorCode *pErrorCode) {
uint32_t mid, start, limit;
uint32_t lastMid;
int result;
int isUnnormalized = (gMainTable.optionTable->stringNormalizationType == UCNV_IO_UNNORMALIZED);
char strippedName[UCNV_MAX_CONVERTER_NAME_LENGTH];
if (!isUnnormalized) {
if (uprv_strlen(alias) >= UCNV_MAX_CONVERTER_NAME_LENGTH) {
*pErrorCode = U_BUFFER_OVERFLOW_ERROR;
return UINT32_MAX;
}
/* Lower case and remove ignoreable characters. */
ucnv_io_stripForCompare(strippedName, alias);
alias = strippedName;
}
/* do a binary search for the alias */
start = 0;
limit = gMainTable.untaggedConvArraySize;
mid = limit;
lastMid = UINT32_MAX;
for (;;) {
mid = (uint32_t)((start + limit) / 2);
if (lastMid == mid) { /* Have we moved? */
break; /* We haven't moved, and it wasn't found. */
}
lastMid = mid;
if (isUnnormalized) {
result = ucnv_compareNames(alias, GET_STRING(gMainTable.aliasList[mid]));
}
else {
result = uprv_strcmp(alias, GET_NORMALIZED_STRING(gMainTable.aliasList[mid]));
}
if (result < 0) {
limit = mid;
} else if (result > 0) {
start = mid;
} else {
/* Since the gencnval tool folds duplicates into one entry,
* this alias in gAliasList is unique, but different standards
* may map an alias to different converters.
*/
if (gMainTable.untaggedConvArray[mid] & UCNV_AMBIGUOUS_ALIAS_MAP_BIT) {
*pErrorCode = U_AMBIGUOUS_ALIAS_WARNING;
}
/* State whether the canonical converter name contains an option.
This information is contained in this list in order to maintain backward & forward compatibility. */
if (containsOption) {
UBool containsCnvOptionInfo = (UBool)gMainTable.optionTable->containsCnvOptionInfo;
*containsOption = (UBool)((containsCnvOptionInfo
&& ((gMainTable.untaggedConvArray[mid] & UCNV_CONTAINS_OPTION_BIT) != 0))
|| !containsCnvOptionInfo);
}
return gMainTable.untaggedConvArray[mid] & UCNV_CONVERTER_INDEX_MASK;
}
}
return UINT32_MAX;
}
/*
* Is this alias in this list?
* alias and listOffset should be non-NULL.
*/
static inline UBool
isAliasInList(const char *alias, uint32_t listOffset) {
if (listOffset) {
uint32_t currAlias;
uint32_t listCount = gMainTable.taggedAliasLists[listOffset];
/* +1 to skip listCount */
const uint16_t *currList = gMainTable.taggedAliasLists + listOffset + 1;
for (currAlias = 0; currAlias < listCount; currAlias++) {
if (currList[currAlias]
&& ucnv_compareNames(alias, GET_STRING(currList[currAlias]))==0)
{
return TRUE;
}
}
}
return FALSE;
}
/*
* Search for an standard name of an alias (what is the default name
* that this standard uses?)
* return the listOffset for gTaggedAliasLists. If it's 0,
* the it couldn't be found, but the parameters are valid.
*/
static uint32_t
findTaggedAliasListsOffset(const char *alias, const char *standard, UErrorCode *pErrorCode) {
uint32_t idx;
uint32_t listOffset;
uint32_t convNum;
UErrorCode myErr = U_ZERO_ERROR;
uint32_t tagNum = getTagNumber(standard);
/* Make a quick guess. Hopefully they used a TR22 canonical alias. */
convNum = findConverter(alias, NULL, &myErr);
if (myErr != U_ZERO_ERROR) {
*pErrorCode = myErr;
}
if (tagNum < (gMainTable.tagListSize - UCNV_NUM_HIDDEN_TAGS) && convNum < gMainTable.converterListSize) {
listOffset = gMainTable.taggedAliasArray[tagNum*gMainTable.converterListSize + convNum];
if (listOffset && gMainTable.taggedAliasLists[listOffset + 1]) {
return listOffset;
}
if (myErr == U_AMBIGUOUS_ALIAS_WARNING) {
/* Uh Oh! They used an ambiguous alias.
We have to search the whole swiss cheese starting
at the highest standard affinity.
This may take a while.
*/
for (idx = 0; idx < gMainTable.taggedAliasArraySize; idx++) {
listOffset = gMainTable.taggedAliasArray[idx];
if (listOffset && isAliasInList(alias, listOffset)) {
uint32_t currTagNum = idx/gMainTable.converterListSize;
uint32_t currConvNum = (idx - currTagNum*gMainTable.converterListSize);
uint32_t tempListOffset = gMainTable.taggedAliasArray[tagNum*gMainTable.converterListSize + currConvNum];
if (tempListOffset && gMainTable.taggedAliasLists[tempListOffset + 1]) {
return tempListOffset;
}
/* else keep on looking */
/* We could speed this up by starting on the next row
because an alias is unique per row, right now.
This would change if alias versioning appears. */
}
}
/* The standard doesn't know about the alias */
}
/* else no default name */
return 0;
}
/* else converter or tag not found */
return UINT32_MAX;
}
/* Return the canonical name */
static uint32_t
findTaggedConverterNum(const char *alias, const char *standard, UErrorCode *pErrorCode) {
uint32_t idx;
uint32_t listOffset;
uint32_t convNum;
UErrorCode myErr = U_ZERO_ERROR;
uint32_t tagNum = getTagNumber(standard);
/* Make a quick guess. Hopefully they used a TR22 canonical alias. */
convNum = findConverter(alias, NULL, &myErr);
if (myErr != U_ZERO_ERROR) {
*pErrorCode = myErr;
}
if (tagNum < (gMainTable.tagListSize - UCNV_NUM_HIDDEN_TAGS) && convNum < gMainTable.converterListSize) {
listOffset = gMainTable.taggedAliasArray[tagNum*gMainTable.converterListSize + convNum];
if (listOffset && isAliasInList(alias, listOffset)) {
return convNum;
}
if (myErr == U_AMBIGUOUS_ALIAS_WARNING) {
/* Uh Oh! They used an ambiguous alias.
We have to search one slice of the swiss cheese.
We search only in the requested tag, not the whole thing.
This may take a while.
*/
uint32_t convStart = (tagNum)*gMainTable.converterListSize;
uint32_t convLimit = (tagNum+1)*gMainTable.converterListSize;
for (idx = convStart; idx < convLimit; idx++) {
listOffset = gMainTable.taggedAliasArray[idx];
if (listOffset && isAliasInList(alias, listOffset)) {
return idx-convStart;
}
}
/* The standard doesn't know about the alias */
}
/* else no canonical name */
}
/* else converter or tag not found */
return UINT32_MAX;
}
U_CAPI const char *
ucnv_io_getConverterName(const char *alias, UBool *containsOption, UErrorCode *pErrorCode) {
const char *aliasTmp = alias;
int32_t i = 0;
for (i = 0; i < 2; i++) {
if (i == 1) {
/*
* After the first unsuccess converter lookup, check to see if
* the name begins with 'x-'. If it does, strip it off and try
* again. This behaviour is similar to how ICU4J does it.
*/
if (aliasTmp[0] == 'x' && aliasTmp[1] == '-') {
aliasTmp = aliasTmp+2;
} else {
break;
}
}
if(haveAliasData(pErrorCode) && isAlias(aliasTmp, pErrorCode)) {
uint32_t convNum = findConverter(aliasTmp, containsOption, pErrorCode);
if (convNum < gMainTable.converterListSize) {
return GET_STRING(gMainTable.converterList[convNum]);
}
/* else converter not found */
} else {
break;
}
}
return NULL;
}
U_CDECL_BEGIN
static int32_t U_CALLCONV
ucnv_io_countStandardAliases(UEnumeration *enumerator, UErrorCode * /*pErrorCode*/) {
int32_t value = 0;
UAliasContext *myContext = (UAliasContext *)(enumerator->context);
uint32_t listOffset = myContext->listOffset;
if (listOffset) {
value = gMainTable.taggedAliasLists[listOffset];
}
return value;
}
static const char * U_CALLCONV
ucnv_io_nextStandardAliases(UEnumeration *enumerator,
int32_t* resultLength,
UErrorCode * /*pErrorCode*/)
{
UAliasContext *myContext = (UAliasContext *)(enumerator->context);
uint32_t listOffset = myContext->listOffset;
if (listOffset) {
uint32_t listCount = gMainTable.taggedAliasLists[listOffset];
const uint16_t *currList = gMainTable.taggedAliasLists + listOffset + 1;
if (myContext->listIdx < listCount) {
const char *myStr = GET_STRING(currList[myContext->listIdx++]);
if (resultLength) {
*resultLength = (int32_t)uprv_strlen(myStr);
}
return myStr;
}
}
/* Either we accessed a zero length list, or we enumerated too far. */
if (resultLength) {
*resultLength = 0;
}
return NULL;
}
static void U_CALLCONV
ucnv_io_resetStandardAliases(UEnumeration *enumerator, UErrorCode * /*pErrorCode*/) {
((UAliasContext *)(enumerator->context))->listIdx = 0;
}
static void U_CALLCONV
ucnv_io_closeUEnumeration(UEnumeration *enumerator) {
uprv_free(enumerator->context);
uprv_free(enumerator);
}
U_CDECL_END
/* Enumerate the aliases for the specified converter and standard tag */
static const UEnumeration gEnumAliases = {
NULL,
NULL,
ucnv_io_closeUEnumeration,
ucnv_io_countStandardAliases,
uenum_unextDefault,
ucnv_io_nextStandardAliases,
ucnv_io_resetStandardAliases
};
U_CAPI UEnumeration * U_EXPORT2
ucnv_openStandardNames(const char *convName,
const char *standard,
UErrorCode *pErrorCode)
{
UEnumeration *myEnum = NULL;
if (haveAliasData(pErrorCode) && isAlias(convName, pErrorCode)) {
uint32_t listOffset = findTaggedAliasListsOffset(convName, standard, pErrorCode);
/* When listOffset == 0, we want to acknowledge that the
converter name and standard are okay, but there
is nothing to enumerate. */
if (listOffset < gMainTable.taggedAliasListsSize) {
UAliasContext *myContext;
myEnum = static_cast<UEnumeration *>(uprv_malloc(sizeof(UEnumeration)));
if (myEnum == NULL) {
*pErrorCode = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memcpy(myEnum, &gEnumAliases, sizeof(UEnumeration));
myContext = static_cast<UAliasContext *>(uprv_malloc(sizeof(UAliasContext)));
if (myContext == NULL) {
*pErrorCode = U_MEMORY_ALLOCATION_ERROR;
uprv_free(myEnum);
return NULL;
}
myContext->listOffset = listOffset;
myContext->listIdx = 0;
myEnum->context = myContext;
}
/* else converter or tag not found */
}
return myEnum;
}
static uint16_t
ucnv_io_countAliases(const char *alias, UErrorCode *pErrorCode) {
if(haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) {
uint32_t convNum = findConverter(alias, NULL, pErrorCode);
if (convNum < gMainTable.converterListSize) {
/* tagListNum - 1 is the ALL tag */
int32_t listOffset = gMainTable.taggedAliasArray[(gMainTable.tagListSize - 1)*gMainTable.converterListSize + convNum];
if (listOffset) {
return gMainTable.taggedAliasLists[listOffset];
}
/* else this shouldn't happen. internal program error */
}
/* else converter not found */
}
return 0;
}
static uint16_t
ucnv_io_getAliases(const char *alias, uint16_t start, const char **aliases, UErrorCode *pErrorCode) {
if(haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) {
uint32_t currAlias;
uint32_t convNum = findConverter(alias, NULL, pErrorCode);
if (convNum < gMainTable.converterListSize) {
/* tagListNum - 1 is the ALL tag */
int32_t listOffset = gMainTable.taggedAliasArray[(gMainTable.tagListSize - 1)*gMainTable.converterListSize + convNum];
if (listOffset) {
uint32_t listCount = gMainTable.taggedAliasLists[listOffset];
/* +1 to skip listCount */
const uint16_t *currList = gMainTable.taggedAliasLists + listOffset + 1;
for (currAlias = start; currAlias < listCount; currAlias++) {
aliases[currAlias] = GET_STRING(currList[currAlias]);
}
}
/* else this shouldn't happen. internal program error */
}
/* else converter not found */
}
return 0;
}
static const char *
ucnv_io_getAlias(const char *alias, uint16_t n, UErrorCode *pErrorCode) {
if(haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) {
uint32_t convNum = findConverter(alias, NULL, pErrorCode);
if (convNum < gMainTable.converterListSize) {
/* tagListNum - 1 is the ALL tag */
int32_t listOffset = gMainTable.taggedAliasArray[(gMainTable.tagListSize - 1)*gMainTable.converterListSize + convNum];
if (listOffset) {
uint32_t listCount = gMainTable.taggedAliasLists[listOffset];
/* +1 to skip listCount */
const uint16_t *currList = gMainTable.taggedAliasLists + listOffset + 1;
if (n < listCount) {
return GET_STRING(currList[n]);
}
*pErrorCode = U_INDEX_OUTOFBOUNDS_ERROR;
}
/* else this shouldn't happen. internal program error */
}
/* else converter not found */
}
return NULL;
}
static uint16_t
ucnv_io_countStandards(UErrorCode *pErrorCode) {
if (haveAliasData(pErrorCode)) {
/* Don't include the empty list */
return (uint16_t)(gMainTable.tagListSize - UCNV_NUM_HIDDEN_TAGS);
}
return 0;
}
U_CAPI const char * U_EXPORT2
ucnv_getStandard(uint16_t n, UErrorCode *pErrorCode) {
if (haveAliasData(pErrorCode)) {
if (n < gMainTable.tagListSize - UCNV_NUM_HIDDEN_TAGS) {
return GET_STRING(gMainTable.tagList[n]);
}
*pErrorCode = U_INDEX_OUTOFBOUNDS_ERROR;
}
return NULL;
}
U_CAPI const char * U_EXPORT2
ucnv_getStandardName(const char *alias, const char *standard, UErrorCode *pErrorCode) {
if (haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) {
uint32_t listOffset = findTaggedAliasListsOffset(alias, standard, pErrorCode);
if (0 < listOffset && listOffset < gMainTable.taggedAliasListsSize) {
const uint16_t *currList = gMainTable.taggedAliasLists + listOffset + 1;
/* Get the preferred name from this list */
if (currList[0]) {
return GET_STRING(currList[0]);
}
/* else someone screwed up the alias table. */
/* *pErrorCode = U_INVALID_FORMAT_ERROR */
}
}
return NULL;
}
U_CAPI uint16_t U_EXPORT2
ucnv_countAliases(const char *alias, UErrorCode *pErrorCode)
{
return ucnv_io_countAliases(alias, pErrorCode);
}
U_CAPI const char* U_EXPORT2
ucnv_getAlias(const char *alias, uint16_t n, UErrorCode *pErrorCode)
{
return ucnv_io_getAlias(alias, n, pErrorCode);
}
U_CAPI void U_EXPORT2
ucnv_getAliases(const char *alias, const char **aliases, UErrorCode *pErrorCode)
{
ucnv_io_getAliases(alias, 0, aliases, pErrorCode);
}
U_CAPI uint16_t U_EXPORT2
ucnv_countStandards(void)
{
UErrorCode err = U_ZERO_ERROR;
return ucnv_io_countStandards(&err);
}
U_CAPI const char * U_EXPORT2
ucnv_getCanonicalName(const char *alias, const char *standard, UErrorCode *pErrorCode) {
if (haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) {
uint32_t convNum = findTaggedConverterNum(alias, standard, pErrorCode);
if (convNum < gMainTable.converterListSize) {
return GET_STRING(gMainTable.converterList[convNum]);
}
}
return NULL;
}
U_CDECL_BEGIN
static int32_t U_CALLCONV
ucnv_io_countAllConverters(UEnumeration * /*enumerator*/, UErrorCode * /*pErrorCode*/) {
return gMainTable.converterListSize;
}
static const char * U_CALLCONV
ucnv_io_nextAllConverters(UEnumeration *enumerator,
int32_t* resultLength,
UErrorCode * /*pErrorCode*/)
{
uint16_t *myContext = (uint16_t *)(enumerator->context);
if (*myContext < gMainTable.converterListSize) {
const char *myStr = GET_STRING(gMainTable.converterList[(*myContext)++]);
if (resultLength) {
*resultLength = (int32_t)uprv_strlen(myStr);
}
return myStr;
}
/* Either we accessed a zero length list, or we enumerated too far. */
if (resultLength) {
*resultLength = 0;
}
return NULL;
}
static void U_CALLCONV
ucnv_io_resetAllConverters(UEnumeration *enumerator, UErrorCode * /*pErrorCode*/) {
*((uint16_t *)(enumerator->context)) = 0;
}
U_CDECL_END
static const UEnumeration gEnumAllConverters = {
NULL,
NULL,
ucnv_io_closeUEnumeration,
ucnv_io_countAllConverters,
uenum_unextDefault,
ucnv_io_nextAllConverters,
ucnv_io_resetAllConverters
};
U_CAPI UEnumeration * U_EXPORT2
ucnv_openAllNames(UErrorCode *pErrorCode) {
UEnumeration *myEnum = NULL;
if (haveAliasData(pErrorCode)) {
uint16_t *myContext;
myEnum = static_cast<UEnumeration *>(uprv_malloc(sizeof(UEnumeration)));
if (myEnum == NULL) {
*pErrorCode = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memcpy(myEnum, &gEnumAllConverters, sizeof(UEnumeration));
myContext = static_cast<uint16_t *>(uprv_malloc(sizeof(uint16_t)));
if (myContext == NULL) {
*pErrorCode = U_MEMORY_ALLOCATION_ERROR;
uprv_free(myEnum);
return NULL;
}
*myContext = 0;
myEnum->context = myContext;
}
return myEnum;
}
U_CAPI uint16_t
ucnv_io_countKnownConverters(UErrorCode *pErrorCode) {
if (haveAliasData(pErrorCode)) {
return (uint16_t)gMainTable.converterListSize;
}
return 0;
}
/* alias table swapping ----------------------------------------------------- */
U_CDECL_BEGIN
typedef char * U_CALLCONV StripForCompareFn(char *dst, const char *name);
U_CDECL_END
/*
* row of a temporary array
*
* gets platform-endian charset string indexes and sorting indexes;
* after sorting this array by strings, the actual arrays are permutated
* according to the sorting indexes
*/
typedef struct TempRow {
uint16_t strIndex, sortIndex;
} TempRow;
typedef struct TempAliasTable {
const char *chars;
TempRow *rows;
uint16_t *resort;
StripForCompareFn *stripForCompare;
} TempAliasTable;
enum {
STACK_ROW_CAPACITY=500
};
static int32_t U_CALLCONV
io_compareRows(const void *context, const void *left, const void *right) {
char strippedLeft[UCNV_MAX_CONVERTER_NAME_LENGTH],
strippedRight[UCNV_MAX_CONVERTER_NAME_LENGTH];
TempAliasTable *tempTable=(TempAliasTable *)context;
const char *chars=tempTable->chars;
return (int32_t)uprv_strcmp(tempTable->stripForCompare(strippedLeft, chars+2*((const TempRow *)left)->strIndex),
tempTable->stripForCompare(strippedRight, chars+2*((const TempRow *)right)->strIndex));
}
U_CAPI int32_t U_EXPORT2
ucnv_swapAliases(const UDataSwapper *ds,
const void *inData, int32_t length, void *outData,
UErrorCode *pErrorCode) {
const UDataInfo *pInfo;
int32_t headerSize;
const uint16_t *inTable;
const uint32_t *inSectionSizes;
uint32_t toc[offsetsCount];
uint32_t offsets[offsetsCount]; /* 16-bit-addressed offsets from inTable/outTable */
uint32_t i, count, tocLength, topOffset;
TempRow rows[STACK_ROW_CAPACITY];
uint16_t resort[STACK_ROW_CAPACITY];
TempAliasTable tempTable;
/* udata_swapDataHeader checks the arguments */
headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
/* check data format and format version */
pInfo=(const UDataInfo *)((const char *)inData+4);
if(!(
pInfo->dataFormat[0]==0x43 && /* dataFormat="CvAl" */
pInfo->dataFormat[1]==0x76 &&
pInfo->dataFormat[2]==0x41 &&
pInfo->dataFormat[3]==0x6c &&
pInfo->formatVersion[0]==3
)) {
udata_printError(ds, "ucnv_swapAliases(): data format %02x.%02x.%02x.%02x (format version %02x) is not an alias table\n",
pInfo->dataFormat[0], pInfo->dataFormat[1],
pInfo->dataFormat[2], pInfo->dataFormat[3],
pInfo->formatVersion[0]);
*pErrorCode=U_UNSUPPORTED_ERROR;
return 0;
}
/* an alias table must contain at least the table of contents array */
if(length>=0 && (length-headerSize)<4*(1+minTocLength)) {
udata_printError(ds, "ucnv_swapAliases(): too few bytes (%d after header) for an alias table\n",
length-headerSize);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
inSectionSizes=(const uint32_t *)((const char *)inData+headerSize);
inTable=(const uint16_t *)inSectionSizes;
uprv_memset(toc, 0, sizeof(toc));
toc[tocLengthIndex]=tocLength=ds->readUInt32(inSectionSizes[tocLengthIndex]);
if(tocLength<minTocLength || offsetsCount<=tocLength) {
udata_printError(ds, "ucnv_swapAliases(): table of contents contains unsupported number of sections (%u sections)\n", tocLength);
*pErrorCode=U_INVALID_FORMAT_ERROR;
return 0;
}
/* read the known part of the table of contents */
for(i=converterListIndex; i<=tocLength; ++i) {
toc[i]=ds->readUInt32(inSectionSizes[i]);
}
/* compute offsets */
uprv_memset(offsets, 0, sizeof(offsets));
offsets[converterListIndex]=2*(1+tocLength); /* count two 16-bit units per toc entry */
for(i=tagListIndex; i<=tocLength; ++i) {
offsets[i]=offsets[i-1]+toc[i-1];
}
/* compute the overall size of the after-header data, in numbers of 16-bit units */
topOffset=offsets[i-1]+toc[i-1];
if(length>=0) {
uint16_t *outTable;
const uint16_t *p, *p2;
uint16_t *q, *q2;
uint16_t oldIndex;
if((length-headerSize)<(2*(int32_t)topOffset)) {
udata_printError(ds, "ucnv_swapAliases(): too few bytes (%d after header) for an alias table\n",
length-headerSize);
*pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
return 0;
}
outTable=(uint16_t *)((char *)outData+headerSize);
/* swap the entire table of contents */
ds->swapArray32(ds, inTable, 4*(1+tocLength), outTable, pErrorCode);
/* swap unormalized strings & normalized strings */
ds->swapInvChars(ds, inTable+offsets[stringTableIndex], 2*(int32_t)(toc[stringTableIndex]+toc[normalizedStringTableIndex]),
outTable+offsets[stringTableIndex], pErrorCode);
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ucnv_swapAliases().swapInvChars(charset names) failed\n");
return 0;
}
if(ds->inCharset==ds->outCharset) {
/* no need to sort, just swap all 16-bit values together */
ds->swapArray16(ds,
inTable+offsets[converterListIndex],
2*(int32_t)(offsets[stringTableIndex]-offsets[converterListIndex]),
outTable+offsets[converterListIndex],
pErrorCode);
} else {
/* allocate the temporary table for sorting */
count=toc[aliasListIndex];
tempTable.chars=(const char *)(outTable+offsets[stringTableIndex]); /* sort by outCharset */
if(count<=STACK_ROW_CAPACITY) {
tempTable.rows=rows;
tempTable.resort=resort;
} else {
tempTable.rows=(TempRow *)uprv_malloc(count*sizeof(TempRow)+count*2);
if(tempTable.rows==NULL) {
udata_printError(ds, "ucnv_swapAliases(): unable to allocate memory for sorting tables (max length: %u)\n",
count);
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
return 0;
}
tempTable.resort=(uint16_t *)(tempTable.rows+count);
}
if(ds->outCharset==U_ASCII_FAMILY) {
tempTable.stripForCompare=ucnv_io_stripASCIIForCompare;
} else /* U_EBCDIC_FAMILY */ {
tempTable.stripForCompare=ucnv_io_stripEBCDICForCompare;
}
/*
* Sort unique aliases+mapped names.
*
* We need to sort the list again by outCharset strings because they
* sort differently for different charset families.
* First we set up a temporary table with the string indexes and
* sorting indexes and sort that.
* Then we permutate and copy/swap the actual values.
*/
p=inTable+offsets[aliasListIndex];
q=outTable+offsets[aliasListIndex];
p2=inTable+offsets[untaggedConvArrayIndex];
q2=outTable+offsets[untaggedConvArrayIndex];
for(i=0; i<count; ++i) {
tempTable.rows[i].strIndex=ds->readUInt16(p[i]);
tempTable.rows[i].sortIndex=(uint16_t)i;
}
uprv_sortArray(tempTable.rows, (int32_t)count, sizeof(TempRow),
io_compareRows, &tempTable,
FALSE, pErrorCode);
if(U_SUCCESS(*pErrorCode)) {
/* copy/swap/permutate items */
if(p!=q) {
for(i=0; i<count; ++i) {
oldIndex=tempTable.rows[i].sortIndex;
ds->swapArray16(ds, p+oldIndex, 2, q+i, pErrorCode);
ds->swapArray16(ds, p2+oldIndex, 2, q2+i, pErrorCode);
}
} else {
/*
* If we swap in-place, then the permutation must use another
* temporary array (tempTable.resort)
* before the results are copied to the outBundle.
*/
uint16_t *r=tempTable.resort;
for(i=0; i<count; ++i) {
oldIndex=tempTable.rows[i].sortIndex;
ds->swapArray16(ds, p+oldIndex, 2, r+i, pErrorCode);
}
uprv_memcpy(q, r, 2*(size_t)count);
for(i=0; i<count; ++i) {
oldIndex=tempTable.rows[i].sortIndex;
ds->swapArray16(ds, p2+oldIndex, 2, r+i, pErrorCode);
}
uprv_memcpy(q2, r, 2*(size_t)count);
}
}
if(tempTable.rows!=rows) {
uprv_free(tempTable.rows);
}
if(U_FAILURE(*pErrorCode)) {
udata_printError(ds, "ucnv_swapAliases().uprv_sortArray(%u items) failed\n",
count);
return 0;
}
/* swap remaining 16-bit values */
ds->swapArray16(ds,
inTable+offsets[converterListIndex],
2*(int32_t)(offsets[aliasListIndex]-offsets[converterListIndex]),
outTable+offsets[converterListIndex],
pErrorCode);
ds->swapArray16(ds,
inTable+offsets[taggedAliasArrayIndex],
2*(int32_t)(offsets[stringTableIndex]-offsets[taggedAliasArrayIndex]),
outTable+offsets[taggedAliasArrayIndex],
pErrorCode);
}
}
return headerSize+2*(int32_t)topOffset;
}
#endif
/*
* Hey, Emacs, please set the following:
*
* Local Variables:
* indent-tabs-mode: nil
* End:
*
*/