virtualx-engine/thirdparty/bullet/Bullet3Collision/BroadPhaseCollision/b3DynamicBvh.h
2019-01-07 12:30:35 +01:00

1332 lines
33 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///b3DynamicBvh implementation by Nathanael Presson
#ifndef B3_DYNAMIC_BOUNDING_VOLUME_TREE_H
#define B3_DYNAMIC_BOUNDING_VOLUME_TREE_H
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3Transform.h"
#include "Bullet3Geometry/b3AabbUtil.h"
//
// Compile time configuration
//
// Implementation profiles
#define B3_DBVT_IMPL_GENERIC 0 // Generic implementation
#define B3_DBVT_IMPL_SSE 1 // SSE
// Template implementation of ICollide
#ifdef _WIN32
#if (defined(_MSC_VER) && _MSC_VER >= 1400)
#define B3_DBVT_USE_TEMPLATE 1
#else
#define B3_DBVT_USE_TEMPLATE 0
#endif
#else
#define B3_DBVT_USE_TEMPLATE 0
#endif
// Use only intrinsics instead of inline asm
#define B3_DBVT_USE_INTRINSIC_SSE 1
// Using memmov for collideOCL
#define B3_DBVT_USE_MEMMOVE 1
// Enable benchmarking code
#define B3_DBVT_ENABLE_BENCHMARK 0
// Inlining
#define B3_DBVT_INLINE B3_FORCE_INLINE
// Specific methods implementation
//SSE gives errors on a MSVC 7.1
#if defined(B3_USE_SSE) //&& defined (_WIN32)
#define B3_DBVT_SELECT_IMPL B3_DBVT_IMPL_SSE
#define B3_DBVT_MERGE_IMPL B3_DBVT_IMPL_SSE
#define B3_DBVT_INT0_IMPL B3_DBVT_IMPL_SSE
#else
#define B3_DBVT_SELECT_IMPL B3_DBVT_IMPL_GENERIC
#define B3_DBVT_MERGE_IMPL B3_DBVT_IMPL_GENERIC
#define B3_DBVT_INT0_IMPL B3_DBVT_IMPL_GENERIC
#endif
#if (B3_DBVT_SELECT_IMPL == B3_DBVT_IMPL_SSE) || \
(B3_DBVT_MERGE_IMPL == B3_DBVT_IMPL_SSE) || \
(B3_DBVT_INT0_IMPL == B3_DBVT_IMPL_SSE)
#include <emmintrin.h>
#endif
//
// Auto config and checks
//
#if B3_DBVT_USE_TEMPLATE
#define B3_DBVT_VIRTUAL
#define B3_DBVT_VIRTUAL_DTOR(a)
#define B3_DBVT_PREFIX template <typename T>
#define B3_DBVT_IPOLICY T& policy
#define B3_DBVT_CHECKTYPE \
static const ICollide& typechecker = *(T*)1; \
(void)typechecker;
#else
#define B3_DBVT_VIRTUAL_DTOR(a) \
virtual ~a() {}
#define B3_DBVT_VIRTUAL virtual
#define B3_DBVT_PREFIX
#define B3_DBVT_IPOLICY ICollide& policy
#define B3_DBVT_CHECKTYPE
#endif
#if B3_DBVT_USE_MEMMOVE
#if !defined(__CELLOS_LV2__) && !defined(__MWERKS__)
#include <memory.h>
#endif
#include <string.h>
#endif
#ifndef B3_DBVT_USE_TEMPLATE
#error "B3_DBVT_USE_TEMPLATE undefined"
#endif
#ifndef B3_DBVT_USE_MEMMOVE
#error "B3_DBVT_USE_MEMMOVE undefined"
#endif
#ifndef B3_DBVT_ENABLE_BENCHMARK
#error "B3_DBVT_ENABLE_BENCHMARK undefined"
#endif
#ifndef B3_DBVT_SELECT_IMPL
#error "B3_DBVT_SELECT_IMPL undefined"
#endif
#ifndef B3_DBVT_MERGE_IMPL
#error "B3_DBVT_MERGE_IMPL undefined"
#endif
#ifndef B3_DBVT_INT0_IMPL
#error "B3_DBVT_INT0_IMPL undefined"
#endif
//
// Defaults volumes
//
/* b3DbvtAabbMm */
struct b3DbvtAabbMm
{
B3_DBVT_INLINE b3Vector3 Center() const { return ((mi + mx) / 2); }
B3_DBVT_INLINE b3Vector3 Lengths() const { return (mx - mi); }
B3_DBVT_INLINE b3Vector3 Extents() const { return ((mx - mi) / 2); }
B3_DBVT_INLINE const b3Vector3& Mins() const { return (mi); }
B3_DBVT_INLINE const b3Vector3& Maxs() const { return (mx); }
static inline b3DbvtAabbMm FromCE(const b3Vector3& c, const b3Vector3& e);
static inline b3DbvtAabbMm FromCR(const b3Vector3& c, b3Scalar r);
static inline b3DbvtAabbMm FromMM(const b3Vector3& mi, const b3Vector3& mx);
static inline b3DbvtAabbMm FromPoints(const b3Vector3* pts, int n);
static inline b3DbvtAabbMm FromPoints(const b3Vector3** ppts, int n);
B3_DBVT_INLINE void Expand(const b3Vector3& e);
B3_DBVT_INLINE void SignedExpand(const b3Vector3& e);
B3_DBVT_INLINE bool Contain(const b3DbvtAabbMm& a) const;
B3_DBVT_INLINE int Classify(const b3Vector3& n, b3Scalar o, int s) const;
B3_DBVT_INLINE b3Scalar ProjectMinimum(const b3Vector3& v, unsigned signs) const;
B3_DBVT_INLINE friend bool b3Intersect(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b);
B3_DBVT_INLINE friend bool b3Intersect(const b3DbvtAabbMm& a,
const b3Vector3& b);
B3_DBVT_INLINE friend b3Scalar b3Proximity(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b);
B3_DBVT_INLINE friend int b3Select(const b3DbvtAabbMm& o,
const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b);
B3_DBVT_INLINE friend void b3Merge(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b,
b3DbvtAabbMm& r);
B3_DBVT_INLINE friend bool b3NotEqual(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b);
B3_DBVT_INLINE b3Vector3& tMins() { return (mi); }
B3_DBVT_INLINE b3Vector3& tMaxs() { return (mx); }
private:
B3_DBVT_INLINE void AddSpan(const b3Vector3& d, b3Scalar& smi, b3Scalar& smx) const;
private:
b3Vector3 mi, mx;
};
// Types
typedef b3DbvtAabbMm b3DbvtVolume;
/* b3DbvtNode */
struct b3DbvtNode
{
b3DbvtVolume volume;
b3DbvtNode* parent;
B3_DBVT_INLINE bool isleaf() const { return (childs[1] == 0); }
B3_DBVT_INLINE bool isinternal() const { return (!isleaf()); }
union {
b3DbvtNode* childs[2];
void* data;
int dataAsInt;
};
};
///The b3DynamicBvh class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree).
///This b3DynamicBvh is used for soft body collision detection and for the b3DynamicBvhBroadphase. It has a fast insert, remove and update of nodes.
///Unlike the b3QuantizedBvh, nodes can be dynamically moved around, which allows for change in topology of the underlying data structure.
struct b3DynamicBvh
{
/* Stack element */
struct sStkNN
{
const b3DbvtNode* a;
const b3DbvtNode* b;
sStkNN() {}
sStkNN(const b3DbvtNode* na, const b3DbvtNode* nb) : a(na), b(nb) {}
};
struct sStkNP
{
const b3DbvtNode* node;
int mask;
sStkNP(const b3DbvtNode* n, unsigned m) : node(n), mask(m) {}
};
struct sStkNPS
{
const b3DbvtNode* node;
int mask;
b3Scalar value;
sStkNPS() {}
sStkNPS(const b3DbvtNode* n, unsigned m, b3Scalar v) : node(n), mask(m), value(v) {}
};
struct sStkCLN
{
const b3DbvtNode* node;
b3DbvtNode* parent;
sStkCLN(const b3DbvtNode* n, b3DbvtNode* p) : node(n), parent(p) {}
};
// Policies/Interfaces
/* ICollide */
struct ICollide
{
B3_DBVT_VIRTUAL_DTOR(ICollide)
B3_DBVT_VIRTUAL void Process(const b3DbvtNode*, const b3DbvtNode*) {}
B3_DBVT_VIRTUAL void Process(const b3DbvtNode*) {}
B3_DBVT_VIRTUAL void Process(const b3DbvtNode* n, b3Scalar) { Process(n); }
B3_DBVT_VIRTUAL bool Descent(const b3DbvtNode*) { return (true); }
B3_DBVT_VIRTUAL bool AllLeaves(const b3DbvtNode*) { return (true); }
};
/* IWriter */
struct IWriter
{
virtual ~IWriter() {}
virtual void Prepare(const b3DbvtNode* root, int numnodes) = 0;
virtual void WriteNode(const b3DbvtNode*, int index, int parent, int child0, int child1) = 0;
virtual void WriteLeaf(const b3DbvtNode*, int index, int parent) = 0;
};
/* IClone */
struct IClone
{
virtual ~IClone() {}
virtual void CloneLeaf(b3DbvtNode*) {}
};
// Constants
enum
{
B3_SIMPLE_STACKSIZE = 64,
B3_DOUBLE_STACKSIZE = B3_SIMPLE_STACKSIZE * 2
};
// Fields
b3DbvtNode* m_root;
b3DbvtNode* m_free;
int m_lkhd;
int m_leaves;
unsigned m_opath;
b3AlignedObjectArray<sStkNN> m_stkStack;
mutable b3AlignedObjectArray<const b3DbvtNode*> m_rayTestStack;
// Methods
b3DynamicBvh();
~b3DynamicBvh();
void clear();
bool empty() const { return (0 == m_root); }
void optimizeBottomUp();
void optimizeTopDown(int bu_treshold = 128);
void optimizeIncremental(int passes);
b3DbvtNode* insert(const b3DbvtVolume& box, void* data);
void update(b3DbvtNode* leaf, int lookahead = -1);
void update(b3DbvtNode* leaf, b3DbvtVolume& volume);
bool update(b3DbvtNode* leaf, b3DbvtVolume& volume, const b3Vector3& velocity, b3Scalar margin);
bool update(b3DbvtNode* leaf, b3DbvtVolume& volume, const b3Vector3& velocity);
bool update(b3DbvtNode* leaf, b3DbvtVolume& volume, b3Scalar margin);
void remove(b3DbvtNode* leaf);
void write(IWriter* iwriter) const;
void clone(b3DynamicBvh& dest, IClone* iclone = 0) const;
static int maxdepth(const b3DbvtNode* node);
static int countLeaves(const b3DbvtNode* node);
static void extractLeaves(const b3DbvtNode* node, b3AlignedObjectArray<const b3DbvtNode*>& leaves);
#if B3_DBVT_ENABLE_BENCHMARK
static void benchmark();
#else
static void benchmark()
{
}
#endif
// B3_DBVT_IPOLICY must support ICollide policy/interface
B3_DBVT_PREFIX
static void enumNodes(const b3DbvtNode* root,
B3_DBVT_IPOLICY);
B3_DBVT_PREFIX
static void enumLeaves(const b3DbvtNode* root,
B3_DBVT_IPOLICY);
B3_DBVT_PREFIX
void collideTT(const b3DbvtNode* root0,
const b3DbvtNode* root1,
B3_DBVT_IPOLICY);
B3_DBVT_PREFIX
void collideTTpersistentStack(const b3DbvtNode* root0,
const b3DbvtNode* root1,
B3_DBVT_IPOLICY);
#if 0
B3_DBVT_PREFIX
void collideTT( const b3DbvtNode* root0,
const b3DbvtNode* root1,
const b3Transform& xform,
B3_DBVT_IPOLICY);
B3_DBVT_PREFIX
void collideTT( const b3DbvtNode* root0,
const b3Transform& xform0,
const b3DbvtNode* root1,
const b3Transform& xform1,
B3_DBVT_IPOLICY);
#endif
B3_DBVT_PREFIX
void collideTV(const b3DbvtNode* root,
const b3DbvtVolume& volume,
B3_DBVT_IPOLICY) const;
///rayTest is a re-entrant ray test, and can be called in parallel as long as the b3AlignedAlloc is thread-safe (uses locking etc)
///rayTest is slower than rayTestInternal, because it builds a local stack, using memory allocations, and it recomputes signs/rayDirectionInverses each time
B3_DBVT_PREFIX
static void rayTest(const b3DbvtNode* root,
const b3Vector3& rayFrom,
const b3Vector3& rayTo,
B3_DBVT_IPOLICY);
///rayTestInternal is faster than rayTest, because it uses a persistent stack (to reduce dynamic memory allocations to a minimum) and it uses precomputed signs/rayInverseDirections
///rayTestInternal is used by b3DynamicBvhBroadphase to accelerate world ray casts
B3_DBVT_PREFIX
void rayTestInternal(const b3DbvtNode* root,
const b3Vector3& rayFrom,
const b3Vector3& rayTo,
const b3Vector3& rayDirectionInverse,
unsigned int signs[3],
b3Scalar lambda_max,
const b3Vector3& aabbMin,
const b3Vector3& aabbMax,
B3_DBVT_IPOLICY) const;
B3_DBVT_PREFIX
static void collideKDOP(const b3DbvtNode* root,
const b3Vector3* normals,
const b3Scalar* offsets,
int count,
B3_DBVT_IPOLICY);
B3_DBVT_PREFIX
static void collideOCL(const b3DbvtNode* root,
const b3Vector3* normals,
const b3Scalar* offsets,
const b3Vector3& sortaxis,
int count,
B3_DBVT_IPOLICY,
bool fullsort = true);
B3_DBVT_PREFIX
static void collideTU(const b3DbvtNode* root,
B3_DBVT_IPOLICY);
// Helpers
static B3_DBVT_INLINE int nearest(const int* i, const b3DynamicBvh::sStkNPS* a, b3Scalar v, int l, int h)
{
int m = 0;
while (l < h)
{
m = (l + h) >> 1;
if (a[i[m]].value >= v)
l = m + 1;
else
h = m;
}
return (h);
}
static B3_DBVT_INLINE int allocate(b3AlignedObjectArray<int>& ifree,
b3AlignedObjectArray<sStkNPS>& stock,
const sStkNPS& value)
{
int i;
if (ifree.size() > 0)
{
i = ifree[ifree.size() - 1];
ifree.pop_back();
stock[i] = value;
}
else
{
i = stock.size();
stock.push_back(value);
}
return (i);
}
//
private:
b3DynamicBvh(const b3DynamicBvh&) {}
};
//
// Inline's
//
//
inline b3DbvtAabbMm b3DbvtAabbMm::FromCE(const b3Vector3& c, const b3Vector3& e)
{
b3DbvtAabbMm box;
box.mi = c - e;
box.mx = c + e;
return (box);
}
//
inline b3DbvtAabbMm b3DbvtAabbMm::FromCR(const b3Vector3& c, b3Scalar r)
{
return (FromCE(c, b3MakeVector3(r, r, r)));
}
//
inline b3DbvtAabbMm b3DbvtAabbMm::FromMM(const b3Vector3& mi, const b3Vector3& mx)
{
b3DbvtAabbMm box;
box.mi = mi;
box.mx = mx;
return (box);
}
//
inline b3DbvtAabbMm b3DbvtAabbMm::FromPoints(const b3Vector3* pts, int n)
{
b3DbvtAabbMm box;
box.mi = box.mx = pts[0];
for (int i = 1; i < n; ++i)
{
box.mi.setMin(pts[i]);
box.mx.setMax(pts[i]);
}
return (box);
}
//
inline b3DbvtAabbMm b3DbvtAabbMm::FromPoints(const b3Vector3** ppts, int n)
{
b3DbvtAabbMm box;
box.mi = box.mx = *ppts[0];
for (int i = 1; i < n; ++i)
{
box.mi.setMin(*ppts[i]);
box.mx.setMax(*ppts[i]);
}
return (box);
}
//
B3_DBVT_INLINE void b3DbvtAabbMm::Expand(const b3Vector3& e)
{
mi -= e;
mx += e;
}
//
B3_DBVT_INLINE void b3DbvtAabbMm::SignedExpand(const b3Vector3& e)
{
if (e.x > 0)
mx.setX(mx.x + e[0]);
else
mi.setX(mi.x + e[0]);
if (e.y > 0)
mx.setY(mx.y + e[1]);
else
mi.setY(mi.y + e[1]);
if (e.z > 0)
mx.setZ(mx.z + e[2]);
else
mi.setZ(mi.z + e[2]);
}
//
B3_DBVT_INLINE bool b3DbvtAabbMm::Contain(const b3DbvtAabbMm& a) const
{
return ((mi.x <= a.mi.x) &&
(mi.y <= a.mi.y) &&
(mi.z <= a.mi.z) &&
(mx.x >= a.mx.x) &&
(mx.y >= a.mx.y) &&
(mx.z >= a.mx.z));
}
//
B3_DBVT_INLINE int b3DbvtAabbMm::Classify(const b3Vector3& n, b3Scalar o, int s) const
{
b3Vector3 pi, px;
switch (s)
{
case (0 + 0 + 0):
px = b3MakeVector3(mi.x, mi.y, mi.z);
pi = b3MakeVector3(mx.x, mx.y, mx.z);
break;
case (1 + 0 + 0):
px = b3MakeVector3(mx.x, mi.y, mi.z);
pi = b3MakeVector3(mi.x, mx.y, mx.z);
break;
case (0 + 2 + 0):
px = b3MakeVector3(mi.x, mx.y, mi.z);
pi = b3MakeVector3(mx.x, mi.y, mx.z);
break;
case (1 + 2 + 0):
px = b3MakeVector3(mx.x, mx.y, mi.z);
pi = b3MakeVector3(mi.x, mi.y, mx.z);
break;
case (0 + 0 + 4):
px = b3MakeVector3(mi.x, mi.y, mx.z);
pi = b3MakeVector3(mx.x, mx.y, mi.z);
break;
case (1 + 0 + 4):
px = b3MakeVector3(mx.x, mi.y, mx.z);
pi = b3MakeVector3(mi.x, mx.y, mi.z);
break;
case (0 + 2 + 4):
px = b3MakeVector3(mi.x, mx.y, mx.z);
pi = b3MakeVector3(mx.x, mi.y, mi.z);
break;
case (1 + 2 + 4):
px = b3MakeVector3(mx.x, mx.y, mx.z);
pi = b3MakeVector3(mi.x, mi.y, mi.z);
break;
}
if ((b3Dot(n, px) + o) < 0) return (-1);
if ((b3Dot(n, pi) + o) >= 0) return (+1);
return (0);
}
//
B3_DBVT_INLINE b3Scalar b3DbvtAabbMm::ProjectMinimum(const b3Vector3& v, unsigned signs) const
{
const b3Vector3* b[] = {&mx, &mi};
const b3Vector3 p = b3MakeVector3(b[(signs >> 0) & 1]->x,
b[(signs >> 1) & 1]->y,
b[(signs >> 2) & 1]->z);
return (b3Dot(p, v));
}
//
B3_DBVT_INLINE void b3DbvtAabbMm::AddSpan(const b3Vector3& d, b3Scalar& smi, b3Scalar& smx) const
{
for (int i = 0; i < 3; ++i)
{
if (d[i] < 0)
{
smi += mx[i] * d[i];
smx += mi[i] * d[i];
}
else
{
smi += mi[i] * d[i];
smx += mx[i] * d[i];
}
}
}
//
B3_DBVT_INLINE bool b3Intersect(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b)
{
#if B3_DBVT_INT0_IMPL == B3_DBVT_IMPL_SSE
const __m128 rt(_mm_or_ps(_mm_cmplt_ps(_mm_load_ps(b.mx), _mm_load_ps(a.mi)),
_mm_cmplt_ps(_mm_load_ps(a.mx), _mm_load_ps(b.mi))));
#if defined(_WIN32)
const __int32* pu((const __int32*)&rt);
#else
const int* pu((const int*)&rt);
#endif
return ((pu[0] | pu[1] | pu[2]) == 0);
#else
return ((a.mi.x <= b.mx.x) &&
(a.mx.x >= b.mi.x) &&
(a.mi.y <= b.mx.y) &&
(a.mx.y >= b.mi.y) &&
(a.mi.z <= b.mx.z) &&
(a.mx.z >= b.mi.z));
#endif
}
//
B3_DBVT_INLINE bool b3Intersect(const b3DbvtAabbMm& a,
const b3Vector3& b)
{
return ((b.x >= a.mi.x) &&
(b.y >= a.mi.y) &&
(b.z >= a.mi.z) &&
(b.x <= a.mx.x) &&
(b.y <= a.mx.y) &&
(b.z <= a.mx.z));
}
//////////////////////////////////////
//
B3_DBVT_INLINE b3Scalar b3Proximity(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b)
{
const b3Vector3 d = (a.mi + a.mx) - (b.mi + b.mx);
return (b3Fabs(d.x) + b3Fabs(d.y) + b3Fabs(d.z));
}
//
B3_DBVT_INLINE int b3Select(const b3DbvtAabbMm& o,
const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b)
{
#if B3_DBVT_SELECT_IMPL == B3_DBVT_IMPL_SSE
#if defined(_WIN32)
static B3_ATTRIBUTE_ALIGNED16(const unsigned __int32) mask[] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff};
#else
static B3_ATTRIBUTE_ALIGNED16(const unsigned int) mask[] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x00000000 /*0x7fffffff*/};
#endif
///@todo: the intrinsic version is 11% slower
#if B3_DBVT_USE_INTRINSIC_SSE
union b3SSEUnion ///NOTE: if we use more intrinsics, move b3SSEUnion into the LinearMath directory
{
__m128 ssereg;
float floats[4];
int ints[4];
};
__m128 omi(_mm_load_ps(o.mi));
omi = _mm_add_ps(omi, _mm_load_ps(o.mx));
__m128 ami(_mm_load_ps(a.mi));
ami = _mm_add_ps(ami, _mm_load_ps(a.mx));
ami = _mm_sub_ps(ami, omi);
ami = _mm_and_ps(ami, _mm_load_ps((const float*)mask));
__m128 bmi(_mm_load_ps(b.mi));
bmi = _mm_add_ps(bmi, _mm_load_ps(b.mx));
bmi = _mm_sub_ps(bmi, omi);
bmi = _mm_and_ps(bmi, _mm_load_ps((const float*)mask));
__m128 t0(_mm_movehl_ps(ami, ami));
ami = _mm_add_ps(ami, t0);
ami = _mm_add_ss(ami, _mm_shuffle_ps(ami, ami, 1));
__m128 t1(_mm_movehl_ps(bmi, bmi));
bmi = _mm_add_ps(bmi, t1);
bmi = _mm_add_ss(bmi, _mm_shuffle_ps(bmi, bmi, 1));
b3SSEUnion tmp;
tmp.ssereg = _mm_cmple_ss(bmi, ami);
return tmp.ints[0] & 1;
#else
B3_ATTRIBUTE_ALIGNED16(__int32 r[1]);
__asm
{
mov eax,o
mov ecx,a
mov edx,b
movaps xmm0,[eax]
movaps xmm5,mask
addps xmm0,[eax+16]
movaps xmm1,[ecx]
movaps xmm2,[edx]
addps xmm1,[ecx+16]
addps xmm2,[edx+16]
subps xmm1,xmm0
subps xmm2,xmm0
andps xmm1,xmm5
andps xmm2,xmm5
movhlps xmm3,xmm1
movhlps xmm4,xmm2
addps xmm1,xmm3
addps xmm2,xmm4
pshufd xmm3,xmm1,1
pshufd xmm4,xmm2,1
addss xmm1,xmm3
addss xmm2,xmm4
cmpless xmm2,xmm1
movss r,xmm2
}
return (r[0] & 1);
#endif
#else
return (b3Proximity(o, a) < b3Proximity(o, b) ? 0 : 1);
#endif
}
//
B3_DBVT_INLINE void b3Merge(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b,
b3DbvtAabbMm& r)
{
#if B3_DBVT_MERGE_IMPL == B3_DBVT_IMPL_SSE
__m128 ami(_mm_load_ps(a.mi));
__m128 amx(_mm_load_ps(a.mx));
__m128 bmi(_mm_load_ps(b.mi));
__m128 bmx(_mm_load_ps(b.mx));
ami = _mm_min_ps(ami, bmi);
amx = _mm_max_ps(amx, bmx);
_mm_store_ps(r.mi, ami);
_mm_store_ps(r.mx, amx);
#else
for (int i = 0; i < 3; ++i)
{
if (a.mi[i] < b.mi[i])
r.mi[i] = a.mi[i];
else
r.mi[i] = b.mi[i];
if (a.mx[i] > b.mx[i])
r.mx[i] = a.mx[i];
else
r.mx[i] = b.mx[i];
}
#endif
}
//
B3_DBVT_INLINE bool b3NotEqual(const b3DbvtAabbMm& a,
const b3DbvtAabbMm& b)
{
return ((a.mi.x != b.mi.x) ||
(a.mi.y != b.mi.y) ||
(a.mi.z != b.mi.z) ||
(a.mx.x != b.mx.x) ||
(a.mx.y != b.mx.y) ||
(a.mx.z != b.mx.z));
}
//
// Inline's
//
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::enumNodes(const b3DbvtNode* root,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
policy.Process(root);
if (root->isinternal())
{
enumNodes(root->childs[0], policy);
enumNodes(root->childs[1], policy);
}
}
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::enumLeaves(const b3DbvtNode* root,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
if (root->isinternal())
{
enumLeaves(root->childs[0], policy);
enumLeaves(root->childs[1], policy);
}
else
{
policy.Process(root);
}
}
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideTT(const b3DbvtNode* root0,
const b3DbvtNode* root1,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
if (root0 && root1)
{
int depth = 1;
int treshold = B3_DOUBLE_STACKSIZE - 4;
b3AlignedObjectArray<sStkNN> stkStack;
stkStack.resize(B3_DOUBLE_STACKSIZE);
stkStack[0] = sStkNN(root0, root1);
do
{
sStkNN p = stkStack[--depth];
if (depth > treshold)
{
stkStack.resize(stkStack.size() * 2);
treshold = stkStack.size() - 4;
}
if (p.a == p.b)
{
if (p.a->isinternal())
{
stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[0]);
stkStack[depth++] = sStkNN(p.a->childs[1], p.a->childs[1]);
stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[1]);
}
}
else if (b3Intersect(p.a->volume, p.b->volume))
{
if (p.a->isinternal())
{
if (p.b->isinternal())
{
stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[0]);
stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[0]);
stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[1]);
stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[1]);
}
else
{
stkStack[depth++] = sStkNN(p.a->childs[0], p.b);
stkStack[depth++] = sStkNN(p.a->childs[1], p.b);
}
}
else
{
if (p.b->isinternal())
{
stkStack[depth++] = sStkNN(p.a, p.b->childs[0]);
stkStack[depth++] = sStkNN(p.a, p.b->childs[1]);
}
else
{
policy.Process(p.a, p.b);
}
}
}
} while (depth);
}
}
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideTTpersistentStack(const b3DbvtNode* root0,
const b3DbvtNode* root1,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
if (root0 && root1)
{
int depth = 1;
int treshold = B3_DOUBLE_STACKSIZE - 4;
m_stkStack.resize(B3_DOUBLE_STACKSIZE);
m_stkStack[0] = sStkNN(root0, root1);
do
{
sStkNN p = m_stkStack[--depth];
if (depth > treshold)
{
m_stkStack.resize(m_stkStack.size() * 2);
treshold = m_stkStack.size() - 4;
}
if (p.a == p.b)
{
if (p.a->isinternal())
{
m_stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[0]);
m_stkStack[depth++] = sStkNN(p.a->childs[1], p.a->childs[1]);
m_stkStack[depth++] = sStkNN(p.a->childs[0], p.a->childs[1]);
}
}
else if (b3Intersect(p.a->volume, p.b->volume))
{
if (p.a->isinternal())
{
if (p.b->isinternal())
{
m_stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[0]);
m_stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[0]);
m_stkStack[depth++] = sStkNN(p.a->childs[0], p.b->childs[1]);
m_stkStack[depth++] = sStkNN(p.a->childs[1], p.b->childs[1]);
}
else
{
m_stkStack[depth++] = sStkNN(p.a->childs[0], p.b);
m_stkStack[depth++] = sStkNN(p.a->childs[1], p.b);
}
}
else
{
if (p.b->isinternal())
{
m_stkStack[depth++] = sStkNN(p.a, p.b->childs[0]);
m_stkStack[depth++] = sStkNN(p.a, p.b->childs[1]);
}
else
{
policy.Process(p.a, p.b);
}
}
}
} while (depth);
}
}
#if 0
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideTT( const b3DbvtNode* root0,
const b3DbvtNode* root1,
const b3Transform& xform,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
if(root0&&root1)
{
int depth=1;
int treshold=B3_DOUBLE_STACKSIZE-4;
b3AlignedObjectArray<sStkNN> stkStack;
stkStack.resize(B3_DOUBLE_STACKSIZE);
stkStack[0]=sStkNN(root0,root1);
do {
sStkNN p=stkStack[--depth];
if(b3Intersect(p.a->volume,p.b->volume,xform))
{
if(depth>treshold)
{
stkStack.resize(stkStack.size()*2);
treshold=stkStack.size()-4;
}
if(p.a->isinternal())
{
if(p.b->isinternal())
{
stkStack[depth++]=sStkNN(p.a->childs[0],p.b->childs[0]);
stkStack[depth++]=sStkNN(p.a->childs[1],p.b->childs[0]);
stkStack[depth++]=sStkNN(p.a->childs[0],p.b->childs[1]);
stkStack[depth++]=sStkNN(p.a->childs[1],p.b->childs[1]);
}
else
{
stkStack[depth++]=sStkNN(p.a->childs[0],p.b);
stkStack[depth++]=sStkNN(p.a->childs[1],p.b);
}
}
else
{
if(p.b->isinternal())
{
stkStack[depth++]=sStkNN(p.a,p.b->childs[0]);
stkStack[depth++]=sStkNN(p.a,p.b->childs[1]);
}
else
{
policy.Process(p.a,p.b);
}
}
}
} while(depth);
}
}
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideTT( const b3DbvtNode* root0,
const b3Transform& xform0,
const b3DbvtNode* root1,
const b3Transform& xform1,
B3_DBVT_IPOLICY)
{
const b3Transform xform=xform0.inverse()*xform1;
collideTT(root0,root1,xform,policy);
}
#endif
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideTV(const b3DbvtNode* root,
const b3DbvtVolume& vol,
B3_DBVT_IPOLICY) const
{
B3_DBVT_CHECKTYPE
if (root)
{
B3_ATTRIBUTE_ALIGNED16(b3DbvtVolume)
volume(vol);
b3AlignedObjectArray<const b3DbvtNode*> stack;
stack.resize(0);
stack.reserve(B3_SIMPLE_STACKSIZE);
stack.push_back(root);
do
{
const b3DbvtNode* n = stack[stack.size() - 1];
stack.pop_back();
if (b3Intersect(n->volume, volume))
{
if (n->isinternal())
{
stack.push_back(n->childs[0]);
stack.push_back(n->childs[1]);
}
else
{
policy.Process(n);
}
}
} while (stack.size() > 0);
}
}
B3_DBVT_PREFIX
inline void b3DynamicBvh::rayTestInternal(const b3DbvtNode* root,
const b3Vector3& rayFrom,
const b3Vector3& rayTo,
const b3Vector3& rayDirectionInverse,
unsigned int signs[3],
b3Scalar lambda_max,
const b3Vector3& aabbMin,
const b3Vector3& aabbMax,
B3_DBVT_IPOLICY) const
{
(void)rayTo;
B3_DBVT_CHECKTYPE
if (root)
{
int depth = 1;
int treshold = B3_DOUBLE_STACKSIZE - 2;
b3AlignedObjectArray<const b3DbvtNode*>& stack = m_rayTestStack;
stack.resize(B3_DOUBLE_STACKSIZE);
stack[0] = root;
b3Vector3 bounds[2];
do
{
const b3DbvtNode* node = stack[--depth];
bounds[0] = node->volume.Mins() - aabbMax;
bounds[1] = node->volume.Maxs() - aabbMin;
b3Scalar tmin = 1.f, lambda_min = 0.f;
unsigned int result1 = false;
result1 = b3RayAabb2(rayFrom, rayDirectionInverse, signs, bounds, tmin, lambda_min, lambda_max);
if (result1)
{
if (node->isinternal())
{
if (depth > treshold)
{
stack.resize(stack.size() * 2);
treshold = stack.size() - 2;
}
stack[depth++] = node->childs[0];
stack[depth++] = node->childs[1];
}
else
{
policy.Process(node);
}
}
} while (depth);
}
}
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::rayTest(const b3DbvtNode* root,
const b3Vector3& rayFrom,
const b3Vector3& rayTo,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
if (root)
{
b3Vector3 rayDir = (rayTo - rayFrom);
rayDir.normalize();
///what about division by zero? --> just set rayDirection[i] to INF/B3_LARGE_FLOAT
b3Vector3 rayDirectionInverse;
rayDirectionInverse[0] = rayDir[0] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[0];
rayDirectionInverse[1] = rayDir[1] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[1];
rayDirectionInverse[2] = rayDir[2] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[2];
unsigned int signs[3] = {rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0};
b3Scalar lambda_max = rayDir.dot(rayTo - rayFrom);
#ifdef COMPARE_BTRAY_AABB2
b3Vector3 resultNormal;
#endif //COMPARE_BTRAY_AABB2
b3AlignedObjectArray<const b3DbvtNode*> stack;
int depth = 1;
int treshold = B3_DOUBLE_STACKSIZE - 2;
stack.resize(B3_DOUBLE_STACKSIZE);
stack[0] = root;
b3Vector3 bounds[2];
do
{
const b3DbvtNode* node = stack[--depth];
bounds[0] = node->volume.Mins();
bounds[1] = node->volume.Maxs();
b3Scalar tmin = 1.f, lambda_min = 0.f;
unsigned int result1 = b3RayAabb2(rayFrom, rayDirectionInverse, signs, bounds, tmin, lambda_min, lambda_max);
#ifdef COMPARE_BTRAY_AABB2
b3Scalar param = 1.f;
bool result2 = b3RayAabb(rayFrom, rayTo, node->volume.Mins(), node->volume.Maxs(), param, resultNormal);
b3Assert(result1 == result2);
#endif //TEST_BTRAY_AABB2
if (result1)
{
if (node->isinternal())
{
if (depth > treshold)
{
stack.resize(stack.size() * 2);
treshold = stack.size() - 2;
}
stack[depth++] = node->childs[0];
stack[depth++] = node->childs[1];
}
else
{
policy.Process(node);
}
}
} while (depth);
}
}
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideKDOP(const b3DbvtNode* root,
const b3Vector3* normals,
const b3Scalar* offsets,
int count,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
if (root)
{
const int inside = (1 << count) - 1;
b3AlignedObjectArray<sStkNP> stack;
int signs[sizeof(unsigned) * 8];
b3Assert(count < int(sizeof(signs) / sizeof(signs[0])));
for (int i = 0; i < count; ++i)
{
signs[i] = ((normals[i].x >= 0) ? 1 : 0) +
((normals[i].y >= 0) ? 2 : 0) +
((normals[i].z >= 0) ? 4 : 0);
}
stack.reserve(B3_SIMPLE_STACKSIZE);
stack.push_back(sStkNP(root, 0));
do
{
sStkNP se = stack[stack.size() - 1];
bool out = false;
stack.pop_back();
for (int i = 0, j = 1; (!out) && (i < count); ++i, j <<= 1)
{
if (0 == (se.mask & j))
{
const int side = se.node->volume.Classify(normals[i], offsets[i], signs[i]);
switch (side)
{
case -1:
out = true;
break;
case +1:
se.mask |= j;
break;
}
}
}
if (!out)
{
if ((se.mask != inside) && (se.node->isinternal()))
{
stack.push_back(sStkNP(se.node->childs[0], se.mask));
stack.push_back(sStkNP(se.node->childs[1], se.mask));
}
else
{
if (policy.AllLeaves(se.node)) enumLeaves(se.node, policy);
}
}
} while (stack.size());
}
}
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideOCL(const b3DbvtNode* root,
const b3Vector3* normals,
const b3Scalar* offsets,
const b3Vector3& sortaxis,
int count,
B3_DBVT_IPOLICY,
bool fsort)
{
B3_DBVT_CHECKTYPE
if (root)
{
const unsigned srtsgns = (sortaxis[0] >= 0 ? 1 : 0) +
(sortaxis[1] >= 0 ? 2 : 0) +
(sortaxis[2] >= 0 ? 4 : 0);
const int inside = (1 << count) - 1;
b3AlignedObjectArray<sStkNPS> stock;
b3AlignedObjectArray<int> ifree;
b3AlignedObjectArray<int> stack;
int signs[sizeof(unsigned) * 8];
b3Assert(count < int(sizeof(signs) / sizeof(signs[0])));
for (int i = 0; i < count; ++i)
{
signs[i] = ((normals[i].x >= 0) ? 1 : 0) +
((normals[i].y >= 0) ? 2 : 0) +
((normals[i].z >= 0) ? 4 : 0);
}
stock.reserve(B3_SIMPLE_STACKSIZE);
stack.reserve(B3_SIMPLE_STACKSIZE);
ifree.reserve(B3_SIMPLE_STACKSIZE);
stack.push_back(allocate(ifree, stock, sStkNPS(root, 0, root->volume.ProjectMinimum(sortaxis, srtsgns))));
do
{
const int id = stack[stack.size() - 1];
sStkNPS se = stock[id];
stack.pop_back();
ifree.push_back(id);
if (se.mask != inside)
{
bool out = false;
for (int i = 0, j = 1; (!out) && (i < count); ++i, j <<= 1)
{
if (0 == (se.mask & j))
{
const int side = se.node->volume.Classify(normals[i], offsets[i], signs[i]);
switch (side)
{
case -1:
out = true;
break;
case +1:
se.mask |= j;
break;
}
}
}
if (out) continue;
}
if (policy.Descent(se.node))
{
if (se.node->isinternal())
{
const b3DbvtNode* pns[] = {se.node->childs[0], se.node->childs[1]};
sStkNPS nes[] = {sStkNPS(pns[0], se.mask, pns[0]->volume.ProjectMinimum(sortaxis, srtsgns)),
sStkNPS(pns[1], se.mask, pns[1]->volume.ProjectMinimum(sortaxis, srtsgns))};
const int q = nes[0].value < nes[1].value ? 1 : 0;
int j = stack.size();
if (fsort && (j > 0))
{
/* Insert 0 */
j = nearest(&stack[0], &stock[0], nes[q].value, 0, stack.size());
stack.push_back(0);
#if B3_DBVT_USE_MEMMOVE
memmove(&stack[j + 1], &stack[j], sizeof(int) * (stack.size() - j - 1));
#else
for (int k = stack.size() - 1; k > j; --k) stack[k] = stack[k - 1];
#endif
stack[j] = allocate(ifree, stock, nes[q]);
/* Insert 1 */
j = nearest(&stack[0], &stock[0], nes[1 - q].value, j, stack.size());
stack.push_back(0);
#if B3_DBVT_USE_MEMMOVE
memmove(&stack[j + 1], &stack[j], sizeof(int) * (stack.size() - j - 1));
#else
for (int k = stack.size() - 1; k > j; --k) stack[k] = stack[k - 1];
#endif
stack[j] = allocate(ifree, stock, nes[1 - q]);
}
else
{
stack.push_back(allocate(ifree, stock, nes[q]));
stack.push_back(allocate(ifree, stock, nes[1 - q]));
}
}
else
{
policy.Process(se.node, se.value);
}
}
} while (stack.size());
}
}
//
B3_DBVT_PREFIX
inline void b3DynamicBvh::collideTU(const b3DbvtNode* root,
B3_DBVT_IPOLICY)
{
B3_DBVT_CHECKTYPE
if (root)
{
b3AlignedObjectArray<const b3DbvtNode*> stack;
stack.reserve(B3_SIMPLE_STACKSIZE);
stack.push_back(root);
do
{
const b3DbvtNode* n = stack[stack.size() - 1];
stack.pop_back();
if (policy.Descent(n))
{
if (n->isinternal())
{
stack.push_back(n->childs[0]);
stack.push_back(n->childs[1]);
}
else
{
policy.Process(n);
}
}
} while (stack.size() > 0);
}
}
//
// PP Cleanup
//
#undef B3_DBVT_USE_MEMMOVE
#undef B3_DBVT_USE_TEMPLATE
#undef B3_DBVT_VIRTUAL_DTOR
#undef B3_DBVT_VIRTUAL
#undef B3_DBVT_PREFIX
#undef B3_DBVT_IPOLICY
#undef B3_DBVT_CHECKTYPE
#undef B3_DBVT_IMPL_GENERIC
#undef B3_DBVT_IMPL_SSE
#undef B3_DBVT_USE_INTRINSIC_SSE
#undef B3_DBVT_SELECT_IMPL
#undef B3_DBVT_MERGE_IMPL
#undef B3_DBVT_INT0_IMPL
#endif