virtualx-engine/scene/3d/navigation.cpp
Rémi Verschelde 49646383f1
Update copyright statements to 2021
Happy new year to the wonderful Godot community!

2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.

We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)

Here's to a great year 2021 for all Godot users 🎆

(cherry picked from commit b5334d14f7)
2021-01-13 16:17:06 +01:00

738 lines
20 KiB
C++

/*************************************************************************/
/* navigation.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "navigation.h"
#define USE_ENTRY_POINT
void Navigation::_navmesh_link(int p_id) {
ERR_FAIL_COND(!navmesh_map.has(p_id));
NavMesh &nm = navmesh_map[p_id];
ERR_FAIL_COND(nm.linked);
ERR_FAIL_COND(nm.navmesh.is_null());
PoolVector<Vector3> vertices = nm.navmesh->get_vertices();
int len = vertices.size();
if (len == 0)
return;
PoolVector<Vector3>::Read r = vertices.read();
for (int i = 0; i < nm.navmesh->get_polygon_count(); i++) {
//build
List<Polygon>::Element *P = nm.polygons.push_back(Polygon());
Polygon &p = P->get();
p.owner = &nm;
Vector<int> poly = nm.navmesh->get_polygon(i);
int plen = poly.size();
const int *indices = poly.ptr();
bool valid = true;
p.edges.resize(plen);
Vector3 center;
float sum = 0;
for (int j = 0; j < plen; j++) {
int idx = indices[j];
if (idx < 0 || idx >= len) {
valid = false;
break;
}
Polygon::Edge e;
Vector3 ep = nm.xform.xform(r[idx]);
center += ep;
e.point = _get_point(ep);
p.edges.write[j] = e;
if (j >= 2) {
Vector3 epa = nm.xform.xform(r[indices[j - 2]]);
Vector3 epb = nm.xform.xform(r[indices[j - 1]]);
sum += up.dot((epb - epa).cross(ep - epa));
}
}
p.clockwise = sum > 0;
if (!valid) {
nm.polygons.pop_back();
ERR_CONTINUE(!valid);
}
p.center = center;
if (plen != 0) {
p.center /= plen;
}
//connect
for (int j = 0; j < plen; j++) {
int next = (j + 1) % plen;
EdgeKey ek(p.edges[j].point, p.edges[next].point);
Map<EdgeKey, Connection>::Element *C = connections.find(ek);
if (!C) {
Connection c;
c.A = &p;
c.A_edge = j;
c.B = NULL;
c.B_edge = -1;
connections[ek] = c;
} else {
if (C->get().B != NULL) {
ConnectionPending pending;
pending.polygon = &p;
pending.edge = j;
p.edges.write[j].P = C->get().pending.push_back(pending);
continue;
}
C->get().B = &p;
C->get().B_edge = j;
C->get().A->edges.write[C->get().A_edge].C = &p;
C->get().A->edges.write[C->get().A_edge].C_edge = j;
p.edges.write[j].C = C->get().A;
p.edges.write[j].C_edge = C->get().A_edge;
//connection successful.
}
}
}
nm.linked = true;
}
void Navigation::_navmesh_unlink(int p_id) {
ERR_FAIL_COND(!navmesh_map.has(p_id));
NavMesh &nm = navmesh_map[p_id];
ERR_FAIL_COND(!nm.linked);
for (List<Polygon>::Element *E = nm.polygons.front(); E; E = E->next()) {
Polygon &p = E->get();
int edge_count = p.edges.size();
Polygon::Edge *edges = p.edges.ptrw();
for (int i = 0; i < edge_count; i++) {
int next = (i + 1) % edge_count;
EdgeKey ek(edges[i].point, edges[next].point);
Map<EdgeKey, Connection>::Element *C = connections.find(ek);
ERR_CONTINUE(!C);
if (edges[i].P) {
C->get().pending.erase(edges[i].P);
edges[i].P = NULL;
} else if (C->get().B) {
//disconnect
C->get().B->edges.write[C->get().B_edge].C = NULL;
C->get().B->edges.write[C->get().B_edge].C_edge = -1;
C->get().A->edges.write[C->get().A_edge].C = NULL;
C->get().A->edges.write[C->get().A_edge].C_edge = -1;
if (C->get().A == &E->get()) {
C->get().A = C->get().B;
C->get().A_edge = C->get().B_edge;
}
C->get().B = NULL;
C->get().B_edge = -1;
if (C->get().pending.size()) {
//reconnect if something is pending
ConnectionPending cp = C->get().pending.front()->get();
C->get().pending.pop_front();
C->get().B = cp.polygon;
C->get().B_edge = cp.edge;
C->get().A->edges.write[C->get().A_edge].C = cp.polygon;
C->get().A->edges.write[C->get().A_edge].C_edge = cp.edge;
cp.polygon->edges.write[cp.edge].C = C->get().A;
cp.polygon->edges.write[cp.edge].C_edge = C->get().A_edge;
cp.polygon->edges.write[cp.edge].P = NULL;
}
} else {
connections.erase(C);
//erase
}
}
}
nm.polygons.clear();
nm.linked = false;
}
int Navigation::navmesh_add(const Ref<NavigationMesh> &p_mesh, const Transform &p_xform, Object *p_owner) {
int id = last_id++;
NavMesh nm;
nm.linked = false;
nm.navmesh = p_mesh;
nm.xform = p_xform;
nm.owner = p_owner;
navmesh_map[id] = nm;
_navmesh_link(id);
return id;
}
void Navigation::navmesh_set_transform(int p_id, const Transform &p_xform) {
ERR_FAIL_COND(!navmesh_map.has(p_id));
NavMesh &nm = navmesh_map[p_id];
if (nm.xform == p_xform)
return; //bleh
_navmesh_unlink(p_id);
nm.xform = p_xform;
_navmesh_link(p_id);
}
void Navigation::navmesh_remove(int p_id) {
ERR_FAIL_COND_MSG(!navmesh_map.has(p_id), "Trying to remove nonexisting navmesh with id: " + itos(p_id));
_navmesh_unlink(p_id);
navmesh_map.erase(p_id);
}
void Navigation::_clip_path(Vector<Vector3> &path, Polygon *from_poly, const Vector3 &p_to_point, Polygon *p_to_poly) {
Vector3 from = path[path.size() - 1];
if (from.distance_to(p_to_point) < CMP_EPSILON)
return;
Plane cut_plane;
cut_plane.normal = (from - p_to_point).cross(up);
if (cut_plane.normal == Vector3())
return;
cut_plane.normal.normalize();
cut_plane.d = cut_plane.normal.dot(from);
while (from_poly != p_to_poly) {
int edge_count = from_poly->edges.size();
ERR_FAIL_COND_MSG(edge_count == 0, "Polygon has no edges.");
int pe = from_poly->prev_edge;
int next = (pe + 1) % edge_count;
Vector3 a = _get_vertex(from_poly->edges[pe].point);
Vector3 b = _get_vertex(from_poly->edges[next].point);
from_poly = from_poly->edges[pe].C;
ERR_FAIL_COND(!from_poly);
if (a.distance_to(b) > CMP_EPSILON) {
Vector3 inters;
if (cut_plane.intersects_segment(a, b, &inters)) {
if (inters.distance_to(p_to_point) > CMP_EPSILON && inters.distance_to(path[path.size() - 1]) > CMP_EPSILON) {
path.push_back(inters);
}
}
}
}
}
Vector<Vector3> Navigation::get_simple_path(const Vector3 &p_start, const Vector3 &p_end, bool p_optimize) {
Polygon *begin_poly = NULL;
Polygon *end_poly = NULL;
Vector3 begin_point;
Vector3 end_point;
float begin_d = 1e20;
float end_d = 1e20;
for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
if (!E->get().linked)
continue;
for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
Polygon &p = F->get();
for (int i = 2; i < p.edges.size(); i++) {
Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
Vector3 spoint = f.get_closest_point_to(p_start);
float dpoint = spoint.distance_to(p_start);
if (dpoint < begin_d) {
begin_d = dpoint;
begin_poly = &p;
begin_point = spoint;
}
spoint = f.get_closest_point_to(p_end);
dpoint = spoint.distance_to(p_end);
if (dpoint < end_d) {
end_d = dpoint;
end_poly = &p;
end_point = spoint;
}
}
p.prev_edge = -1;
}
}
if (!begin_poly || !end_poly) {
return Vector<Vector3>(); //no path
}
if (begin_poly == end_poly) {
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
bool found_route = false;
List<Polygon *> open_list;
int begin_edge_count = begin_poly->edges.size();
for (int i = 0; i < begin_edge_count; i++) {
if (begin_poly->edges[i].C) {
begin_poly->edges[i].C->prev_edge = begin_poly->edges[i].C_edge;
#ifdef USE_ENTRY_POINT
int next = (i + 1) % begin_edge_count;
Vector3 edge[2] = {
_get_vertex(begin_poly->edges[i].point),
_get_vertex(begin_poly->edges[next].point)
};
Vector3 entry = Geometry::get_closest_point_to_segment(begin_poly->entry, edge);
begin_poly->edges[i].C->distance = begin_point.distance_to(entry);
begin_poly->edges[i].C->entry = entry;
#else
begin_poly->edges[i].C->distance = begin_poly->center.distance_to(begin_poly->edges[i].C->center);
#endif
open_list.push_back(begin_poly->edges[i].C);
}
}
while (!found_route) {
if (open_list.size() == 0) {
break;
}
//check open list
List<Polygon *>::Element *least_cost_poly = NULL;
float least_cost = 1e30;
//this could be faster (cache previous results)
for (List<Polygon *>::Element *E = open_list.front(); E; E = E->next()) {
Polygon *p = E->get();
float cost = p->distance;
#ifdef USE_ENTRY_POINT
cost += p->entry.distance_to(end_point);
#else
cost += p->center.distance_to(end_point);
#endif
if (cost < least_cost) {
least_cost_poly = E;
least_cost = cost;
}
}
Polygon *p = least_cost_poly->get();
//open the neighbours for search
if (p == end_poly) {
//oh my reached end! stop algorithm
found_route = true;
break;
}
int edge_count = p->edges.size();
for (int i = 0; i < edge_count; i++) {
Polygon::Edge &e = p->edges.write[i];
if (!e.C)
continue;
#ifdef USE_ENTRY_POINT
int next = (i + 1) % edge_count;
Vector3 edge[2] = {
_get_vertex(p->edges[i].point),
_get_vertex(p->edges[next].point)
};
Vector3 entry = Geometry::get_closest_point_to_segment(p->entry, edge);
float distance = p->entry.distance_to(entry) + p->distance;
#else
float distance = p->center.distance_to(e.C->center) + p->distance;
#endif
if (e.C->prev_edge != -1) {
//oh this was visited already, can we win the cost?
if (e.C->distance > distance) {
e.C->prev_edge = e.C_edge;
e.C->distance = distance;
#ifdef USE_ENTRY_POINT
e.C->entry = entry;
#endif
}
} else {
//add to open neighbours
e.C->prev_edge = e.C_edge;
e.C->distance = distance;
#ifdef USE_ENTRY_POINT
e.C->entry = entry;
#endif
open_list.push_back(e.C);
}
}
open_list.erase(least_cost_poly);
}
if (found_route) {
Vector<Vector3> path;
if (p_optimize) {
//string pulling
Polygon *apex_poly = end_poly;
Vector3 apex_point = end_point;
Vector3 portal_left = apex_point;
Vector3 portal_right = apex_point;
Polygon *left_poly = end_poly;
Polygon *right_poly = end_poly;
Polygon *p = end_poly;
path.push_back(end_point);
while (p) {
Vector3 left;
Vector3 right;
#define CLOCK_TANGENT(m_a, m_b, m_c) (((m_a) - (m_c)).cross((m_a) - (m_b)))
if (p == begin_poly) {
left = begin_point;
right = begin_point;
} else {
int edge_count = p->edges.size();
ERR_FAIL_COND_V_MSG(edge_count == 0, Vector<Vector3>(), "Polygon has no edges.");
int prev = p->prev_edge;
int prev_n = (p->prev_edge + 1) % edge_count;
left = _get_vertex(p->edges[prev].point);
right = _get_vertex(p->edges[prev_n].point);
//if (CLOCK_TANGENT(apex_point,left,(left+right)*0.5).dot(up) < 0){
if (p->clockwise) {
SWAP(left, right);
}
}
bool skip = false;
if (CLOCK_TANGENT(apex_point, portal_left, left).dot(up) >= 0) {
//process
if (portal_left == apex_point || CLOCK_TANGENT(apex_point, left, portal_right).dot(up) > 0) {
left_poly = p;
portal_left = left;
} else {
_clip_path(path, apex_poly, portal_right, right_poly);
apex_point = portal_right;
p = right_poly;
left_poly = p;
apex_poly = p;
portal_left = apex_point;
portal_right = apex_point;
path.push_back(apex_point);
skip = true;
}
}
if (!skip && CLOCK_TANGENT(apex_point, portal_right, right).dot(up) <= 0) {
//process
if (portal_right == apex_point || CLOCK_TANGENT(apex_point, right, portal_left).dot(up) < 0) {
right_poly = p;
portal_right = right;
} else {
_clip_path(path, apex_poly, portal_left, left_poly);
apex_point = portal_left;
p = left_poly;
right_poly = p;
apex_poly = p;
portal_right = apex_point;
portal_left = apex_point;
path.push_back(apex_point);
}
}
if (p != begin_poly)
p = p->edges[p->prev_edge].C;
else
p = NULL;
}
if (path[path.size() - 1] != begin_point)
path.push_back(begin_point);
path.invert();
} else {
//midpoints
Polygon *p = end_poly;
path.push_back(end_point);
while (true) {
int prev = p->prev_edge;
#ifdef USE_ENTRY_POINT
Vector3 point = p->entry;
#else
int edge_count = p->edges.size();
ERR_FAIL_COND_V_MSG(edge_count == 0, Vector<Vector3>(), "Polygon has no edges.");
int prev_n = (p->prev_edge + 1) % edge_count;
Vector3 point = (_get_vertex(p->edges[prev].point) + _get_vertex(p->edges[prev_n].point)) * 0.5;
#endif
path.push_back(point);
p = p->edges[prev].C;
if (p == begin_poly)
break;
}
path.push_back(begin_point);
path.invert();
}
return path;
}
return Vector<Vector3>();
}
Vector3 Navigation::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool &p_use_collision) {
bool use_collision = p_use_collision;
Vector3 closest_point;
float closest_point_d = 1e20;
for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
if (!E->get().linked)
continue;
for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
Polygon &p = F->get();
for (int i = 2; i < p.edges.size(); i++) {
Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
Vector3 inters;
if (f.intersects_segment(p_from, p_to, &inters)) {
if (!use_collision) {
closest_point = inters;
use_collision = true;
closest_point_d = p_from.distance_to(inters);
} else if (closest_point_d > inters.distance_to(p_from)) {
closest_point = inters;
closest_point_d = p_from.distance_to(inters);
}
}
}
if (!use_collision) {
int edge_count = p.edges.size();
for (int i = 0; i < edge_count; i++) {
Vector3 a, b;
int next = (i + 1) % edge_count;
Geometry::get_closest_points_between_segments(p_from, p_to, _get_vertex(p.edges[i].point), _get_vertex(p.edges[next].point), a, b);
float d = a.distance_to(b);
if (d < closest_point_d) {
closest_point_d = d;
closest_point = b;
}
}
}
}
}
return closest_point;
}
Vector3 Navigation::get_closest_point(const Vector3 &p_point) {
Vector3 closest_point;
float closest_point_d = 1e20;
for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
if (!E->get().linked)
continue;
for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
Polygon &p = F->get();
for (int i = 2; i < p.edges.size(); i++) {
Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
Vector3 inters = f.get_closest_point_to(p_point);
float d = inters.distance_to(p_point);
if (d < closest_point_d) {
closest_point = inters;
closest_point_d = d;
}
}
}
}
return closest_point;
}
Vector3 Navigation::get_closest_point_normal(const Vector3 &p_point) {
Vector3 closest_point;
Vector3 closest_normal;
float closest_point_d = 1e20;
for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
if (!E->get().linked)
continue;
for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
Polygon &p = F->get();
for (int i = 2; i < p.edges.size(); i++) {
Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
Vector3 inters = f.get_closest_point_to(p_point);
float d = inters.distance_to(p_point);
if (d < closest_point_d) {
closest_point = inters;
closest_point_d = d;
closest_normal = f.get_plane().normal;
}
}
}
}
return closest_normal;
}
Object *Navigation::get_closest_point_owner(const Vector3 &p_point) {
Vector3 closest_point;
Object *owner = NULL;
float closest_point_d = 1e20;
for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
if (!E->get().linked)
continue;
for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
Polygon &p = F->get();
for (int i = 2; i < p.edges.size(); i++) {
Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
Vector3 inters = f.get_closest_point_to(p_point);
float d = inters.distance_to(p_point);
if (d < closest_point_d) {
closest_point = inters;
closest_point_d = d;
owner = E->get().owner;
}
}
}
}
return owner;
}
void Navigation::set_up_vector(const Vector3 &p_up) {
up = p_up;
}
Vector3 Navigation::get_up_vector() const {
return up;
}
void Navigation::_bind_methods() {
ClassDB::bind_method(D_METHOD("navmesh_add", "mesh", "xform", "owner"), &Navigation::navmesh_add, DEFVAL(Variant()));
ClassDB::bind_method(D_METHOD("navmesh_set_transform", "id", "xform"), &Navigation::navmesh_set_transform);
ClassDB::bind_method(D_METHOD("navmesh_remove", "id"), &Navigation::navmesh_remove);
ClassDB::bind_method(D_METHOD("get_simple_path", "start", "end", "optimize"), &Navigation::get_simple_path, DEFVAL(true));
ClassDB::bind_method(D_METHOD("get_closest_point_to_segment", "start", "end", "use_collision"), &Navigation::get_closest_point_to_segment, DEFVAL(false));
ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Navigation::get_closest_point);
ClassDB::bind_method(D_METHOD("get_closest_point_normal", "to_point"), &Navigation::get_closest_point_normal);
ClassDB::bind_method(D_METHOD("get_closest_point_owner", "to_point"), &Navigation::get_closest_point_owner);
ClassDB::bind_method(D_METHOD("set_up_vector", "up"), &Navigation::set_up_vector);
ClassDB::bind_method(D_METHOD("get_up_vector"), &Navigation::get_up_vector);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "up_vector"), "set_up_vector", "get_up_vector");
}
Navigation::Navigation() {
ERR_FAIL_COND(sizeof(Point) != 8);
cell_size = 0.01; //one centimeter
last_id = 1;
up = Vector3(0, 1, 0);
}