virtualx-engine/modules/bullet/space_bullet.cpp

1463 lines
58 KiB
C++

/*************************************************************************/
/* space_bullet.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "space_bullet.h"
#include "bullet_physics_server.h"
#include "bullet_types_converter.h"
#include "bullet_utilities.h"
#include "constraint_bullet.h"
#include "core/config/project_settings.h"
#include "core/string/ustring.h"
#include "godot_collision_configuration.h"
#include "godot_collision_dispatcher.h"
#include "rigid_body_bullet.h"
#include "servers/physics_server_3d.h"
#include "soft_body_bullet.h"
#include <BulletCollision/BroadphaseCollision/btBroadphaseProxy.h>
#include <BulletCollision/CollisionDispatch/btCollisionObject.h>
#include <BulletCollision/CollisionDispatch/btGhostObject.h>
#include <BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h>
#include <BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h>
#include <BulletCollision/NarrowPhaseCollision/btPointCollector.h>
#include <BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h>
#include <BulletSoftBody/btSoftRigidDynamicsWorld.h>
#include <btBulletDynamicsCommon.h>
#include <assert.h>
/**
@author AndreaCatania
*/
BulletPhysicsDirectSpaceState::BulletPhysicsDirectSpaceState(SpaceBullet *p_space) :
PhysicsDirectSpaceState3D(),
space(p_space) {}
int BulletPhysicsDirectSpaceState::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return 0;
}
btVector3 bt_point;
G_TO_B(p_point, bt_point);
btSphereShape sphere_point(0.001f);
btCollisionObject collision_object_point;
collision_object_point.setCollisionShape(&sphere_point);
collision_object_point.setWorldTransform(btTransform(btQuaternion::getIdentity(), bt_point));
// Setup query
GodotAllContactResultCallback btResult(&collision_object_point, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btResult.m_collisionFilterGroup = 0;
btResult.m_collisionFilterMask = p_collision_mask;
space->dynamicsWorld->contactTest(&collision_object_point, btResult);
// The results are already populated by GodotAllConvexResultCallback
return btResult.m_count;
}
bool BulletPhysicsDirectSpaceState::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) {
btVector3 btVec_from;
btVector3 btVec_to;
G_TO_B(p_from, btVec_from);
G_TO_B(p_to, btVec_to);
// setup query
GodotClosestRayResultCallback btResult(btVec_from, btVec_to, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btResult.m_collisionFilterGroup = 0;
btResult.m_collisionFilterMask = p_collision_mask;
btResult.m_pickRay = p_pick_ray;
space->dynamicsWorld->rayTest(btVec_from, btVec_to, btResult);
if (btResult.hasHit()) {
B_TO_G(btResult.m_hitPointWorld, r_result.position);
B_TO_G(btResult.m_hitNormalWorld.normalize(), r_result.normal);
CollisionObjectBullet *gObj = static_cast<CollisionObjectBullet *>(btResult.m_collisionObject->getUserPointer());
if (gObj) {
r_result.shape = btResult.m_shapeId;
r_result.rid = gObj->get_self();
r_result.collider_id = gObj->get_instance_id();
r_result.collider = r_result.collider_id.is_null() ? nullptr : ObjectDB::get_instance(r_result.collider_id);
} else {
WARN_PRINT("The raycast performed has hit a collision object that is not part of Godot scene, please check it.");
}
return true;
} else {
return false;
}
}
int BulletPhysicsDirectSpaceState::intersect_shape(const RID &p_shape, const Transform &p_xform, real_t p_margin, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return 0;
}
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->getornull(p_shape);
ERR_FAIL_COND_V(!shape, 0);
btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale_abs(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return 0;
}
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
btTransform bt_xform;
G_TO_B(p_xform, bt_xform);
UNSCALE_BT_BASIS(bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotAllContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btQuery.m_collisionFilterGroup = 0;
btQuery.m_collisionFilterMask = p_collision_mask;
btQuery.m_closestDistanceThreshold = 0;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
bulletdelete(btConvex);
return btQuery.m_count;
}
bool BulletPhysicsDirectSpaceState::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, real_t p_margin, real_t &r_closest_safe, real_t &r_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) {
r_closest_safe = 0.0f;
r_closest_unsafe = 0.0f;
btVector3 bt_motion;
G_TO_B(p_motion, bt_motion);
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->getornull(p_shape);
ERR_FAIL_COND_V(!shape, false);
btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return false;
}
btConvexShape *bt_convex_shape = static_cast<btConvexShape *>(btShape);
btTransform bt_xform_from;
G_TO_B(p_xform, bt_xform_from);
UNSCALE_BT_BASIS(bt_xform_from);
btTransform bt_xform_to(bt_xform_from);
bt_xform_to.getOrigin() += bt_motion;
if ((bt_xform_to.getOrigin() - bt_xform_from.getOrigin()).fuzzyZero()) {
r_closest_safe = 1.0f;
r_closest_unsafe = 1.0f;
bulletdelete(btShape);
return true;
}
GodotClosestConvexResultCallback btResult(bt_xform_from.getOrigin(), bt_xform_to.getOrigin(), &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btResult.m_collisionFilterGroup = 0;
btResult.m_collisionFilterMask = p_collision_mask;
space->dynamicsWorld->convexSweepTest(bt_convex_shape, bt_xform_from, bt_xform_to, btResult, space->dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration);
if (btResult.hasHit()) {
const btScalar l = bt_motion.length();
r_closest_unsafe = btResult.m_closestHitFraction;
r_closest_safe = MAX(r_closest_unsafe - (1 - ((l - 0.01) / l)), 0);
if (r_info) {
if (btCollisionObject::CO_RIGID_BODY == btResult.m_hitCollisionObject->getInternalType()) {
B_TO_G(static_cast<const btRigidBody *>(btResult.m_hitCollisionObject)->getVelocityInLocalPoint(btResult.m_hitPointWorld), r_info->linear_velocity);
}
CollisionObjectBullet *collision_object = static_cast<CollisionObjectBullet *>(btResult.m_hitCollisionObject->getUserPointer());
B_TO_G(btResult.m_hitPointWorld, r_info->point);
B_TO_G(btResult.m_hitNormalWorld, r_info->normal);
r_info->rid = collision_object->get_self();
r_info->collider_id = collision_object->get_instance_id();
r_info->shape = btResult.m_shapeId;
}
} else {
r_closest_safe = 1.0f;
r_closest_unsafe = 1.0f;
}
bulletdelete(bt_convex_shape);
return true; // Mean success
}
/// Returns the list of contacts pairs in this order: Local contact, other body contact
bool BulletPhysicsDirectSpaceState::collide_shape(RID p_shape, const Transform &p_shape_xform, real_t p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
if (p_result_max <= 0) {
return false;
}
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->getornull(p_shape);
ERR_FAIL_COND_V(!shape, false);
btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return false;
}
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
btTransform bt_xform;
G_TO_B(p_shape_xform, bt_xform);
UNSCALE_BT_BASIS(bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotContactPairContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btQuery.m_collisionFilterGroup = 0;
btQuery.m_collisionFilterMask = p_collision_mask;
btQuery.m_closestDistanceThreshold = 0;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
r_result_count = btQuery.m_count;
bulletdelete(btConvex);
return btQuery.m_count;
}
bool BulletPhysicsDirectSpaceState::rest_info(RID p_shape, const Transform &p_shape_xform, real_t p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->getornull(p_shape);
ERR_FAIL_COND_V(!shape, false);
btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin);
if (!btShape->isConvex()) {
bulletdelete(btShape);
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return false;
}
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
btTransform bt_xform;
G_TO_B(p_shape_xform, bt_xform);
UNSCALE_BT_BASIS(bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotRestInfoContactResultCallback btQuery(&collision_object, r_info, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
btQuery.m_collisionFilterGroup = 0;
btQuery.m_collisionFilterMask = p_collision_mask;
btQuery.m_closestDistanceThreshold = 0;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
bulletdelete(btConvex);
if (btQuery.m_collided) {
if (btCollisionObject::CO_RIGID_BODY == btQuery.m_rest_info_collision_object->getInternalType()) {
B_TO_G(static_cast<const btRigidBody *>(btQuery.m_rest_info_collision_object)->getVelocityInLocalPoint(btQuery.m_rest_info_bt_point), r_info->linear_velocity);
}
B_TO_G(btQuery.m_rest_info_bt_point, r_info->point);
}
return btQuery.m_collided;
}
Vector3 BulletPhysicsDirectSpaceState::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const {
RigidCollisionObjectBullet *rigid_object = space->get_physics_server()->get_rigid_collision_object(p_object);
ERR_FAIL_COND_V(!rigid_object, Vector3());
btVector3 out_closest_point(0, 0, 0);
btScalar out_distance = 1e20;
btVector3 bt_point;
G_TO_B(p_point, bt_point);
btSphereShape point_shape(0.);
btCollisionShape *shape;
btConvexShape *convex_shape;
btTransform child_transform;
btTransform body_transform(rigid_object->get_bt_collision_object()->getWorldTransform());
btGjkPairDetector::ClosestPointInput input;
input.m_transformA.getBasis().setIdentity();
input.m_transformA.setOrigin(bt_point);
bool shapes_found = false;
for (int i = rigid_object->get_shape_count() - 1; 0 <= i; --i) {
shape = rigid_object->get_bt_shape(i);
if (shape->isConvex()) {
child_transform = rigid_object->get_bt_shape_transform(i);
convex_shape = static_cast<btConvexShape *>(shape);
input.m_transformB = body_transform * child_transform;
btPointCollector result;
btGjkPairDetector gjk_pair_detector(&point_shape, convex_shape, space->gjk_simplex_solver, space->gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(input, result, nullptr);
if (out_distance > result.m_distance) {
out_distance = result.m_distance;
out_closest_point = result.m_pointInWorld;
}
}
shapes_found = true;
}
if (shapes_found) {
Vector3 out;
B_TO_G(out_closest_point, out);
return out;
} else {
// no shapes found, use distance to origin.
return rigid_object->get_transform().get_origin();
}
}
SpaceBullet::SpaceBullet() {
create_empty_world(GLOBAL_DEF("physics/3d/active_soft_world", true));
direct_access = memnew(BulletPhysicsDirectSpaceState(this));
}
SpaceBullet::~SpaceBullet() {
memdelete(direct_access);
destroy_world();
}
void SpaceBullet::flush_queries() {
const btCollisionObjectArray &colObjArray = dynamicsWorld->getCollisionObjectArray();
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->dispatch_callbacks();
}
}
void SpaceBullet::step(real_t p_delta_time) {
delta_time = p_delta_time;
dynamicsWorld->stepSimulation(p_delta_time, 0, 0);
}
void SpaceBullet::set_param(PhysicsServer3D::AreaParameter p_param, const Variant &p_value) {
assert(dynamicsWorld);
switch (p_param) {
case PhysicsServer3D::AREA_PARAM_GRAVITY:
gravityMagnitude = p_value;
update_gravity();
break;
case PhysicsServer3D::AREA_PARAM_GRAVITY_VECTOR:
gravityDirection = p_value;
update_gravity();
break;
case PhysicsServer3D::AREA_PARAM_LINEAR_DAMP:
linear_damp = p_value;
break;
case PhysicsServer3D::AREA_PARAM_ANGULAR_DAMP:
angular_damp = p_value;
break;
case PhysicsServer3D::AREA_PARAM_PRIORITY:
// Priority is always 0, the lower
break;
case PhysicsServer3D::AREA_PARAM_GRAVITY_IS_POINT:
case PhysicsServer3D::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
case PhysicsServer3D::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
break;
default:
WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
break;
}
}
Variant SpaceBullet::get_param(PhysicsServer3D::AreaParameter p_param) {
switch (p_param) {
case PhysicsServer3D::AREA_PARAM_GRAVITY:
return gravityMagnitude;
case PhysicsServer3D::AREA_PARAM_GRAVITY_VECTOR:
return gravityDirection;
case PhysicsServer3D::AREA_PARAM_LINEAR_DAMP:
return linear_damp;
case PhysicsServer3D::AREA_PARAM_ANGULAR_DAMP:
return angular_damp;
case PhysicsServer3D::AREA_PARAM_PRIORITY:
return 0; // Priority is always 0, the lower
case PhysicsServer3D::AREA_PARAM_GRAVITY_IS_POINT:
return false;
case PhysicsServer3D::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
return 0;
case PhysicsServer3D::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
return 0;
default:
WARN_PRINT("This get parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
return Variant();
}
}
void SpaceBullet::set_param(PhysicsServer3D::SpaceParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer3D::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
case PhysicsServer3D::SPACE_PARAM_CONTACT_MAX_SEPARATION:
case PhysicsServer3D::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
case PhysicsServer3D::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer3D::SPACE_PARAM_BODY_TIME_TO_SLEEP:
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
case PhysicsServer3D::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
default:
WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
break;
}
}
real_t SpaceBullet::get_param(PhysicsServer3D::SpaceParameter p_param) {
switch (p_param) {
case PhysicsServer3D::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
case PhysicsServer3D::SPACE_PARAM_CONTACT_MAX_SEPARATION:
case PhysicsServer3D::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
case PhysicsServer3D::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer3D::SPACE_PARAM_BODY_TIME_TO_SLEEP:
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
case PhysicsServer3D::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
default:
WARN_PRINT("The SpaceBullet doesn't support this get parameter (" + itos(p_param) + "), 0 is returned.");
return 0.f;
}
}
void SpaceBullet::add_area(AreaBullet *p_area) {
areas.push_back(p_area);
dynamicsWorld->addCollisionObject(p_area->get_bt_ghost(), p_area->get_collision_layer(), p_area->get_collision_mask());
}
void SpaceBullet::remove_area(AreaBullet *p_area) {
areas.erase(p_area);
dynamicsWorld->removeCollisionObject(p_area->get_bt_ghost());
}
void SpaceBullet::reload_collision_filters(AreaBullet *p_area) {
btGhostObject *ghost_object = p_area->get_bt_ghost();
btBroadphaseProxy *ghost_proxy = ghost_object->getBroadphaseHandle();
ghost_proxy->m_collisionFilterGroup = p_area->get_collision_layer();
ghost_proxy->m_collisionFilterMask = p_area->get_collision_mask();
dynamicsWorld->refreshBroadphaseProxy(ghost_object);
}
void SpaceBullet::add_rigid_body(RigidBodyBullet *p_body) {
if (p_body->is_static()) {
dynamicsWorld->addCollisionObject(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
} else {
dynamicsWorld->addRigidBody(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
p_body->scratch_space_override_modificator();
}
}
void SpaceBullet::remove_rigid_body_constraints(RigidBodyBullet *p_body) {
btRigidBody *btBody = p_body->get_bt_rigid_body();
int constraints = btBody->getNumConstraintRefs();
if (constraints > 0) {
ERR_PRINT("A body connected to joints was removed.");
for (int i = 0; i < constraints; i++) {
dynamicsWorld->removeConstraint(btBody->getConstraintRef(i));
}
}
}
void SpaceBullet::remove_rigid_body(RigidBodyBullet *p_body) {
btRigidBody *btBody = p_body->get_bt_rigid_body();
if (p_body->is_static()) {
dynamicsWorld->removeCollisionObject(btBody);
} else {
dynamicsWorld->removeRigidBody(btBody);
}
}
void SpaceBullet::reload_collision_filters(RigidBodyBullet *p_body) {
btRigidBody *rigid_body = p_body->get_bt_rigid_body();
btBroadphaseProxy *body_proxy = rigid_body->getBroadphaseProxy();
body_proxy->m_collisionFilterGroup = p_body->get_collision_layer();
body_proxy->m_collisionFilterMask = p_body->get_collision_mask();
dynamicsWorld->refreshBroadphaseProxy(rigid_body);
}
void SpaceBullet::add_soft_body(SoftBodyBullet *p_body) {
if (is_using_soft_world()) {
if (p_body->get_bt_soft_body()) {
p_body->get_bt_soft_body()->m_worldInfo = get_soft_body_world_info();
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->addSoftBody(p_body->get_bt_soft_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
}
} else {
ERR_PRINT("This soft body can't be added to non soft world");
}
}
void SpaceBullet::remove_soft_body(SoftBodyBullet *p_body) {
if (is_using_soft_world()) {
if (p_body->get_bt_soft_body()) {
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->removeSoftBody(p_body->get_bt_soft_body());
p_body->get_bt_soft_body()->m_worldInfo = nullptr;
}
}
}
void SpaceBullet::reload_collision_filters(SoftBodyBullet *p_body) {
// This is necessary to change collision filter
remove_soft_body(p_body);
add_soft_body(p_body);
}
void SpaceBullet::add_constraint(ConstraintBullet *p_constraint, bool disableCollisionsBetweenLinkedBodies) {
p_constraint->set_space(this);
dynamicsWorld->addConstraint(p_constraint->get_bt_constraint(), disableCollisionsBetweenLinkedBodies);
}
void SpaceBullet::remove_constraint(ConstraintBullet *p_constraint) {
dynamicsWorld->removeConstraint(p_constraint->get_bt_constraint());
}
int SpaceBullet::get_num_collision_objects() const {
return dynamicsWorld->getNumCollisionObjects();
}
void SpaceBullet::remove_all_collision_objects() {
for (int i = dynamicsWorld->getNumCollisionObjects() - 1; 0 <= i; --i) {
btCollisionObject *btObj = dynamicsWorld->getCollisionObjectArray()[i];
CollisionObjectBullet *colObj = static_cast<CollisionObjectBullet *>(btObj->getUserPointer());
colObj->set_space(nullptr);
}
}
void onBulletTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) {
const btCollisionObjectArray &colObjArray = p_dynamicsWorld->getCollisionObjectArray();
// Notify all Collision objects the collision checker is started
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->on_collision_checker_start();
}
SpaceBullet *sb = static_cast<SpaceBullet *>(p_dynamicsWorld->getWorldUserInfo());
sb->check_ghost_overlaps();
sb->check_body_collision();
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->on_collision_checker_end();
}
}
BulletPhysicsDirectSpaceState *SpaceBullet::get_direct_state() {
return direct_access;
}
btScalar calculateGodotCombinedRestitution(const btCollisionObject *body0, const btCollisionObject *body1) {
return CLAMP(body0->getRestitution() + body1->getRestitution(), 0, 1);
}
btScalar calculateGodotCombinedFriction(const btCollisionObject *body0, const btCollisionObject *body1) {
return ABS(MIN(body0->getFriction(), body1->getFriction()));
}
void SpaceBullet::create_empty_world(bool p_create_soft_world) {
gjk_epa_pen_solver = bulletnew(btGjkEpaPenetrationDepthSolver);
gjk_simplex_solver = bulletnew(btVoronoiSimplexSolver);
void *world_mem;
if (p_create_soft_world) {
world_mem = malloc(sizeof(btSoftRigidDynamicsWorld));
} else {
world_mem = malloc(sizeof(btDiscreteDynamicsWorld));
}
ERR_FAIL_COND_MSG(!world_mem, "Out of memory.");
if (p_create_soft_world) {
collisionConfiguration = bulletnew(GodotSoftCollisionConfiguration(static_cast<btDiscreteDynamicsWorld *>(world_mem)));
} else {
collisionConfiguration = bulletnew(GodotCollisionConfiguration(static_cast<btDiscreteDynamicsWorld *>(world_mem)));
}
dispatcher = bulletnew(GodotCollisionDispatcher(collisionConfiguration));
broadphase = bulletnew(btDbvtBroadphase);
solver = bulletnew(btSequentialImpulseConstraintSolver);
if (p_create_soft_world) {
dynamicsWorld = new (world_mem) btSoftRigidDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
soft_body_world_info = bulletnew(btSoftBodyWorldInfo);
} else {
dynamicsWorld = new (world_mem) btDiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
}
ghostPairCallback = bulletnew(btGhostPairCallback);
godotFilterCallback = bulletnew(GodotFilterCallback);
gCalculateCombinedRestitutionCallback = &calculateGodotCombinedRestitution;
gCalculateCombinedFrictionCallback = &calculateGodotCombinedFriction;
gContactAddedCallback = &godotContactAddedCallback;
dynamicsWorld->setWorldUserInfo(this);
dynamicsWorld->setInternalTickCallback(onBulletTickCallback, this, false);
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(ghostPairCallback); // Setup ghost check
dynamicsWorld->getPairCache()->setOverlapFilterCallback(godotFilterCallback);
if (soft_body_world_info) {
soft_body_world_info->m_broadphase = broadphase;
soft_body_world_info->m_dispatcher = dispatcher;
soft_body_world_info->m_sparsesdf.Initialize();
}
update_gravity();
}
void SpaceBullet::destroy_world() {
/// The world elements (like: Collision Objects, Constraints, Shapes) are managed by godot
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(nullptr);
dynamicsWorld->getPairCache()->setOverlapFilterCallback(nullptr);
bulletdelete(ghostPairCallback);
bulletdelete(godotFilterCallback);
// Deallocate world
dynamicsWorld->~btDiscreteDynamicsWorld();
free(dynamicsWorld);
dynamicsWorld = nullptr;
bulletdelete(solver);
bulletdelete(broadphase);
bulletdelete(dispatcher);
bulletdelete(collisionConfiguration);
bulletdelete(soft_body_world_info);
bulletdelete(gjk_simplex_solver);
bulletdelete(gjk_epa_pen_solver);
}
void SpaceBullet::check_ghost_overlaps() {
/// Algorithm support variables
btCollisionShape *other_body_shape;
btConvexShape *area_shape;
btGjkPairDetector::ClosestPointInput gjk_input;
AreaBullet *area;
int x(-1), i(-1), y(-1), z(-1), indexOverlap(-1);
/// For each areas
for (x = areas.size() - 1; 0 <= x; --x) {
area = areas[x];
btVector3 area_scale(area->get_bt_body_scale());
if (!area->is_monitoring()) {
continue;
}
/// 1. Reset all states
for (i = area->overlappingObjects.size() - 1; 0 <= i; --i) {
AreaBullet::OverlappingObjectData &otherObj = area->overlappingObjects.write[i];
// This check prevent the overwrite of ENTER state
// if this function is called more times before dispatchCallbacks
if (otherObj.state != AreaBullet::OVERLAP_STATE_ENTER) {
otherObj.state = AreaBullet::OVERLAP_STATE_DIRTY;
}
}
/// 2. Check all overlapping objects using GJK
const btAlignedObjectArray<btCollisionObject *> ghostOverlaps = area->get_bt_ghost()->getOverlappingPairs();
// For each overlapping
for (i = ghostOverlaps.size() - 1; 0 <= i; --i) {
bool hasOverlap = false;
btCollisionObject *overlapped_bt_co = ghostOverlaps[i];
RigidCollisionObjectBullet *otherObject = static_cast<RigidCollisionObjectBullet *>(overlapped_bt_co->getUserPointer());
btVector3 other_body_scale(otherObject->get_bt_body_scale());
if (!area->is_transform_changed() && !otherObject->is_transform_changed()) {
hasOverlap = -1 != area->find_overlapping_object(otherObject);
goto collision_found;
}
if (overlapped_bt_co->getUserIndex() == CollisionObjectBullet::TYPE_AREA) {
if (!static_cast<AreaBullet *>(overlapped_bt_co->getUserPointer())->is_monitorable()) {
continue;
}
} else if (overlapped_bt_co->getUserIndex() != CollisionObjectBullet::TYPE_RIGID_BODY) {
continue;
}
// For each area shape
for (y = area->get_shape_count() - 1; 0 <= y; --y) {
if (!area->get_bt_shape(y)->isConvex()) {
continue;
}
btTransform area_shape_treansform(area->get_bt_shape_transform(y));
area_shape_treansform.getOrigin() *= area_scale;
gjk_input.m_transformA =
area->get_transform__bullet() *
area_shape_treansform;
area_shape = static_cast<btConvexShape *>(area->get_bt_shape(y));
// For each other object shape
for (z = otherObject->get_shape_count() - 1; 0 <= z; --z) {
other_body_shape = static_cast<btCollisionShape *>(otherObject->get_bt_shape(z));
btTransform other_shape_transform(otherObject->get_bt_shape_transform(z));
other_shape_transform.getOrigin() *= other_body_scale;
gjk_input.m_transformB =
otherObject->get_transform__bullet() *
other_shape_transform;
if (other_body_shape->isConvex()) {
btPointCollector result;
btGjkPairDetector gjk_pair_detector(
area_shape,
static_cast<btConvexShape *>(other_body_shape),
gjk_simplex_solver,
gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(gjk_input, result, nullptr);
if (0 >= result.m_distance) {
hasOverlap = true;
goto collision_found;
}
} else {
btCollisionObjectWrapper obA(nullptr, area_shape, area->get_bt_ghost(), gjk_input.m_transformA, -1, y);
btCollisionObjectWrapper obB(nullptr, other_body_shape, otherObject->get_bt_collision_object(), gjk_input.m_transformB, -1, z);
btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, nullptr, BT_CONTACT_POINT_ALGORITHMS);
if (!algorithm) {
continue;
}
GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB);
algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult);
algorithm->~btCollisionAlgorithm();
dispatcher->freeCollisionAlgorithm(algorithm);
if (contactPointResult.hasHit()) {
hasOverlap = true;
goto collision_found;
}
}
} // ~For each other object shape
} // ~For each area shape
collision_found:
if (!hasOverlap) {
continue;
}
indexOverlap = area->find_overlapping_object(otherObject);
if (-1 == indexOverlap) {
// Not found
area->add_overlap(otherObject);
} else {
// Found
area->put_overlap_as_inside(indexOverlap);
}
}
/// 3. Remove not overlapping
for (i = area->overlappingObjects.size() - 1; 0 <= i; --i) {
// If the overlap has DIRTY state it means that it's no more overlapping
if (area->overlappingObjects[i].state == AreaBullet::OVERLAP_STATE_DIRTY) {
area->put_overlap_as_exit(i);
}
}
}
}
void SpaceBullet::check_body_collision() {
#ifdef DEBUG_ENABLED
reset_debug_contact_count();
#endif
const int numManifolds = dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numManifolds; ++i) {
btPersistentManifold *contactManifold = dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
// I know this static cast is a bit risky. But I'm checking its type just after it.
// This allow me to avoid a lot of other cast and checks
RigidBodyBullet *bodyA = static_cast<RigidBodyBullet *>(contactManifold->getBody0()->getUserPointer());
RigidBodyBullet *bodyB = static_cast<RigidBodyBullet *>(contactManifold->getBody1()->getUserPointer());
if (CollisionObjectBullet::TYPE_RIGID_BODY == bodyA->getType() && CollisionObjectBullet::TYPE_RIGID_BODY == bodyB->getType()) {
if (!bodyA->can_add_collision() && !bodyB->can_add_collision()) {
continue;
}
const int numContacts = contactManifold->getNumContacts();
/// Since I don't need report all contacts for these objects,
/// So report only the first
#define REPORT_ALL_CONTACTS 0
#if REPORT_ALL_CONTACTS
for (int j = 0; j < numContacts; j++) {
btManifoldPoint &pt = contactManifold->getContactPoint(j);
#else
if (numContacts) {
btManifoldPoint &pt = contactManifold->getContactPoint(0);
#endif
if (
pt.getDistance() <= 0.0 ||
bodyA->was_colliding(bodyB) ||
bodyB->was_colliding(bodyA)) {
Vector3 collisionWorldPosition;
Vector3 collisionLocalPosition;
Vector3 normalOnB;
real_t appliedImpulse = pt.m_appliedImpulse;
B_TO_G(pt.m_normalWorldOnB, normalOnB);
// The pt.m_index only contains the shape index when more than one collision shape is used
// and only if the collision shape is not a concave collision shape.
// A value of -1 in pt.m_partId indicates the pt.m_index is a shape index.
int shape_index_a = 0;
if (bodyA->get_shape_count() > 1 && pt.m_partId0 == -1) {
shape_index_a = pt.m_index0;
}
int shape_index_b = 0;
if (bodyB->get_shape_count() > 1 && pt.m_partId1 == -1) {
shape_index_b = pt.m_index1;
}
if (bodyA->can_add_collision()) {
B_TO_G(pt.getPositionWorldOnB(), collisionWorldPosition);
/// pt.m_localPointB Doesn't report the exact point in local space
B_TO_G(pt.getPositionWorldOnB() - contactManifold->getBody1()->getWorldTransform().getOrigin(), collisionLocalPosition);
bodyA->add_collision_object(bodyB, collisionWorldPosition, collisionLocalPosition, normalOnB, appliedImpulse, shape_index_b, shape_index_a);
}
if (bodyB->can_add_collision()) {
B_TO_G(pt.getPositionWorldOnA(), collisionWorldPosition);
/// pt.m_localPointA Doesn't report the exact point in local space
B_TO_G(pt.getPositionWorldOnA() - contactManifold->getBody0()->getWorldTransform().getOrigin(), collisionLocalPosition);
bodyB->add_collision_object(bodyA, collisionWorldPosition, collisionLocalPosition, normalOnB * -1, appliedImpulse * -1, shape_index_a, shape_index_b);
}
#ifdef DEBUG_ENABLED
if (is_debugging_contacts()) {
add_debug_contact(collisionWorldPosition);
}
#endif
}
}
}
}
}
void SpaceBullet::update_gravity() {
btVector3 btGravity;
G_TO_B(gravityDirection * gravityMagnitude, btGravity);
//dynamicsWorld->setGravity(btGravity);
dynamicsWorld->setGravity(btVector3(0, 0, 0));
if (soft_body_world_info) {
soft_body_world_info->m_gravity = btGravity;
}
}
/// IMPORTANT: Please don't turn it ON this is not managed correctly!!
/// I'm leaving this here just for future tests.
/// Debug motion and normal vector drawing
#define debug_test_motion 0
#define RECOVERING_MOVEMENT_SCALE 0.4
#define RECOVERING_MOVEMENT_CYCLES 4
#if debug_test_motion
#include "scene/3d/immediate_geometry.h"
static ImmediateGeometry3D *motionVec(nullptr);
static ImmediateGeometry3D *normalLine(nullptr);
static Ref<StandardMaterial3D> red_mat;
static Ref<StandardMaterial3D> blue_mat;
#endif
bool SpaceBullet::test_body_motion(RigidBodyBullet *p_body, const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia, PhysicsServer3D::MotionResult *r_result, bool p_exclude_raycast_shapes) {
#if debug_test_motion
/// Yes I know this is not good, but I've used it as fast debugging hack.
/// I'm leaving it here just for speedup the other eventual debugs
if (!normalLine) {
motionVec = memnew(ImmediateGeometry3D);
normalLine = memnew(ImmediateGeometry3D);
SceneTree::get_singleton()->get_current_scene()->add_child(motionVec);
SceneTree::get_singleton()->get_current_scene()->add_child(normalLine);
motionVec->set_as_top_level(true);
normalLine->set_as_top_level(true);
red_mat = Ref<StandardMaterial3D>(memnew(StandardMaterial3D));
red_mat->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
red_mat->set_line_width(20.0);
red_mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA);
red_mat->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
red_mat->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
red_mat->set_albedo(Color(1, 0, 0, 1));
motionVec->set_material_override(red_mat);
blue_mat = Ref<StandardMaterial3D>(memnew(StandardMaterial3D));
blue_mat->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
blue_mat->set_line_width(20.0);
blue_mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA);
blue_mat->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
blue_mat->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
blue_mat->set_albedo(Color(0, 0, 1, 1));
normalLine->set_material_override(blue_mat);
}
#endif
btTransform body_transform;
G_TO_B(p_from, body_transform);
UNSCALE_BT_BASIS(body_transform);
btVector3 initial_recover_motion(0, 0, 0);
{ /// Phase one - multi shapes depenetration using margin
for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) {
if (!recover_from_penetration(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, initial_recover_motion)) {
break;
}
}
// Add recover movement in order to make it safe
body_transform.getOrigin() += initial_recover_motion;
}
btVector3 motion;
G_TO_B(p_motion, motion);
{
// Phase two - sweep test, from a secure position without margin
const int shape_count(p_body->get_shape_count());
#if debug_test_motion
Vector3 sup_line;
B_TO_G(body_safe_position.getOrigin(), sup_line);
motionVec->clear();
motionVec->begin(Mesh::PRIMITIVE_LINES, nullptr);
motionVec->add_vertex(sup_line);
motionVec->add_vertex(sup_line + p_motion * 10);
motionVec->end();
#endif
for (int shIndex = 0; shIndex < shape_count; ++shIndex) {
if (p_body->is_shape_disabled(shIndex)) {
continue;
}
if (!p_body->get_bt_shape(shIndex)->isConvex()) {
// Skip no convex shape
continue;
}
if (p_exclude_raycast_shapes && p_body->get_bt_shape(shIndex)->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
// Skip rayshape in order to implement custom separation process
continue;
}
btConvexShape *convex_shape_test(static_cast<btConvexShape *>(p_body->get_bt_shape(shIndex)));
btTransform shape_world_from = body_transform * p_body->get_kinematic_utilities()->shapes[shIndex].transform;
btTransform shape_world_to(shape_world_from);
shape_world_to.getOrigin() += motion;
if ((shape_world_to.getOrigin() - shape_world_from.getOrigin()).fuzzyZero()) {
motion = btVector3(0, 0, 0);
break;
}
GodotKinClosestConvexResultCallback btResult(shape_world_from.getOrigin(), shape_world_to.getOrigin(), p_body, p_infinite_inertia);
btResult.m_collisionFilterGroup = p_body->get_collision_layer();
btResult.m_collisionFilterMask = p_body->get_collision_mask();
dynamicsWorld->convexSweepTest(convex_shape_test, shape_world_from, shape_world_to, btResult, dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration);
if (btResult.hasHit()) {
/// Since for each sweep test I fix the motion of new shapes in base the recover result,
/// if another shape will hit something it means that has a deepest penetration respect the previous shape
motion *= btResult.m_closestHitFraction;
}
}
body_transform.getOrigin() += motion;
}
bool has_penetration = false;
{ /// Phase three - contact test with margin
btVector3 __rec(0, 0, 0);
RecoverResult r_recover_result;
has_penetration = recover_from_penetration(p_body, body_transform, 1, p_infinite_inertia, __rec, &r_recover_result);
// Parse results
if (r_result) {
B_TO_G(motion + initial_recover_motion + __rec, r_result->motion);
if (has_penetration) {
const btRigidBody *btRigid = static_cast<const btRigidBody *>(r_recover_result.other_collision_object);
CollisionObjectBullet *collisionObject = static_cast<CollisionObjectBullet *>(btRigid->getUserPointer());
B_TO_G(motion, r_result->remainder); // is the remaining movements
r_result->remainder = p_motion - r_result->remainder;
B_TO_G(r_recover_result.pointWorld, r_result->collision_point);
B_TO_G(r_recover_result.normal, r_result->collision_normal);
B_TO_G(btRigid->getVelocityInLocalPoint(r_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity); // It calculates velocity at point and assign it using special function Bullet_to_Godot
r_result->collider = collisionObject->get_self();
r_result->collider_id = collisionObject->get_instance_id();
r_result->collider_shape = r_recover_result.other_compound_shape_index;
r_result->collision_local_shape = r_recover_result.local_shape_most_recovered;
#if debug_test_motion
Vector3 sup_line2;
B_TO_G(motion, sup_line2);
normalLine->clear();
normalLine->begin(Mesh::PRIMITIVE_LINES, nullptr);
normalLine->add_vertex(r_result->collision_point);
normalLine->add_vertex(r_result->collision_point + r_result->collision_normal * 10);
normalLine->end();
#endif
} else {
r_result->remainder = Vector3();
}
}
}
return has_penetration;
}
int SpaceBullet::test_ray_separation(RigidBodyBullet *p_body, const Transform &p_transform, bool p_infinite_inertia, Vector3 &r_recover_motion, PhysicsServer3D::SeparationResult *r_results, int p_result_max, real_t p_margin) {
btTransform body_transform;
G_TO_B(p_transform, body_transform);
UNSCALE_BT_BASIS(body_transform);
btVector3 recover_motion(0, 0, 0);
int rays_found = 0;
int rays_found_this_round = 0;
for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) {
PhysicsServer3D::SeparationResult *next_results = &r_results[rays_found];
rays_found_this_round = recover_from_penetration_ray(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, p_result_max - rays_found, recover_motion, next_results);
rays_found += rays_found_this_round;
if (rays_found_this_round == 0) {
body_transform.getOrigin() += recover_motion;
break;
}
}
B_TO_G(recover_motion, r_recover_motion);
return rays_found;
}
struct RecoverPenetrationBroadPhaseCallback : public btBroadphaseAabbCallback {
private:
btDbvtVolume bounds;
const btCollisionObject *self_collision_object;
uint32_t collision_layer = 0;
uint32_t collision_mask = 0;
struct CompoundLeafCallback : btDbvt::ICollide {
private:
RecoverPenetrationBroadPhaseCallback *parent_callback = nullptr;
btCollisionObject *collision_object = nullptr;
public:
CompoundLeafCallback(RecoverPenetrationBroadPhaseCallback *p_parent_callback, btCollisionObject *p_collision_object) :
parent_callback(p_parent_callback),
collision_object(p_collision_object) {
}
void Process(const btDbvtNode *leaf) {
BroadphaseResult result;
result.collision_object = collision_object;
result.compound_child_index = leaf->dataAsInt;
parent_callback->results.push_back(result);
}
};
public:
struct BroadphaseResult {
btCollisionObject *collision_object = nullptr;
int compound_child_index = 0;
};
Vector<BroadphaseResult> results;
public:
RecoverPenetrationBroadPhaseCallback(const btCollisionObject *p_self_collision_object, uint32_t p_collision_layer, uint32_t p_collision_mask, btVector3 p_aabb_min, btVector3 p_aabb_max) :
self_collision_object(p_self_collision_object),
collision_layer(p_collision_layer),
collision_mask(p_collision_mask) {
bounds = btDbvtVolume::FromMM(p_aabb_min, p_aabb_max);
}
virtual ~RecoverPenetrationBroadPhaseCallback() {}
virtual bool process(const btBroadphaseProxy *proxy) {
btCollisionObject *co = static_cast<btCollisionObject *>(proxy->m_clientObject);
if (co->getInternalType() <= btCollisionObject::CO_RIGID_BODY) {
if (self_collision_object != proxy->m_clientObject && GodotFilterCallback::test_collision_filters(collision_layer, collision_mask, proxy->m_collisionFilterGroup, proxy->m_collisionFilterMask)) {
if (co->getCollisionShape()->isCompound()) {
const btCompoundShape *cs = static_cast<btCompoundShape *>(co->getCollisionShape());
if (cs->getNumChildShapes() > 1) {
const btDbvt *tree = cs->getDynamicAabbTree();
ERR_FAIL_COND_V(tree == nullptr, true);
// Transform bounds into compound shape local space
const btTransform other_in_compound_space = co->getWorldTransform().inverse();
const btMatrix3x3 abs_b = other_in_compound_space.getBasis().absolute();
const btVector3 local_center = other_in_compound_space(bounds.Center());
const btVector3 local_extent = bounds.Extents().dot3(abs_b[0], abs_b[1], abs_b[2]);
const btVector3 local_aabb_min = local_center - local_extent;
const btVector3 local_aabb_max = local_center + local_extent;
const btDbvtVolume local_bounds = btDbvtVolume::FromMM(local_aabb_min, local_aabb_max);
// Test collision against compound child shapes using its AABB tree
CompoundLeafCallback compound_leaf_callback(this, co);
tree->collideTV(tree->m_root, local_bounds, compound_leaf_callback);
} else {
// If there's only a single child shape then there's no need to search any more, we know which child overlaps
BroadphaseResult result;
result.collision_object = co;
result.compound_child_index = 0;
results.push_back(result);
}
} else {
BroadphaseResult result;
result.collision_object = co;
result.compound_child_index = -1;
results.push_back(result);
}
return true;
}
}
return false;
}
};
bool SpaceBullet::recover_from_penetration(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) {
// Calculate the cumulative AABB of all shapes of the kinematic body
btVector3 aabb_min, aabb_max;
bool shapes_found = false;
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
// Skip rayshape in order to implement custom separation process
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
btVector3 shape_aabb_min, shape_aabb_max;
kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max);
if (!shapes_found) {
aabb_min = shape_aabb_min;
aabb_max = shape_aabb_max;
shapes_found = true;
} else {
aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x());
aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y());
aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z());
aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x());
aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y());
aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z());
}
}
// If there are no shapes then there is no penetration either
if (!shapes_found) {
return false;
}
// Perform broadphase test
RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max);
dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result);
bool penetration = false;
// Perform narrowphase per shape
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
// Skip rayshape in order to implement custom separation process
continue;
}
if (kin_shape.shape->getShapeType() == EMPTY_SHAPE_PROXYTYPE) {
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) {
btCollisionObject *otherObject = recover_broad_result.results[i].collision_object;
if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) {
otherObject->activate(); // Force activation of hitten rigid, soft body
continue;
} else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) {
continue;
}
if (otherObject->getCollisionShape()->isCompound()) {
const btCompoundShape *cs = static_cast<const btCompoundShape *>(otherObject->getCollisionShape());
int shape_idx = recover_broad_result.results[i].compound_child_index;
ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false);
if (cs->getChildShape(shape_idx)->isConvex()) {
if (RFP_convex_convex_test(kin_shape.shape, static_cast<const btConvexShape *>(cs->getChildShape(shape_idx)), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
} else {
if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
}
} else if (otherObject->getCollisionShape()->isConvex()) { /// Execute GJK test against object shape
if (RFP_convex_convex_test(kin_shape.shape, static_cast<const btConvexShape *>(otherObject->getCollisionShape()), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
} else {
if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
penetration = true;
}
}
}
}
return penetration;
}
bool SpaceBullet::RFP_convex_convex_test(const btConvexShape *p_shapeA, const btConvexShape *p_shapeB, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) {
// Initialize GJK input
btGjkPairDetector::ClosestPointInput gjk_input;
gjk_input.m_transformA = p_transformA;
gjk_input.m_transformB = p_transformB;
// Perform GJK test
btPointCollector result;
btGjkPairDetector gjk_pair_detector(p_shapeA, p_shapeB, gjk_simplex_solver, gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(gjk_input, result, nullptr);
if (0 > result.m_distance) {
// Has penetration
r_delta_recover_movement += result.m_normalOnBInWorld * (result.m_distance * -1 * p_recover_movement_scale);
if (r_recover_result) {
if (result.m_distance < r_recover_result->penetration_distance) {
r_recover_result->hasPenetration = true;
r_recover_result->local_shape_most_recovered = p_shapeId_A;
r_recover_result->other_collision_object = p_objectB;
r_recover_result->other_compound_shape_index = p_shapeId_B;
r_recover_result->penetration_distance = result.m_distance;
r_recover_result->pointWorld = result.m_pointInWorld;
r_recover_result->normal = result.m_normalOnBInWorld;
}
}
return true;
}
return false;
}
bool SpaceBullet::RFP_convex_world_test(const btConvexShape *p_shapeA, const btCollisionShape *p_shapeB, btCollisionObject *p_objectA, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) {
/// Contact test
btTransform tA(p_transformA);
btCollisionObjectWrapper obA(nullptr, p_shapeA, p_objectA, tA, -1, p_shapeId_A);
btCollisionObjectWrapper obB(nullptr, p_shapeB, p_objectB, p_transformB, -1, p_shapeId_B);
btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, nullptr, BT_CONTACT_POINT_ALGORITHMS);
if (algorithm) {
GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB);
//discrete collision detection query
algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult);
algorithm->~btCollisionAlgorithm();
dispatcher->freeCollisionAlgorithm(algorithm);
if (contactPointResult.hasHit()) {
r_delta_recover_movement += contactPointResult.m_pointNormalWorld * (contactPointResult.m_penetration_distance * -1 * p_recover_movement_scale);
if (r_recover_result) {
if (contactPointResult.m_penetration_distance < r_recover_result->penetration_distance) {
r_recover_result->hasPenetration = true;
r_recover_result->local_shape_most_recovered = p_shapeId_A;
r_recover_result->other_collision_object = p_objectB;
r_recover_result->other_compound_shape_index = p_shapeId_B;
r_recover_result->penetration_distance = contactPointResult.m_penetration_distance;
r_recover_result->pointWorld = contactPointResult.m_pointWorld;
r_recover_result->normal = contactPointResult.m_pointNormalWorld;
}
}
return true;
}
}
return false;
}
int SpaceBullet::add_separation_result(PhysicsServer3D::SeparationResult *r_result, const SpaceBullet::RecoverResult &p_recover_result, int p_shape_id, const btCollisionObject *p_other_object) const {
// optimize results (ignore non-colliding)
if (p_recover_result.penetration_distance < 0.0) {
const btRigidBody *btRigid = static_cast<const btRigidBody *>(p_other_object);
CollisionObjectBullet *collisionObject = static_cast<CollisionObjectBullet *>(p_other_object->getUserPointer());
r_result->collision_depth = p_recover_result.penetration_distance;
B_TO_G(p_recover_result.pointWorld, r_result->collision_point);
B_TO_G(p_recover_result.normal, r_result->collision_normal);
B_TO_G(btRigid->getVelocityInLocalPoint(p_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity);
r_result->collision_local_shape = p_shape_id;
r_result->collider_id = collisionObject->get_instance_id();
r_result->collider = collisionObject->get_self();
r_result->collider_shape = p_recover_result.other_compound_shape_index;
return 1;
} else {
return 0;
}
}
int SpaceBullet::recover_from_penetration_ray(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, int p_result_max, btVector3 &r_delta_recover_movement, PhysicsServer3D::SeparationResult *r_results) {
// Calculate the cumulative AABB of all shapes of the kinematic body
btVector3 aabb_min, aabb_max;
bool shapes_found = false;
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) {
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
btVector3 shape_aabb_min, shape_aabb_max;
kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max);
if (!shapes_found) {
aabb_min = shape_aabb_min;
aabb_max = shape_aabb_max;
shapes_found = true;
} else {
aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x());
aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y());
aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z());
aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x());
aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y());
aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z());
}
}
// If there are no shapes then there is no penetration either
if (!shapes_found) {
return 0;
}
// Perform broadphase test
RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max);
dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result);
int ray_count = 0;
// Perform narrowphase per shape
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
if (ray_count >= p_result_max) {
break;
}
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) {
continue;
}
btTransform shape_transform = p_body_position * kin_shape.transform;
shape_transform.getOrigin() += r_delta_recover_movement;
for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) {
btCollisionObject *otherObject = recover_broad_result.results[i].collision_object;
if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) {
otherObject->activate(); // Force activation of hitten rigid, soft body
continue;
} else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) {
continue;
}
if (otherObject->getCollisionShape()->isCompound()) {
const btCompoundShape *cs = static_cast<const btCompoundShape *>(otherObject->getCollisionShape());
int shape_idx = recover_broad_result.results[i].compound_child_index;
ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false);
RecoverResult recover_result;
if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) {
ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject);
}
} else {
RecoverResult recover_result;
if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) {
ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject);
}
}
}
}
return ray_count;
}