virtualx-engine/scene/3d/cpu_particles_3d.cpp
2024-05-13 23:41:07 +02:00

1732 lines
66 KiB
C++

/**************************************************************************/
/* cpu_particles_3d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "cpu_particles_3d.h"
#include "scene/3d/camera_3d.h"
#include "scene/3d/gpu_particles_3d.h"
#include "scene/main/viewport.h"
#include "scene/resources/curve_texture.h"
#include "scene/resources/gradient_texture.h"
#include "scene/resources/image_texture.h"
#include "scene/resources/particle_process_material.h"
AABB CPUParticles3D::get_aabb() const {
return AABB();
}
void CPUParticles3D::set_emitting(bool p_emitting) {
if (emitting == p_emitting) {
return;
}
emitting = p_emitting;
if (emitting) {
active = true;
set_process_internal(true);
// first update before rendering to avoid one frame delay after emitting starts
if (time == 0) {
_update_internal();
}
}
}
void CPUParticles3D::set_amount(int p_amount) {
ERR_FAIL_COND_MSG(p_amount < 1, "Amount of particles must be greater than 0.");
particles.resize(p_amount);
{
Particle *w = particles.ptrw();
for (int i = 0; i < p_amount; i++) {
w[i].active = false;
w[i].custom[3] = 1.0; // Make sure w component isn't garbage data and doesn't break shaders with CUSTOM.y/Custom.w
}
}
particle_data.resize((12 + 4 + 4) * p_amount);
RS::get_singleton()->multimesh_set_visible_instances(multimesh, -1);
RS::get_singleton()->multimesh_allocate_data(multimesh, p_amount, RS::MULTIMESH_TRANSFORM_3D, true, true);
particle_order.resize(p_amount);
}
void CPUParticles3D::set_lifetime(double p_lifetime) {
ERR_FAIL_COND_MSG(p_lifetime <= 0, "Particles lifetime must be greater than 0.");
lifetime = p_lifetime;
}
void CPUParticles3D::set_one_shot(bool p_one_shot) {
one_shot = p_one_shot;
}
void CPUParticles3D::set_pre_process_time(double p_time) {
pre_process_time = p_time;
}
void CPUParticles3D::set_explosiveness_ratio(real_t p_ratio) {
explosiveness_ratio = p_ratio;
}
void CPUParticles3D::set_randomness_ratio(real_t p_ratio) {
randomness_ratio = p_ratio;
}
void CPUParticles3D::set_visibility_aabb(const AABB &p_aabb) {
RS::get_singleton()->multimesh_set_custom_aabb(multimesh, p_aabb);
visibility_aabb = p_aabb;
update_gizmos();
}
void CPUParticles3D::set_lifetime_randomness(double p_random) {
lifetime_randomness = p_random;
}
void CPUParticles3D::set_use_local_coordinates(bool p_enable) {
local_coords = p_enable;
}
void CPUParticles3D::set_speed_scale(double p_scale) {
speed_scale = p_scale;
}
bool CPUParticles3D::is_emitting() const {
return emitting;
}
int CPUParticles3D::get_amount() const {
return particles.size();
}
double CPUParticles3D::get_lifetime() const {
return lifetime;
}
bool CPUParticles3D::get_one_shot() const {
return one_shot;
}
double CPUParticles3D::get_pre_process_time() const {
return pre_process_time;
}
real_t CPUParticles3D::get_explosiveness_ratio() const {
return explosiveness_ratio;
}
real_t CPUParticles3D::get_randomness_ratio() const {
return randomness_ratio;
}
AABB CPUParticles3D::get_visibility_aabb() const {
return visibility_aabb;
}
double CPUParticles3D::get_lifetime_randomness() const {
return lifetime_randomness;
}
bool CPUParticles3D::get_use_local_coordinates() const {
return local_coords;
}
double CPUParticles3D::get_speed_scale() const {
return speed_scale;
}
void CPUParticles3D::set_draw_order(DrawOrder p_order) {
ERR_FAIL_INDEX(p_order, DRAW_ORDER_MAX);
draw_order = p_order;
}
CPUParticles3D::DrawOrder CPUParticles3D::get_draw_order() const {
return draw_order;
}
void CPUParticles3D::set_mesh(const Ref<Mesh> &p_mesh) {
mesh = p_mesh;
if (mesh.is_valid()) {
RS::get_singleton()->multimesh_set_mesh(multimesh, mesh->get_rid());
} else {
RS::get_singleton()->multimesh_set_mesh(multimesh, RID());
}
update_configuration_warnings();
}
Ref<Mesh> CPUParticles3D::get_mesh() const {
return mesh;
}
void CPUParticles3D::set_fixed_fps(int p_count) {
fixed_fps = p_count;
}
int CPUParticles3D::get_fixed_fps() const {
return fixed_fps;
}
void CPUParticles3D::set_fractional_delta(bool p_enable) {
fractional_delta = p_enable;
}
bool CPUParticles3D::get_fractional_delta() const {
return fractional_delta;
}
PackedStringArray CPUParticles3D::get_configuration_warnings() const {
PackedStringArray warnings = GeometryInstance3D::get_configuration_warnings();
bool mesh_found = false;
bool anim_material_found = false;
if (get_mesh().is_valid()) {
mesh_found = true;
for (int j = 0; j < get_mesh()->get_surface_count(); j++) {
anim_material_found = Object::cast_to<ShaderMaterial>(get_mesh()->surface_get_material(j).ptr()) != nullptr;
StandardMaterial3D *spat = Object::cast_to<StandardMaterial3D>(get_mesh()->surface_get_material(j).ptr());
anim_material_found = anim_material_found || (spat && spat->get_billboard_mode() == StandardMaterial3D::BILLBOARD_PARTICLES);
}
}
anim_material_found = anim_material_found || Object::cast_to<ShaderMaterial>(get_material_override().ptr()) != nullptr;
StandardMaterial3D *spat = Object::cast_to<StandardMaterial3D>(get_material_override().ptr());
anim_material_found = anim_material_found || (spat && spat->get_billboard_mode() == StandardMaterial3D::BILLBOARD_PARTICLES);
if (!mesh_found) {
warnings.push_back(RTR("Nothing is visible because no mesh has been assigned."));
}
if (!anim_material_found && (get_param_max(PARAM_ANIM_SPEED) != 0.0 || get_param_max(PARAM_ANIM_OFFSET) != 0.0 || get_param_curve(PARAM_ANIM_SPEED).is_valid() || get_param_curve(PARAM_ANIM_OFFSET).is_valid())) {
warnings.push_back(RTR("CPUParticles3D animation requires the usage of a StandardMaterial3D whose Billboard Mode is set to \"Particle Billboard\"."));
}
return warnings;
}
void CPUParticles3D::restart() {
time = 0;
frame_remainder = 0;
cycle = 0;
emitting = false;
{
int pc = particles.size();
Particle *w = particles.ptrw();
for (int i = 0; i < pc; i++) {
w[i].active = false;
}
}
set_emitting(true);
}
void CPUParticles3D::set_direction(Vector3 p_direction) {
direction = p_direction;
}
Vector3 CPUParticles3D::get_direction() const {
return direction;
}
void CPUParticles3D::set_spread(real_t p_spread) {
spread = p_spread;
}
real_t CPUParticles3D::get_spread() const {
return spread;
}
void CPUParticles3D::set_flatness(real_t p_flatness) {
flatness = p_flatness;
}
real_t CPUParticles3D::get_flatness() const {
return flatness;
}
void CPUParticles3D::set_param_min(Parameter p_param, real_t p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
parameters_min[p_param] = p_value;
if (parameters_min[p_param] > parameters_max[p_param]) {
set_param_max(p_param, p_value);
}
update_configuration_warnings();
}
real_t CPUParticles3D::get_param_min(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return parameters_min[p_param];
}
void CPUParticles3D::set_param_max(Parameter p_param, real_t p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
parameters_max[p_param] = p_value;
if (parameters_min[p_param] > parameters_max[p_param]) {
set_param_min(p_param, p_value);
}
update_configuration_warnings();
}
real_t CPUParticles3D::get_param_max(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return parameters_max[p_param];
}
static void _adjust_curve_range(const Ref<Curve> &p_curve, real_t p_min, real_t p_max) {
Ref<Curve> curve = p_curve;
if (!curve.is_valid()) {
return;
}
curve->ensure_default_setup(p_min, p_max);
}
void CPUParticles3D::set_param_curve(Parameter p_param, const Ref<Curve> &p_curve) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
curve_parameters[p_param] = p_curve;
switch (p_param) {
case PARAM_INITIAL_LINEAR_VELOCITY: {
//do none for this one
} break;
case PARAM_ANGULAR_VELOCITY: {
_adjust_curve_range(p_curve, -360, 360);
} break;
case PARAM_ORBIT_VELOCITY: {
_adjust_curve_range(p_curve, -500, 500);
} break;
case PARAM_LINEAR_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_RADIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_TANGENTIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_DAMPING: {
_adjust_curve_range(p_curve, 0, 100);
} break;
case PARAM_ANGLE: {
_adjust_curve_range(p_curve, -360, 360);
} break;
case PARAM_SCALE: {
} break;
case PARAM_HUE_VARIATION: {
_adjust_curve_range(p_curve, -1, 1);
} break;
case PARAM_ANIM_SPEED: {
_adjust_curve_range(p_curve, 0, 200);
} break;
case PARAM_ANIM_OFFSET: {
} break;
default: {
}
}
update_configuration_warnings();
}
Ref<Curve> CPUParticles3D::get_param_curve(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, Ref<Curve>());
return curve_parameters[p_param];
}
void CPUParticles3D::set_color(const Color &p_color) {
color = p_color;
}
Color CPUParticles3D::get_color() const {
return color;
}
void CPUParticles3D::set_color_ramp(const Ref<Gradient> &p_ramp) {
color_ramp = p_ramp;
}
Ref<Gradient> CPUParticles3D::get_color_ramp() const {
return color_ramp;
}
void CPUParticles3D::set_color_initial_ramp(const Ref<Gradient> &p_ramp) {
color_initial_ramp = p_ramp;
}
Ref<Gradient> CPUParticles3D::get_color_initial_ramp() const {
return color_initial_ramp;
}
void CPUParticles3D::set_particle_flag(ParticleFlags p_particle_flag, bool p_enable) {
ERR_FAIL_INDEX(p_particle_flag, PARTICLE_FLAG_MAX);
particle_flags[p_particle_flag] = p_enable;
if (p_particle_flag == PARTICLE_FLAG_DISABLE_Z) {
notify_property_list_changed();
}
}
bool CPUParticles3D::get_particle_flag(ParticleFlags p_particle_flag) const {
ERR_FAIL_INDEX_V(p_particle_flag, PARTICLE_FLAG_MAX, false);
return particle_flags[p_particle_flag];
}
void CPUParticles3D::set_emission_shape(EmissionShape p_shape) {
ERR_FAIL_INDEX(p_shape, EMISSION_SHAPE_MAX);
emission_shape = p_shape;
}
void CPUParticles3D::set_emission_sphere_radius(real_t p_radius) {
emission_sphere_radius = p_radius;
}
void CPUParticles3D::set_emission_box_extents(Vector3 p_extents) {
emission_box_extents = p_extents;
}
void CPUParticles3D::set_emission_points(const Vector<Vector3> &p_points) {
emission_points = p_points;
}
void CPUParticles3D::set_emission_normals(const Vector<Vector3> &p_normals) {
emission_normals = p_normals;
}
void CPUParticles3D::set_emission_colors(const Vector<Color> &p_colors) {
emission_colors = p_colors;
}
void CPUParticles3D::set_emission_ring_axis(Vector3 p_axis) {
emission_ring_axis = p_axis;
}
void CPUParticles3D::set_emission_ring_height(real_t p_height) {
emission_ring_height = p_height;
}
void CPUParticles3D::set_emission_ring_radius(real_t p_radius) {
emission_ring_radius = p_radius;
}
void CPUParticles3D::set_emission_ring_inner_radius(real_t p_radius) {
emission_ring_inner_radius = p_radius;
}
void CPUParticles3D::set_scale_curve_x(Ref<Curve> p_scale_curve) {
scale_curve_x = p_scale_curve;
}
void CPUParticles3D::set_scale_curve_y(Ref<Curve> p_scale_curve) {
scale_curve_y = p_scale_curve;
}
void CPUParticles3D::set_scale_curve_z(Ref<Curve> p_scale_curve) {
scale_curve_z = p_scale_curve;
}
void CPUParticles3D::set_split_scale(bool p_split_scale) {
split_scale = p_split_scale;
notify_property_list_changed();
}
real_t CPUParticles3D::get_emission_sphere_radius() const {
return emission_sphere_radius;
}
Vector3 CPUParticles3D::get_emission_box_extents() const {
return emission_box_extents;
}
Vector<Vector3> CPUParticles3D::get_emission_points() const {
return emission_points;
}
Vector<Vector3> CPUParticles3D::get_emission_normals() const {
return emission_normals;
}
Vector<Color> CPUParticles3D::get_emission_colors() const {
return emission_colors;
}
Vector3 CPUParticles3D::get_emission_ring_axis() const {
return emission_ring_axis;
}
real_t CPUParticles3D::get_emission_ring_height() const {
return emission_ring_height;
}
real_t CPUParticles3D::get_emission_ring_radius() const {
return emission_ring_radius;
}
real_t CPUParticles3D::get_emission_ring_inner_radius() const {
return emission_ring_inner_radius;
}
CPUParticles3D::EmissionShape CPUParticles3D::get_emission_shape() const {
return emission_shape;
}
void CPUParticles3D::set_gravity(const Vector3 &p_gravity) {
gravity = p_gravity;
}
Vector3 CPUParticles3D::get_gravity() const {
return gravity;
}
Ref<Curve> CPUParticles3D::get_scale_curve_x() const {
return scale_curve_x;
}
Ref<Curve> CPUParticles3D::get_scale_curve_y() const {
return scale_curve_y;
}
Ref<Curve> CPUParticles3D::get_scale_curve_z() const {
return scale_curve_z;
}
bool CPUParticles3D::get_split_scale() {
return split_scale;
}
AABB CPUParticles3D::capture_aabb() const {
RS::get_singleton()->multimesh_set_custom_aabb(multimesh, AABB());
return RS::get_singleton()->multimesh_get_aabb(multimesh);
}
void CPUParticles3D::_validate_property(PropertyInfo &p_property) const {
if (p_property.name == "emission_sphere_radius" && (emission_shape != EMISSION_SHAPE_SPHERE && emission_shape != EMISSION_SHAPE_SPHERE_SURFACE)) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "emission_box_extents" && emission_shape != EMISSION_SHAPE_BOX) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if ((p_property.name == "emission_point_texture" || p_property.name == "emission_color_texture" || p_property.name == "emission_points") && (emission_shape != EMISSION_SHAPE_POINTS && (emission_shape != EMISSION_SHAPE_DIRECTED_POINTS))) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name == "emission_normals" && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name.begins_with("emission_ring_") && emission_shape != EMISSION_SHAPE_RING) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name.begins_with("orbit_") && !particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
p_property.usage = PROPERTY_USAGE_NONE;
}
if (p_property.name.begins_with("scale_curve_") && !split_scale) {
p_property.usage = PROPERTY_USAGE_NONE;
}
}
static uint32_t idhash(uint32_t x) {
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = (x >> uint32_t(16)) ^ x;
return x;
}
static real_t rand_from_seed(uint32_t &seed) {
int k;
int s = int(seed);
if (s == 0) {
s = 305420679;
}
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0) {
s += 2147483647;
}
seed = uint32_t(s);
return (seed % uint32_t(65536)) / 65535.0;
}
void CPUParticles3D::_update_internal() {
if (particles.size() == 0 || !is_visible_in_tree()) {
_set_redraw(false);
return;
}
double delta = get_process_delta_time();
if (!active && !emitting) {
set_process_internal(false);
_set_redraw(false);
//reset variables
time = 0;
frame_remainder = 0;
cycle = 0;
return;
}
_set_redraw(true);
bool processed = false;
if (time == 0 && pre_process_time > 0.0) {
double frame_time;
if (fixed_fps > 0) {
frame_time = 1.0 / fixed_fps;
} else {
frame_time = 1.0 / 30.0;
}
double todo = pre_process_time;
while (todo >= 0) {
_particles_process(frame_time);
processed = true;
todo -= frame_time;
}
}
if (fixed_fps > 0) {
double frame_time = 1.0 / fixed_fps;
double decr = frame_time;
double ldelta = delta;
if (ldelta > 0.1) { //avoid recursive stalls if fps goes below 10
ldelta = 0.1;
} else if (ldelta <= 0.0) { //unlikely but..
ldelta = 0.001;
}
double todo = frame_remainder + ldelta;
while (todo >= frame_time) {
_particles_process(frame_time);
processed = true;
todo -= decr;
}
frame_remainder = todo;
} else {
_particles_process(delta);
processed = true;
}
if (processed) {
_update_particle_data_buffer();
}
}
void CPUParticles3D::_particles_process(double p_delta) {
p_delta *= speed_scale;
int pcount = particles.size();
Particle *w = particles.ptrw();
Particle *parray = w;
double prev_time = time;
time += p_delta;
if (time > lifetime) {
time = Math::fmod(time, lifetime);
cycle++;
if (one_shot && cycle > 0) {
set_emitting(false);
notify_property_list_changed();
}
}
Transform3D emission_xform;
Basis velocity_xform;
if (!local_coords) {
emission_xform = get_global_transform();
velocity_xform = emission_xform.basis;
}
double system_phase = time / lifetime;
bool should_be_active = false;
for (int i = 0; i < pcount; i++) {
Particle &p = parray[i];
if (!emitting && !p.active) {
continue;
}
double local_delta = p_delta;
// The phase is a ratio between 0 (birth) and 1 (end of life) for each particle.
// While we use time in tests later on, for randomness we use the phase as done in the
// original shader code, and we later multiply by lifetime to get the time.
double restart_phase = double(i) / double(pcount);
if (randomness_ratio > 0.0) {
uint32_t seed = cycle;
if (restart_phase >= system_phase) {
seed -= uint32_t(1);
}
seed *= uint32_t(pcount);
seed += uint32_t(i);
double random = double(idhash(seed) % uint32_t(65536)) / 65536.0;
restart_phase += randomness_ratio * random * 1.0 / double(pcount);
}
restart_phase *= (1.0 - explosiveness_ratio);
double restart_time = restart_phase * lifetime;
bool restart = false;
if (time > prev_time) {
// restart_time >= prev_time is used so particles emit in the first frame they are processed
if (restart_time >= prev_time && restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = time - restart_time;
}
}
} else if (local_delta > 0.0) {
if (restart_time >= prev_time) {
restart = true;
if (fractional_delta) {
local_delta = lifetime - restart_time + time;
}
} else if (restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = time - restart_time;
}
}
}
if (p.time * (1.0 - explosiveness_ratio) > p.lifetime) {
restart = true;
}
float tv = 0.0;
if (restart) {
if (!emitting) {
p.active = false;
continue;
}
p.active = true;
/*real_t tex_linear_velocity = 0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->sample(0);
}*/
real_t tex_angle = 1.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->sample(tv);
}
real_t tex_anim_offset = 1.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANGLE]->sample(tv);
}
p.seed = Math::rand();
p.angle_rand = Math::randf();
p.scale_rand = Math::randf();
p.hue_rot_rand = Math::randf();
p.anim_offset_rand = Math::randf();
if (color_initial_ramp.is_valid()) {
p.start_color_rand = color_initial_ramp->get_color_at_offset(Math::randf());
} else {
p.start_color_rand = Color(1, 1, 1, 1);
}
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
real_t angle1_rad = Math::atan2(direction.y, direction.x) + Math::deg_to_rad((Math::randf() * 2.0 - 1.0) * spread);
Vector3 rot = Vector3(Math::cos(angle1_rad), Math::sin(angle1_rad), 0.0);
p.velocity = rot * Math::lerp(parameters_min[PARAM_INITIAL_LINEAR_VELOCITY], parameters_max[PARAM_INITIAL_LINEAR_VELOCITY], (real_t)Math::randf());
} else {
//initiate velocity spread in 3D
real_t angle1_rad = Math::deg_to_rad((Math::randf() * (real_t)2.0 - (real_t)1.0) * spread);
real_t angle2_rad = Math::deg_to_rad((Math::randf() * (real_t)2.0 - (real_t)1.0) * ((real_t)1.0 - flatness) * spread);
Vector3 direction_xz = Vector3(Math::sin(angle1_rad), 0, Math::cos(angle1_rad));
Vector3 direction_yz = Vector3(0, Math::sin(angle2_rad), Math::cos(angle2_rad));
Vector3 spread_direction = Vector3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z);
Vector3 direction_nrm = direction;
if (direction_nrm.length_squared() > 0) {
direction_nrm.normalize();
} else {
direction_nrm = Vector3(0, 0, 1);
}
// rotate spread to direction
Vector3 binormal = Vector3(0.0, 1.0, 0.0).cross(direction_nrm);
if (binormal.length_squared() < 0.00000001) {
// direction is parallel to Y. Choose Z as the binormal.
binormal = Vector3(0.0, 0.0, 1.0);
}
binormal.normalize();
Vector3 normal = binormal.cross(direction_nrm);
spread_direction = binormal * spread_direction.x + normal * spread_direction.y + direction_nrm * spread_direction.z;
p.velocity = spread_direction * Math::lerp(parameters_min[PARAM_INITIAL_LINEAR_VELOCITY], parameters_max[PARAM_INITIAL_LINEAR_VELOCITY], (real_t)Math::randf());
}
real_t base_angle = tex_angle * Math::lerp(parameters_min[PARAM_ANGLE], parameters_max[PARAM_ANGLE], p.angle_rand);
p.custom[0] = Math::deg_to_rad(base_angle); //angle
p.custom[1] = 0.0; //phase
p.custom[2] = tex_anim_offset * Math::lerp(parameters_min[PARAM_ANIM_OFFSET], parameters_max[PARAM_ANIM_OFFSET], p.anim_offset_rand); //animation offset (0-1)
p.custom[3] = (1.0 - Math::randf() * lifetime_randomness);
p.transform = Transform3D();
p.time = 0;
p.lifetime = lifetime * p.custom[3];
p.base_color = Color(1, 1, 1, 1);
switch (emission_shape) {
case EMISSION_SHAPE_POINT: {
//do none
} break;
case EMISSION_SHAPE_SPHERE: {
real_t s = 2.0 * Math::randf() - 1.0;
real_t t = Math_TAU * Math::randf();
real_t x = Math::randf();
real_t radius = emission_sphere_radius * Math::sqrt(1.0 - s * s);
p.transform.origin = Vector3(0, 0, 0).lerp(Vector3(radius * Math::cos(t), radius * Math::sin(t), emission_sphere_radius * s), x);
} break;
case EMISSION_SHAPE_SPHERE_SURFACE: {
real_t s = 2.0 * Math::randf() - 1.0;
real_t t = Math_TAU * Math::randf();
real_t radius = emission_sphere_radius * Math::sqrt(1.0 - s * s);
p.transform.origin = Vector3(radius * Math::cos(t), radius * Math::sin(t), emission_sphere_radius * s);
} break;
case EMISSION_SHAPE_BOX: {
p.transform.origin = Vector3(Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0) * emission_box_extents;
} break;
case EMISSION_SHAPE_POINTS:
case EMISSION_SHAPE_DIRECTED_POINTS: {
int pc = emission_points.size();
if (pc == 0) {
break;
}
int random_idx = Math::rand() % pc;
p.transform.origin = emission_points.get(random_idx);
if (emission_shape == EMISSION_SHAPE_DIRECTED_POINTS && emission_normals.size() == pc) {
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
Vector3 normal = emission_normals.get(random_idx);
Vector2 normal_2d(normal.x, normal.y);
Transform2D m2;
m2.columns[0] = normal_2d;
m2.columns[1] = normal_2d.orthogonal();
Vector2 velocity_2d(p.velocity.x, p.velocity.y);
velocity_2d = m2.basis_xform(velocity_2d);
p.velocity.x = velocity_2d.x;
p.velocity.y = velocity_2d.y;
} else {
Vector3 normal = emission_normals.get(random_idx);
Vector3 v0 = Math::abs(normal.z) < 0.999 ? Vector3(0.0, 0.0, 1.0) : Vector3(0, 1.0, 0.0);
Vector3 tangent = v0.cross(normal).normalized();
Vector3 bitangent = tangent.cross(normal).normalized();
Basis m3;
m3.set_column(0, tangent);
m3.set_column(1, bitangent);
m3.set_column(2, normal);
p.velocity = m3.xform(p.velocity);
}
}
if (emission_colors.size() == pc) {
p.base_color = emission_colors.get(random_idx);
}
} break;
case EMISSION_SHAPE_RING: {
real_t ring_random_angle = Math::randf() * Math_TAU;
real_t ring_random_radius = Math::sqrt(Math::randf() * (emission_ring_radius - emission_ring_inner_radius * emission_ring_inner_radius) + emission_ring_inner_radius * emission_ring_inner_radius);
Vector3 axis = emission_ring_axis == Vector3(0.0, 0.0, 0.0) ? Vector3(0.0, 0.0, 1.0) : emission_ring_axis.normalized();
Vector3 ortho_axis;
if (axis.abs() == Vector3(1.0, 0.0, 0.0)) {
ortho_axis = Vector3(0.0, 1.0, 0.0).cross(axis);
} else {
ortho_axis = Vector3(1.0, 0.0, 0.0).cross(axis);
}
ortho_axis = ortho_axis.normalized();
ortho_axis.rotate(axis, ring_random_angle);
ortho_axis = ortho_axis.normalized();
p.transform.origin = ortho_axis * ring_random_radius + (Math::randf() * emission_ring_height - emission_ring_height / 2.0) * axis;
} break;
case EMISSION_SHAPE_MAX: { // Max value for validity check.
break;
}
}
if (!local_coords) {
p.velocity = velocity_xform.xform(p.velocity);
p.transform = emission_xform * p.transform;
}
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.transform.origin.z = 0.0;
}
} else if (!p.active) {
continue;
} else if (p.time > p.lifetime) {
p.active = false;
tv = 1.0;
} else {
uint32_t alt_seed = p.seed;
p.time += local_delta;
p.custom[1] = p.time / lifetime;
tv = p.time / p.lifetime;
real_t tex_linear_velocity = 1.0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->sample(tv);
}
real_t tex_orbit_velocity = 1.0;
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
if (curve_parameters[PARAM_ORBIT_VELOCITY].is_valid()) {
tex_orbit_velocity = curve_parameters[PARAM_ORBIT_VELOCITY]->sample(tv);
}
}
real_t tex_angular_velocity = 1.0;
if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) {
tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->sample(tv);
}
real_t tex_linear_accel = 1.0;
if (curve_parameters[PARAM_LINEAR_ACCEL].is_valid()) {
tex_linear_accel = curve_parameters[PARAM_LINEAR_ACCEL]->sample(tv);
}
real_t tex_tangential_accel = 1.0;
if (curve_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) {
tex_tangential_accel = curve_parameters[PARAM_TANGENTIAL_ACCEL]->sample(tv);
}
real_t tex_radial_accel = 1.0;
if (curve_parameters[PARAM_RADIAL_ACCEL].is_valid()) {
tex_radial_accel = curve_parameters[PARAM_RADIAL_ACCEL]->sample(tv);
}
real_t tex_damping = 1.0;
if (curve_parameters[PARAM_DAMPING].is_valid()) {
tex_damping = curve_parameters[PARAM_DAMPING]->sample(tv);
}
real_t tex_angle = 1.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->sample(tv);
}
real_t tex_anim_speed = 1.0;
if (curve_parameters[PARAM_ANIM_SPEED].is_valid()) {
tex_anim_speed = curve_parameters[PARAM_ANIM_SPEED]->sample(tv);
}
real_t tex_anim_offset = 1.0;
if (curve_parameters[PARAM_ANIM_OFFSET].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANIM_OFFSET]->sample(tv);
}
Vector3 force = gravity;
Vector3 position = p.transform.origin;
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
position.z = 0.0;
}
//apply linear acceleration
force += p.velocity.length() > 0.0 ? p.velocity.normalized() * tex_linear_accel * Math::lerp(parameters_min[PARAM_LINEAR_ACCEL], parameters_max[PARAM_LINEAR_ACCEL], rand_from_seed(alt_seed)) : Vector3();
//apply radial acceleration
Vector3 org = emission_xform.origin;
Vector3 diff = position - org;
force += diff.length() > 0.0 ? diff.normalized() * (tex_radial_accel)*Math::lerp(parameters_min[PARAM_RADIAL_ACCEL], parameters_max[PARAM_RADIAL_ACCEL], rand_from_seed(alt_seed)) : Vector3();
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
Vector2 yx = Vector2(diff.y, diff.x);
Vector2 yx2 = (yx * Vector2(-1.0, 1.0)).normalized();
force += yx.length() > 0.0 ? Vector3(yx2.x, yx2.y, 0.0) * (tex_tangential_accel * Math::lerp(parameters_min[PARAM_TANGENTIAL_ACCEL], parameters_max[PARAM_TANGENTIAL_ACCEL], rand_from_seed(alt_seed))) : Vector3();
} else {
Vector3 crossDiff = diff.normalized().cross(gravity.normalized());
force += crossDiff.length() > 0.0 ? crossDiff.normalized() * (tex_tangential_accel * Math::lerp(parameters_min[PARAM_TANGENTIAL_ACCEL], parameters_max[PARAM_TANGENTIAL_ACCEL], rand_from_seed(alt_seed))) : Vector3();
}
//apply attractor forces
p.velocity += force * local_delta;
//orbit velocity
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
real_t orbit_amount = tex_orbit_velocity * Math::lerp(parameters_min[PARAM_ORBIT_VELOCITY], parameters_max[PARAM_ORBIT_VELOCITY], rand_from_seed(alt_seed));
if (orbit_amount != 0.0) {
real_t ang = orbit_amount * local_delta * Math_TAU;
// Not sure why the ParticleProcessMaterial code uses a clockwise rotation matrix,
// but we use -ang here to reproduce its behavior.
Transform2D rot = Transform2D(-ang, Vector2());
Vector2 rotv = rot.basis_xform(Vector2(diff.x, diff.y));
p.transform.origin -= Vector3(diff.x, diff.y, 0);
p.transform.origin += Vector3(rotv.x, rotv.y, 0);
}
}
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
p.velocity = p.velocity.normalized() * tex_linear_velocity;
}
if (parameters_max[PARAM_DAMPING] + tex_damping > 0.0) {
real_t v = p.velocity.length();
real_t damp = tex_damping * Math::lerp(parameters_min[PARAM_DAMPING], parameters_max[PARAM_DAMPING], rand_from_seed(alt_seed));
v -= damp * local_delta;
if (v < 0.0) {
p.velocity = Vector3();
} else {
p.velocity = p.velocity.normalized() * v;
}
}
real_t base_angle = (tex_angle)*Math::lerp(parameters_min[PARAM_ANGLE], parameters_max[PARAM_ANGLE], p.angle_rand);
base_angle += p.custom[1] * lifetime * tex_angular_velocity * Math::lerp(parameters_min[PARAM_ANGULAR_VELOCITY], parameters_max[PARAM_ANGULAR_VELOCITY], rand_from_seed(alt_seed));
p.custom[0] = Math::deg_to_rad(base_angle); //angle
p.custom[2] = tex_anim_offset * Math::lerp(parameters_min[PARAM_ANIM_OFFSET], parameters_max[PARAM_ANIM_OFFSET], p.anim_offset_rand) + tv * tex_anim_speed * Math::lerp(parameters_min[PARAM_ANIM_SPEED], parameters_max[PARAM_ANIM_SPEED], rand_from_seed(alt_seed)); //angle
}
//apply color
//apply hue rotation
Vector3 tex_scale = Vector3(1.0, 1.0, 1.0);
if (split_scale) {
if (scale_curve_x.is_valid()) {
tex_scale.x = scale_curve_x->sample(tv);
} else {
tex_scale.x = 1.0;
}
if (scale_curve_y.is_valid()) {
tex_scale.y = scale_curve_y->sample(tv);
} else {
tex_scale.y = 1.0;
}
if (scale_curve_z.is_valid()) {
tex_scale.z = scale_curve_z->sample(tv);
} else {
tex_scale.z = 1.0;
}
} else {
if (curve_parameters[PARAM_SCALE].is_valid()) {
float tmp_scale = curve_parameters[PARAM_SCALE]->sample(tv);
tex_scale.x = tmp_scale;
tex_scale.y = tmp_scale;
tex_scale.z = tmp_scale;
}
}
real_t tex_hue_variation = 0.0;
if (curve_parameters[PARAM_HUE_VARIATION].is_valid()) {
tex_hue_variation = curve_parameters[PARAM_HUE_VARIATION]->sample(tv);
}
real_t hue_rot_angle = (tex_hue_variation)*Math_TAU * Math::lerp(parameters_min[PARAM_HUE_VARIATION], parameters_max[PARAM_HUE_VARIATION], p.hue_rot_rand);
real_t hue_rot_c = Math::cos(hue_rot_angle);
real_t hue_rot_s = Math::sin(hue_rot_angle);
Basis hue_rot_mat;
{
Basis mat1(0.299, 0.587, 0.114, 0.299, 0.587, 0.114, 0.299, 0.587, 0.114);
Basis mat2(0.701, -0.587, -0.114, -0.299, 0.413, -0.114, -0.300, -0.588, 0.886);
Basis mat3(0.168, 0.330, -0.497, -0.328, 0.035, 0.292, 1.250, -1.050, -0.203);
for (int j = 0; j < 3; j++) {
hue_rot_mat[j] = mat1[j] + mat2[j] * hue_rot_c + mat3[j] * hue_rot_s;
}
}
if (color_ramp.is_valid()) {
p.color = color_ramp->get_color_at_offset(tv) * color;
} else {
p.color = color;
}
Vector3 color_rgb = hue_rot_mat.xform_inv(Vector3(p.color.r, p.color.g, p.color.b));
p.color.r = color_rgb.x;
p.color.g = color_rgb.y;
p.color.b = color_rgb.z;
p.color *= p.base_color * p.start_color_rand;
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
if (particle_flags[PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_column(1, p.velocity.normalized());
} else {
p.transform.basis.set_column(1, p.transform.basis.get_column(1));
}
p.transform.basis.set_column(0, p.transform.basis.get_column(1).cross(p.transform.basis.get_column(2)).normalized());
p.transform.basis.set_column(2, Vector3(0, 0, 1));
} else {
p.transform.basis.set_column(0, Vector3(Math::cos(p.custom[0]), -Math::sin(p.custom[0]), 0.0));
p.transform.basis.set_column(1, Vector3(Math::sin(p.custom[0]), Math::cos(p.custom[0]), 0.0));
p.transform.basis.set_column(2, Vector3(0, 0, 1));
}
} else {
//orient particle Y towards velocity
if (particle_flags[PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_column(1, p.velocity.normalized());
} else {
p.transform.basis.set_column(1, p.transform.basis.get_column(1).normalized());
}
if (p.transform.basis.get_column(1) == p.transform.basis.get_column(0)) {
p.transform.basis.set_column(0, p.transform.basis.get_column(1).cross(p.transform.basis.get_column(2)).normalized());
p.transform.basis.set_column(2, p.transform.basis.get_column(0).cross(p.transform.basis.get_column(1)).normalized());
} else {
p.transform.basis.set_column(2, p.transform.basis.get_column(0).cross(p.transform.basis.get_column(1)).normalized());
p.transform.basis.set_column(0, p.transform.basis.get_column(1).cross(p.transform.basis.get_column(2)).normalized());
}
} else {
p.transform.basis.orthonormalize();
}
//turn particle by rotation in Y
if (particle_flags[PARTICLE_FLAG_ROTATE_Y]) {
Basis rot_y(Vector3(0, 1, 0), p.custom[0]);
p.transform.basis = rot_y;
}
}
p.transform.basis = p.transform.basis.orthonormalized();
//scale by scale
Vector3 base_scale = tex_scale * Math::lerp(parameters_min[PARAM_SCALE], parameters_max[PARAM_SCALE], p.scale_rand);
if (base_scale.x < CMP_EPSILON) {
base_scale.x = CMP_EPSILON;
}
if (base_scale.y < CMP_EPSILON) {
base_scale.y = CMP_EPSILON;
}
if (base_scale.z < CMP_EPSILON) {
base_scale.z = CMP_EPSILON;
}
p.transform.basis.scale(base_scale);
if (particle_flags[PARTICLE_FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.transform.origin.z = 0.0;
}
p.transform.origin += p.velocity * local_delta;
should_be_active = true;
}
if (!Math::is_equal_approx(time, 0.0) && active && !should_be_active) {
active = false;
emit_signal(SceneStringName(finished));
}
}
void CPUParticles3D::_update_particle_data_buffer() {
MutexLock lock(update_mutex);
int pc = particles.size();
int *ow;
int *order = nullptr;
float *w = particle_data.ptrw();
const Particle *r = particles.ptr();
float *ptr = w;
if (draw_order != DRAW_ORDER_INDEX) {
ow = particle_order.ptrw();
order = ow;
for (int i = 0; i < pc; i++) {
order[i] = i;
}
if (draw_order == DRAW_ORDER_LIFETIME) {
SortArray<int, SortLifetime> sorter;
sorter.compare.particles = r;
sorter.sort(order, pc);
} else if (draw_order == DRAW_ORDER_VIEW_DEPTH) {
ERR_FAIL_NULL(get_viewport());
Camera3D *c = get_viewport()->get_camera_3d();
if (c) {
Vector3 dir = c->get_global_transform().basis.get_column(2); //far away to close
if (local_coords) {
// will look different from Particles in editor as this is based on the camera in the scenetree
// and not the editor camera
dir = inv_emission_transform.xform(dir).normalized();
} else {
dir = dir.normalized();
}
SortArray<int, SortAxis> sorter;
sorter.compare.particles = r;
sorter.compare.axis = dir;
sorter.sort(order, pc);
}
}
}
for (int i = 0; i < pc; i++) {
int idx = order ? order[i] : i;
Transform3D t = r[idx].transform;
if (!local_coords) {
t = inv_emission_transform * t;
}
if (r[idx].active) {
ptr[0] = t.basis.rows[0][0];
ptr[1] = t.basis.rows[0][1];
ptr[2] = t.basis.rows[0][2];
ptr[3] = t.origin.x;
ptr[4] = t.basis.rows[1][0];
ptr[5] = t.basis.rows[1][1];
ptr[6] = t.basis.rows[1][2];
ptr[7] = t.origin.y;
ptr[8] = t.basis.rows[2][0];
ptr[9] = t.basis.rows[2][1];
ptr[10] = t.basis.rows[2][2];
ptr[11] = t.origin.z;
} else {
memset(ptr, 0, sizeof(float) * 12);
}
Color c = r[idx].color;
ptr[12] = c.r;
ptr[13] = c.g;
ptr[14] = c.b;
ptr[15] = c.a;
ptr[16] = r[idx].custom[0];
ptr[17] = r[idx].custom[1];
ptr[18] = r[idx].custom[2];
ptr[19] = r[idx].custom[3];
ptr += 20;
}
can_update.set();
}
void CPUParticles3D::_set_redraw(bool p_redraw) {
if (redraw == p_redraw) {
return;
}
redraw = p_redraw;
{
MutexLock lock(update_mutex);
if (redraw) {
RS::get_singleton()->connect("frame_pre_draw", callable_mp(this, &CPUParticles3D::_update_render_thread));
RS::get_singleton()->instance_geometry_set_flag(get_instance(), RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, true);
RS::get_singleton()->multimesh_set_visible_instances(multimesh, -1);
} else {
if (RS::get_singleton()->is_connected("frame_pre_draw", callable_mp(this, &CPUParticles3D::_update_render_thread))) {
RS::get_singleton()->disconnect("frame_pre_draw", callable_mp(this, &CPUParticles3D::_update_render_thread));
}
RS::get_singleton()->instance_geometry_set_flag(get_instance(), RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, false);
RS::get_singleton()->multimesh_set_visible_instances(multimesh, 0);
}
}
}
void CPUParticles3D::_update_render_thread() {
MutexLock lock(update_mutex);
if (can_update.is_set()) {
RS::get_singleton()->multimesh_set_buffer(multimesh, particle_data);
can_update.clear(); //wait for next time
}
}
void CPUParticles3D::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
set_process_internal(emitting);
// first update before rendering to avoid one frame delay after emitting starts
if (emitting && (time == 0)) {
_update_internal();
}
} break;
case NOTIFICATION_EXIT_TREE: {
_set_redraw(false);
} break;
case NOTIFICATION_VISIBILITY_CHANGED: {
// first update before rendering to avoid one frame delay after emitting starts
if (emitting && (time == 0)) {
_update_internal();
}
} break;
case NOTIFICATION_INTERNAL_PROCESS: {
_update_internal();
} break;
case NOTIFICATION_TRANSFORM_CHANGED: {
inv_emission_transform = get_global_transform().affine_inverse();
if (!local_coords) {
int pc = particles.size();
float *w = particle_data.ptrw();
const Particle *r = particles.ptr();
float *ptr = w;
for (int i = 0; i < pc; i++) {
Transform3D t = inv_emission_transform * r[i].transform;
if (r[i].active) {
ptr[0] = t.basis.rows[0][0];
ptr[1] = t.basis.rows[0][1];
ptr[2] = t.basis.rows[0][2];
ptr[3] = t.origin.x;
ptr[4] = t.basis.rows[1][0];
ptr[5] = t.basis.rows[1][1];
ptr[6] = t.basis.rows[1][2];
ptr[7] = t.origin.y;
ptr[8] = t.basis.rows[2][0];
ptr[9] = t.basis.rows[2][1];
ptr[10] = t.basis.rows[2][2];
ptr[11] = t.origin.z;
} else {
memset(ptr, 0, sizeof(float) * 12);
}
ptr += 20;
}
can_update.set();
}
} break;
}
}
void CPUParticles3D::convert_from_particles(Node *p_particles) {
GPUParticles3D *gpu_particles = Object::cast_to<GPUParticles3D>(p_particles);
ERR_FAIL_NULL_MSG(gpu_particles, "Only GPUParticles3D nodes can be converted to CPUParticles3D.");
set_emitting(gpu_particles->is_emitting());
set_amount(gpu_particles->get_amount());
set_lifetime(gpu_particles->get_lifetime());
set_one_shot(gpu_particles->get_one_shot());
set_pre_process_time(gpu_particles->get_pre_process_time());
set_explosiveness_ratio(gpu_particles->get_explosiveness_ratio());
set_randomness_ratio(gpu_particles->get_randomness_ratio());
set_visibility_aabb(gpu_particles->get_visibility_aabb());
set_use_local_coordinates(gpu_particles->get_use_local_coordinates());
set_fixed_fps(gpu_particles->get_fixed_fps());
set_fractional_delta(gpu_particles->get_fractional_delta());
set_speed_scale(gpu_particles->get_speed_scale());
set_draw_order(DrawOrder(gpu_particles->get_draw_order()));
set_mesh(gpu_particles->get_draw_pass_mesh(0));
Ref<ParticleProcessMaterial> material = gpu_particles->get_process_material();
if (material.is_null()) {
return;
}
set_direction(material->get_direction());
set_spread(material->get_spread());
set_flatness(material->get_flatness());
set_color(material->get_color());
Ref<GradientTexture1D> gt = material->get_color_ramp();
if (gt.is_valid()) {
set_color_ramp(gt->get_gradient());
}
Ref<GradientTexture1D> gti = material->get_color_initial_ramp();
if (gti.is_valid()) {
set_color_initial_ramp(gti->get_gradient());
}
set_particle_flag(PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY, material->get_particle_flag(ParticleProcessMaterial::PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY));
set_particle_flag(PARTICLE_FLAG_ROTATE_Y, material->get_particle_flag(ParticleProcessMaterial::PARTICLE_FLAG_ROTATE_Y));
set_particle_flag(PARTICLE_FLAG_DISABLE_Z, material->get_particle_flag(ParticleProcessMaterial::PARTICLE_FLAG_DISABLE_Z));
set_emission_shape(EmissionShape(material->get_emission_shape()));
set_emission_sphere_radius(material->get_emission_sphere_radius());
set_emission_box_extents(material->get_emission_box_extents());
Ref<CurveXYZTexture> scale3D = material->get_param_texture(ParticleProcessMaterial::PARAM_SCALE);
if (scale3D.is_valid()) {
split_scale = true;
scale_curve_x = scale3D->get_curve_x();
scale_curve_y = scale3D->get_curve_y();
scale_curve_z = scale3D->get_curve_z();
}
set_gravity(material->get_gravity());
set_lifetime_randomness(material->get_lifetime_randomness());
#define CONVERT_PARAM(m_param) \
set_param_min(m_param, material->get_param_min(ParticleProcessMaterial::m_param)); \
{ \
Ref<CurveTexture> ctex = material->get_param_texture(ParticleProcessMaterial::m_param); \
if (ctex.is_valid()) \
set_param_curve(m_param, ctex->get_curve()); \
} \
set_param_max(m_param, material->get_param_max(ParticleProcessMaterial::m_param));
CONVERT_PARAM(PARAM_INITIAL_LINEAR_VELOCITY);
CONVERT_PARAM(PARAM_ANGULAR_VELOCITY);
CONVERT_PARAM(PARAM_ORBIT_VELOCITY);
CONVERT_PARAM(PARAM_LINEAR_ACCEL);
CONVERT_PARAM(PARAM_RADIAL_ACCEL);
CONVERT_PARAM(PARAM_TANGENTIAL_ACCEL);
CONVERT_PARAM(PARAM_DAMPING);
CONVERT_PARAM(PARAM_ANGLE);
CONVERT_PARAM(PARAM_SCALE);
CONVERT_PARAM(PARAM_HUE_VARIATION);
CONVERT_PARAM(PARAM_ANIM_SPEED);
CONVERT_PARAM(PARAM_ANIM_OFFSET);
#undef CONVERT_PARAM
}
void CPUParticles3D::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_emitting", "emitting"), &CPUParticles3D::set_emitting);
ClassDB::bind_method(D_METHOD("set_amount", "amount"), &CPUParticles3D::set_amount);
ClassDB::bind_method(D_METHOD("set_lifetime", "secs"), &CPUParticles3D::set_lifetime);
ClassDB::bind_method(D_METHOD("set_one_shot", "enable"), &CPUParticles3D::set_one_shot);
ClassDB::bind_method(D_METHOD("set_pre_process_time", "secs"), &CPUParticles3D::set_pre_process_time);
ClassDB::bind_method(D_METHOD("set_explosiveness_ratio", "ratio"), &CPUParticles3D::set_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("set_randomness_ratio", "ratio"), &CPUParticles3D::set_randomness_ratio);
ClassDB::bind_method(D_METHOD("set_visibility_aabb", "aabb"), &CPUParticles3D::set_visibility_aabb);
ClassDB::bind_method(D_METHOD("set_lifetime_randomness", "random"), &CPUParticles3D::set_lifetime_randomness);
ClassDB::bind_method(D_METHOD("set_use_local_coordinates", "enable"), &CPUParticles3D::set_use_local_coordinates);
ClassDB::bind_method(D_METHOD("set_fixed_fps", "fps"), &CPUParticles3D::set_fixed_fps);
ClassDB::bind_method(D_METHOD("set_fractional_delta", "enable"), &CPUParticles3D::set_fractional_delta);
ClassDB::bind_method(D_METHOD("set_speed_scale", "scale"), &CPUParticles3D::set_speed_scale);
ClassDB::bind_method(D_METHOD("is_emitting"), &CPUParticles3D::is_emitting);
ClassDB::bind_method(D_METHOD("get_amount"), &CPUParticles3D::get_amount);
ClassDB::bind_method(D_METHOD("get_lifetime"), &CPUParticles3D::get_lifetime);
ClassDB::bind_method(D_METHOD("get_one_shot"), &CPUParticles3D::get_one_shot);
ClassDB::bind_method(D_METHOD("get_pre_process_time"), &CPUParticles3D::get_pre_process_time);
ClassDB::bind_method(D_METHOD("get_explosiveness_ratio"), &CPUParticles3D::get_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("get_randomness_ratio"), &CPUParticles3D::get_randomness_ratio);
ClassDB::bind_method(D_METHOD("get_visibility_aabb"), &CPUParticles3D::get_visibility_aabb);
ClassDB::bind_method(D_METHOD("get_lifetime_randomness"), &CPUParticles3D::get_lifetime_randomness);
ClassDB::bind_method(D_METHOD("get_use_local_coordinates"), &CPUParticles3D::get_use_local_coordinates);
ClassDB::bind_method(D_METHOD("get_fixed_fps"), &CPUParticles3D::get_fixed_fps);
ClassDB::bind_method(D_METHOD("get_fractional_delta"), &CPUParticles3D::get_fractional_delta);
ClassDB::bind_method(D_METHOD("get_speed_scale"), &CPUParticles3D::get_speed_scale);
ClassDB::bind_method(D_METHOD("set_draw_order", "order"), &CPUParticles3D::set_draw_order);
ClassDB::bind_method(D_METHOD("get_draw_order"), &CPUParticles3D::get_draw_order);
ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &CPUParticles3D::set_mesh);
ClassDB::bind_method(D_METHOD("get_mesh"), &CPUParticles3D::get_mesh);
ClassDB::bind_method(D_METHOD("restart"), &CPUParticles3D::restart);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "emitting"), "set_emitting", "is_emitting");
ADD_PROPERTY(PropertyInfo(Variant::INT, "amount", PROPERTY_HINT_RANGE, "1,1000000,1,exp"), "set_amount", "get_amount");
ADD_GROUP("Time", "");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lifetime", PROPERTY_HINT_RANGE, "0.01,600.0,0.01,or_greater,exp,suffix:s"), "set_lifetime", "get_lifetime");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "one_shot"), "set_one_shot", "get_one_shot");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "preprocess", PROPERTY_HINT_RANGE, "0.00,600.0,0.01,exp,suffix:s"), "set_pre_process_time", "get_pre_process_time");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "speed_scale", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_speed_scale", "get_speed_scale");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "explosiveness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_explosiveness_ratio", "get_explosiveness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_randomness_ratio", "get_randomness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lifetime_randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_lifetime_randomness", "get_lifetime_randomness");
ADD_PROPERTY(PropertyInfo(Variant::INT, "fixed_fps", PROPERTY_HINT_RANGE, "0,1000,1,suffix:FPS"), "set_fixed_fps", "get_fixed_fps");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "fract_delta"), "set_fractional_delta", "get_fractional_delta");
ADD_GROUP("Drawing", "");
ADD_PROPERTY(PropertyInfo(Variant::AABB, "visibility_aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_visibility_aabb", "get_visibility_aabb");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "local_coords"), "set_use_local_coordinates", "get_use_local_coordinates");
ADD_PROPERTY(PropertyInfo(Variant::INT, "draw_order", PROPERTY_HINT_ENUM, "Index,Lifetime,View Depth"), "set_draw_order", "get_draw_order");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
BIND_ENUM_CONSTANT(DRAW_ORDER_INDEX);
BIND_ENUM_CONSTANT(DRAW_ORDER_LIFETIME);
BIND_ENUM_CONSTANT(DRAW_ORDER_VIEW_DEPTH);
////////////////////////////////
ClassDB::bind_method(D_METHOD("set_direction", "direction"), &CPUParticles3D::set_direction);
ClassDB::bind_method(D_METHOD("get_direction"), &CPUParticles3D::get_direction);
ClassDB::bind_method(D_METHOD("set_spread", "degrees"), &CPUParticles3D::set_spread);
ClassDB::bind_method(D_METHOD("get_spread"), &CPUParticles3D::get_spread);
ClassDB::bind_method(D_METHOD("set_flatness", "amount"), &CPUParticles3D::set_flatness);
ClassDB::bind_method(D_METHOD("get_flatness"), &CPUParticles3D::get_flatness);
ClassDB::bind_method(D_METHOD("set_param_min", "param", "value"), &CPUParticles3D::set_param_min);
ClassDB::bind_method(D_METHOD("get_param_min", "param"), &CPUParticles3D::get_param_min);
ClassDB::bind_method(D_METHOD("set_param_max", "param", "value"), &CPUParticles3D::set_param_max);
ClassDB::bind_method(D_METHOD("get_param_max", "param"), &CPUParticles3D::get_param_max);
ClassDB::bind_method(D_METHOD("set_param_curve", "param", "curve"), &CPUParticles3D::set_param_curve);
ClassDB::bind_method(D_METHOD("get_param_curve", "param"), &CPUParticles3D::get_param_curve);
ClassDB::bind_method(D_METHOD("set_color", "color"), &CPUParticles3D::set_color);
ClassDB::bind_method(D_METHOD("get_color"), &CPUParticles3D::get_color);
ClassDB::bind_method(D_METHOD("set_color_ramp", "ramp"), &CPUParticles3D::set_color_ramp);
ClassDB::bind_method(D_METHOD("get_color_ramp"), &CPUParticles3D::get_color_ramp);
ClassDB::bind_method(D_METHOD("set_color_initial_ramp", "ramp"), &CPUParticles3D::set_color_initial_ramp);
ClassDB::bind_method(D_METHOD("get_color_initial_ramp"), &CPUParticles3D::get_color_initial_ramp);
ClassDB::bind_method(D_METHOD("set_particle_flag", "particle_flag", "enable"), &CPUParticles3D::set_particle_flag);
ClassDB::bind_method(D_METHOD("get_particle_flag", "particle_flag"), &CPUParticles3D::get_particle_flag);
ClassDB::bind_method(D_METHOD("set_emission_shape", "shape"), &CPUParticles3D::set_emission_shape);
ClassDB::bind_method(D_METHOD("get_emission_shape"), &CPUParticles3D::get_emission_shape);
ClassDB::bind_method(D_METHOD("set_emission_sphere_radius", "radius"), &CPUParticles3D::set_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("get_emission_sphere_radius"), &CPUParticles3D::get_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("set_emission_box_extents", "extents"), &CPUParticles3D::set_emission_box_extents);
ClassDB::bind_method(D_METHOD("get_emission_box_extents"), &CPUParticles3D::get_emission_box_extents);
ClassDB::bind_method(D_METHOD("set_emission_points", "array"), &CPUParticles3D::set_emission_points);
ClassDB::bind_method(D_METHOD("get_emission_points"), &CPUParticles3D::get_emission_points);
ClassDB::bind_method(D_METHOD("set_emission_normals", "array"), &CPUParticles3D::set_emission_normals);
ClassDB::bind_method(D_METHOD("get_emission_normals"), &CPUParticles3D::get_emission_normals);
ClassDB::bind_method(D_METHOD("set_emission_colors", "array"), &CPUParticles3D::set_emission_colors);
ClassDB::bind_method(D_METHOD("get_emission_colors"), &CPUParticles3D::get_emission_colors);
ClassDB::bind_method(D_METHOD("set_emission_ring_axis", "axis"), &CPUParticles3D::set_emission_ring_axis);
ClassDB::bind_method(D_METHOD("get_emission_ring_axis"), &CPUParticles3D::get_emission_ring_axis);
ClassDB::bind_method(D_METHOD("set_emission_ring_height", "height"), &CPUParticles3D::set_emission_ring_height);
ClassDB::bind_method(D_METHOD("get_emission_ring_height"), &CPUParticles3D::get_emission_ring_height);
ClassDB::bind_method(D_METHOD("set_emission_ring_radius", "radius"), &CPUParticles3D::set_emission_ring_radius);
ClassDB::bind_method(D_METHOD("get_emission_ring_radius"), &CPUParticles3D::get_emission_ring_radius);
ClassDB::bind_method(D_METHOD("set_emission_ring_inner_radius", "inner_radius"), &CPUParticles3D::set_emission_ring_inner_radius);
ClassDB::bind_method(D_METHOD("get_emission_ring_inner_radius"), &CPUParticles3D::get_emission_ring_inner_radius);
ClassDB::bind_method(D_METHOD("get_gravity"), &CPUParticles3D::get_gravity);
ClassDB::bind_method(D_METHOD("set_gravity", "accel_vec"), &CPUParticles3D::set_gravity);
ClassDB::bind_method(D_METHOD("get_split_scale"), &CPUParticles3D::get_split_scale);
ClassDB::bind_method(D_METHOD("set_split_scale", "split_scale"), &CPUParticles3D::set_split_scale);
ClassDB::bind_method(D_METHOD("get_scale_curve_x"), &CPUParticles3D::get_scale_curve_x);
ClassDB::bind_method(D_METHOD("set_scale_curve_x", "scale_curve"), &CPUParticles3D::set_scale_curve_x);
ClassDB::bind_method(D_METHOD("get_scale_curve_y"), &CPUParticles3D::get_scale_curve_y);
ClassDB::bind_method(D_METHOD("set_scale_curve_y", "scale_curve"), &CPUParticles3D::set_scale_curve_y);
ClassDB::bind_method(D_METHOD("get_scale_curve_z"), &CPUParticles3D::get_scale_curve_z);
ClassDB::bind_method(D_METHOD("set_scale_curve_z", "scale_curve"), &CPUParticles3D::set_scale_curve_z);
ClassDB::bind_method(D_METHOD("convert_from_particles", "particles"), &CPUParticles3D::convert_from_particles);
ADD_SIGNAL(MethodInfo("finished"));
ADD_GROUP("Emission Shape", "emission_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_shape", PROPERTY_HINT_ENUM, "Point,Sphere,Sphere Surface,Box,Points,Directed Points,Ring", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), "set_emission_shape", "get_emission_shape");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_sphere_radius", PROPERTY_HINT_RANGE, "0.01,128,0.01"), "set_emission_sphere_radius", "get_emission_sphere_radius");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_box_extents"), "set_emission_box_extents", "get_emission_box_extents");
ADD_PROPERTY(PropertyInfo(Variant::PACKED_VECTOR3_ARRAY, "emission_points"), "set_emission_points", "get_emission_points");
ADD_PROPERTY(PropertyInfo(Variant::PACKED_VECTOR3_ARRAY, "emission_normals"), "set_emission_normals", "get_emission_normals");
ADD_PROPERTY(PropertyInfo(Variant::PACKED_COLOR_ARRAY, "emission_colors"), "set_emission_colors", "get_emission_colors");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_ring_axis"), "set_emission_ring_axis", "get_emission_ring_axis");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_ring_height"), "set_emission_ring_height", "get_emission_ring_height");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_ring_radius"), "set_emission_ring_radius", "get_emission_ring_radius");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "emission_ring_inner_radius"), "set_emission_ring_inner_radius", "get_emission_ring_inner_radius");
ADD_GROUP("Particle Flags", "particle_flag_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_align_y"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_rotate_y"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_ROTATE_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "particle_flag_disable_z"), "set_particle_flag", "get_particle_flag", PARTICLE_FLAG_DISABLE_Z);
ADD_GROUP("Direction", "");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "direction"), "set_direction", "get_direction");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "spread", PROPERTY_HINT_RANGE, "0,180,0.01"), "set_spread", "get_spread");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "flatness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_flatness", "get_flatness");
ADD_GROUP("Gravity", "");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "gravity"), "set_gravity", "get_gravity");
ADD_GROUP("Initial Velocity", "initial_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "initial_velocity_min", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param_min", "get_param_min", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "initial_velocity_max", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param_max", "get_param_max", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_GROUP("Angular Velocity", "angular_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angular_velocity_min", PROPERTY_HINT_RANGE, "-720,720,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angular_velocity_max", PROPERTY_HINT_RANGE, "-720,720,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGULAR_VELOCITY);
ADD_GROUP("Orbit Velocity", "orbit_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "orbit_velocity_min", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "orbit_velocity_max", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ORBIT_VELOCITY);
ADD_GROUP("Linear Accel", "linear_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "linear_accel_min", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "linear_accel_max", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "linear_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_LINEAR_ACCEL);
ADD_GROUP("Radial Accel", "radial_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "radial_accel_min", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "radial_accel_max", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "radial_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_RADIAL_ACCEL);
ADD_GROUP("Tangential Accel", "tangential_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "tangential_accel_min", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_min", "get_param_min", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "tangential_accel_max", PROPERTY_HINT_RANGE, "-100,100,0.01,or_less,or_greater"), "set_param_max", "get_param_max", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "tangential_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_TANGENTIAL_ACCEL);
ADD_GROUP("Damping", "");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "damping_min", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_param_min", "get_param_min", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "damping_max", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater"), "set_param_max", "get_param_max", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "damping_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_DAMPING);
ADD_GROUP("Angle", "");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angle_min", PROPERTY_HINT_RANGE, "-720,720,0.1,or_less,or_greater,degrees"), "set_param_min", "get_param_min", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "angle_max", PROPERTY_HINT_RANGE, "-720,720,0.1,or_less,or_greater,degrees"), "set_param_max", "get_param_max", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angle_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGLE);
ADD_GROUP("Scale", "");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "scale_amount_min", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param_min", "get_param_min", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "scale_amount_max", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param_max", "get_param_max", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "scale_amount_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_SCALE);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "split_scale"), "set_split_scale", "get_split_scale");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "scale_curve_x", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_scale_curve_x", "get_scale_curve_x");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "scale_curve_y", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_scale_curve_y", "get_scale_curve_y");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "scale_curve_z", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_scale_curve_z", "get_scale_curve_z");
ADD_GROUP("Color", "");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "color"), "set_color", "get_color");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_ramp", PROPERTY_HINT_RESOURCE_TYPE, "Gradient"), "set_color_ramp", "get_color_ramp");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_initial_ramp", PROPERTY_HINT_RESOURCE_TYPE, "Gradient"), "set_color_initial_ramp", "get_color_initial_ramp");
ADD_GROUP("Hue Variation", "hue_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "hue_variation_min", PROPERTY_HINT_RANGE, "-1,1,0.01"), "set_param_min", "get_param_min", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "hue_variation_max", PROPERTY_HINT_RANGE, "-1,1,0.01"), "set_param_max", "get_param_max", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "hue_variation_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_HUE_VARIATION);
ADD_GROUP("Animation", "anim_");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_speed_min", PROPERTY_HINT_RANGE, "0,128,0.01,or_greater,or_less"), "set_param_min", "get_param_min", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_speed_max", PROPERTY_HINT_RANGE, "0,128,0.01,or_greater,or_less"), "set_param_max", "get_param_max", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_speed_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_offset_min", PROPERTY_HINT_RANGE, "0,1,0.0001"), "set_param_min", "get_param_min", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "anim_offset_max", PROPERTY_HINT_RANGE, "0,1,0.0001"), "set_param_max", "get_param_max", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_offset_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_OFFSET);
BIND_ENUM_CONSTANT(PARAM_INITIAL_LINEAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ANGULAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_LINEAR_ACCEL);
BIND_ENUM_CONSTANT(PARAM_RADIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_TANGENTIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_DAMPING);
BIND_ENUM_CONSTANT(PARAM_ANGLE);
BIND_ENUM_CONSTANT(PARAM_SCALE);
BIND_ENUM_CONSTANT(PARAM_HUE_VARIATION);
BIND_ENUM_CONSTANT(PARAM_ANIM_SPEED);
BIND_ENUM_CONSTANT(PARAM_ANIM_OFFSET);
BIND_ENUM_CONSTANT(PARAM_MAX);
BIND_ENUM_CONSTANT(PARTICLE_FLAG_ALIGN_Y_TO_VELOCITY);
BIND_ENUM_CONSTANT(PARTICLE_FLAG_ROTATE_Y);
BIND_ENUM_CONSTANT(PARTICLE_FLAG_DISABLE_Z);
BIND_ENUM_CONSTANT(PARTICLE_FLAG_MAX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE_SURFACE);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_BOX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINTS);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_DIRECTED_POINTS);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_RING);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_MAX);
}
CPUParticles3D::CPUParticles3D() {
set_notify_transform(true);
multimesh = RenderingServer::get_singleton()->multimesh_create();
RenderingServer::get_singleton()->multimesh_set_visible_instances(multimesh, 0);
set_base(multimesh);
set_emitting(true);
set_amount(8);
set_param_min(PARAM_INITIAL_LINEAR_VELOCITY, 0);
set_param_min(PARAM_ANGULAR_VELOCITY, 0);
set_param_min(PARAM_ORBIT_VELOCITY, 0);
set_param_min(PARAM_LINEAR_ACCEL, 0);
set_param_min(PARAM_RADIAL_ACCEL, 0);
set_param_min(PARAM_TANGENTIAL_ACCEL, 0);
set_param_min(PARAM_DAMPING, 0);
set_param_min(PARAM_ANGLE, 0);
set_param_min(PARAM_SCALE, 1);
set_param_min(PARAM_HUE_VARIATION, 0);
set_param_min(PARAM_ANIM_SPEED, 0);
set_param_min(PARAM_ANIM_OFFSET, 0);
set_param_max(PARAM_INITIAL_LINEAR_VELOCITY, 0);
set_param_max(PARAM_ANGULAR_VELOCITY, 0);
set_param_max(PARAM_ORBIT_VELOCITY, 0);
set_param_max(PARAM_LINEAR_ACCEL, 0);
set_param_max(PARAM_RADIAL_ACCEL, 0);
set_param_max(PARAM_TANGENTIAL_ACCEL, 0);
set_param_max(PARAM_DAMPING, 0);
set_param_max(PARAM_ANGLE, 0);
set_param_max(PARAM_SCALE, 1);
set_param_max(PARAM_HUE_VARIATION, 0);
set_param_max(PARAM_ANIM_SPEED, 0);
set_param_max(PARAM_ANIM_OFFSET, 0);
set_emission_shape(EMISSION_SHAPE_POINT);
set_emission_sphere_radius(1);
set_emission_box_extents(Vector3(1, 1, 1));
set_emission_ring_axis(Vector3(0, 0, 1.0));
set_emission_ring_height(1);
set_emission_ring_radius(1);
set_emission_ring_inner_radius(0);
set_gravity(Vector3(0, -9.8, 0));
for (int i = 0; i < PARTICLE_FLAG_MAX; i++) {
particle_flags[i] = false;
}
set_color(Color(1, 1, 1, 1));
}
CPUParticles3D::~CPUParticles3D() {
ERR_FAIL_NULL(RenderingServer::get_singleton());
RS::get_singleton()->free(multimesh);
}