virtualx-engine/modules/fbx/tools/import_utils.cpp
reduz d03b7fbe09 Refactored Node3D rotation modes
* Made the Basis euler orders indexed via enum.
* Node3D has a new rotation_order property to choose Euler rotation order.
* Node3D has also a rotation_mode property to choose between Euler, Quaternion and Basis

Exposing these modes as well as the order makes Godot a lot friendlier for animators, which can choose the best way to interpolate rotations.
The new *Basis* mode makes the (exposed) transform property obsolete, so it was removed (can still be accessed by code of course).
2021-10-25 14:34:00 -03:00

151 lines
6.3 KiB
C++

/*************************************************************************/
/* import_utils.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "import_utils.h"
Vector3 ImportUtils::deg2rad(const Vector3 &p_rotation) {
return p_rotation / 180.0 * Math_PI;
}
Vector3 ImportUtils::rad2deg(const Vector3 &p_rotation) {
return p_rotation / Math_PI * 180.0;
}
Basis ImportUtils::EulerToBasis(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation) {
Basis ret;
// FBX is using intrinsic euler, we can convert intrinsic to extrinsic (the one used in godot
// by simply invert its order: https://www.cs.utexas.edu/~theshark/courses/cs354/lectures/cs354-14.pdf
switch (mode) {
case FBXDocParser::Model::RotOrder_EulerXYZ:
ret.set_euler(p_rotation, Basis::EULER_ORDER_XYZ);
break;
case FBXDocParser::Model::RotOrder_EulerXZY:
ret.set_euler(p_rotation, Basis::EULER_ORDER_XZY);
break;
case FBXDocParser::Model::RotOrder_EulerYZX:
ret.set_euler(p_rotation, Basis::EULER_ORDER_YZX);
break;
case FBXDocParser::Model::RotOrder_EulerYXZ:
ret.set_euler(p_rotation, Basis::EULER_ORDER_YXZ);
break;
case FBXDocParser::Model::RotOrder_EulerZXY:
ret.set_euler(p_rotation, Basis::EULER_ORDER_ZXY);
break;
case FBXDocParser::Model::RotOrder_EulerZYX:
ret.set_euler(p_rotation, Basis::EULER_ORDER_ZYX);
break;
case FBXDocParser::Model::RotOrder_SphericXYZ:
// TODO do this.
break;
default:
// If you land here, Please integrate all enums.
CRASH_NOW_MSG("This is not unreachable.");
}
return ret;
}
Quaternion ImportUtils::EulerToQuaternion(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation) {
return ImportUtils::EulerToBasis(mode, p_rotation);
}
Vector3 ImportUtils::BasisToEuler(FBXDocParser::Model::RotOrder mode, const Basis &p_rotation) {
// FBX is using intrinsic euler, we can convert intrinsic to extrinsic (the one used in godot
// by simply invert its order: https://www.cs.utexas.edu/~theshark/courses/cs354/lectures/cs354-14.pdf
switch (mode) {
case FBXDocParser::Model::RotOrder_EulerXYZ:
return p_rotation.get_euler(Basis::EULER_ORDER_XYZ);
case FBXDocParser::Model::RotOrder_EulerXZY:
return p_rotation.get_euler(Basis::EULER_ORDER_XZY);
case FBXDocParser::Model::RotOrder_EulerYZX:
return p_rotation.get_euler(Basis::EULER_ORDER_YZX);
case FBXDocParser::Model::RotOrder_EulerYXZ:
return p_rotation.get_euler(Basis::EULER_ORDER_YXZ);
case FBXDocParser::Model::RotOrder_EulerZXY:
return p_rotation.get_euler(Basis::EULER_ORDER_ZXY);
case FBXDocParser::Model::RotOrder_EulerZYX:
return p_rotation.get_euler(Basis::EULER_ORDER_ZYX);
case FBXDocParser::Model::RotOrder_SphericXYZ:
// TODO
return Vector3();
default:
// If you land here, Please integrate all enums.
CRASH_NOW_MSG("This is not unreachable.");
return Vector3();
}
}
Vector3 ImportUtils::QuaternionToEuler(FBXDocParser::Model::RotOrder mode, const Quaternion &p_rotation) {
return BasisToEuler(mode, p_rotation);
}
Transform3D get_unscaled_transform(const Transform3D &p_initial, real_t p_scale) {
Transform3D unscaled = Transform3D(p_initial.basis, p_initial.origin * p_scale);
ERR_FAIL_COND_V_MSG(unscaled.basis.determinant() == 0, Transform3D(), "det is zero unscaled?");
return unscaled;
}
Vector3 get_poly_normal(const std::vector<Vector3> &p_vertices) {
ERR_FAIL_COND_V_MSG(p_vertices.size() < 3, Vector3(0, 0, 0), "At least 3 vertices are necessary");
// Using long double to make sure that normal is computed for even really tiny objects.
typedef long double ldouble;
ldouble x = 0.0;
ldouble y = 0.0;
ldouble z = 0.0;
for (size_t i = 0; i < p_vertices.size(); i += 1) {
const Vector3 current = p_vertices[i];
const Vector3 next = p_vertices[(i + 1) % p_vertices.size()];
x += (ldouble(current.y) - ldouble(next.y)) * (ldouble(current.z) + ldouble(next.z));
y += (ldouble(current.z) - ldouble(next.z)) * (ldouble(current.x) + ldouble(next.x));
z += (ldouble(current.x) - ldouble(next.x)) * (ldouble(current.y) + ldouble(next.y));
}
const ldouble l2 = x * x + y * y + z * z;
if (l2 == 0.0) {
return (p_vertices[0] - p_vertices[1]).normalized().cross((p_vertices[0] - p_vertices[2]).normalized()).normalized();
} else {
const double l = Math::sqrt(double(l2));
return Vector3(x / l, y / l, z / l);
}
}