virtualx-engine/scene/resources/3d/importer_mesh.cpp
Rémi Verschelde 78935cad95
Merge pull request #94954 from raulsntos/mark-internal-properties
Mark underscored properties as internal
2024-08-28 00:12:42 +02:00

1422 lines
50 KiB
C++

/**************************************************************************/
/* importer_mesh.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "importer_mesh.h"
#include "core/io/marshalls.h"
#include "core/math/convex_hull.h"
#include "core/math/random_pcg.h"
#include "core/math/static_raycaster.h"
#include "scene/resources/surface_tool.h"
#include <cstdint>
void ImporterMesh::Surface::split_normals(const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) {
_split_normals(arrays, p_indices, p_normals);
for (BlendShape &blend_shape : blend_shape_data) {
_split_normals(blend_shape.arrays, p_indices, p_normals);
}
}
void ImporterMesh::Surface::_split_normals(Array &r_arrays, const LocalVector<int> &p_indices, const LocalVector<Vector3> &p_normals) {
ERR_FAIL_COND(r_arrays.size() != RS::ARRAY_MAX);
const PackedVector3Array &vertices = r_arrays[RS::ARRAY_VERTEX];
int current_vertex_count = vertices.size();
int new_vertex_count = p_indices.size();
int final_vertex_count = current_vertex_count + new_vertex_count;
const int *indices_ptr = p_indices.ptr();
for (int i = 0; i < r_arrays.size(); i++) {
if (i == RS::ARRAY_INDEX) {
continue;
}
if (r_arrays[i].get_type() == Variant::NIL) {
continue;
}
switch (r_arrays[i].get_type()) {
case Variant::PACKED_VECTOR3_ARRAY: {
PackedVector3Array data = r_arrays[i];
data.resize(final_vertex_count);
Vector3 *data_ptr = data.ptrw();
if (i == RS::ARRAY_NORMAL) {
const Vector3 *normals_ptr = p_normals.ptr();
memcpy(&data_ptr[current_vertex_count], normals_ptr, sizeof(Vector3) * new_vertex_count);
} else {
for (int j = 0; j < new_vertex_count; j++) {
data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
}
}
r_arrays[i] = data;
} break;
case Variant::PACKED_VECTOR2_ARRAY: {
PackedVector2Array data = r_arrays[i];
data.resize(final_vertex_count);
Vector2 *data_ptr = data.ptrw();
for (int j = 0; j < new_vertex_count; j++) {
data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
}
r_arrays[i] = data;
} break;
case Variant::PACKED_FLOAT32_ARRAY: {
PackedFloat32Array data = r_arrays[i];
int elements = data.size() / current_vertex_count;
data.resize(final_vertex_count * elements);
float *data_ptr = data.ptrw();
for (int j = 0; j < new_vertex_count; j++) {
memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(float) * elements);
}
r_arrays[i] = data;
} break;
case Variant::PACKED_INT32_ARRAY: {
PackedInt32Array data = r_arrays[i];
int elements = data.size() / current_vertex_count;
data.resize(final_vertex_count * elements);
int32_t *data_ptr = data.ptrw();
for (int j = 0; j < new_vertex_count; j++) {
memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(int32_t) * elements);
}
r_arrays[i] = data;
} break;
case Variant::PACKED_BYTE_ARRAY: {
PackedByteArray data = r_arrays[i];
int elements = data.size() / current_vertex_count;
data.resize(final_vertex_count * elements);
uint8_t *data_ptr = data.ptrw();
for (int j = 0; j < new_vertex_count; j++) {
memcpy(&data_ptr[(current_vertex_count + j) * elements], &data_ptr[indices_ptr[j] * elements], sizeof(uint8_t) * elements);
}
r_arrays[i] = data;
} break;
case Variant::PACKED_COLOR_ARRAY: {
PackedColorArray data = r_arrays[i];
data.resize(final_vertex_count);
Color *data_ptr = data.ptrw();
for (int j = 0; j < new_vertex_count; j++) {
data_ptr[current_vertex_count + j] = data_ptr[indices_ptr[j]];
}
r_arrays[i] = data;
} break;
default: {
ERR_FAIL_MSG("Unhandled array type.");
} break;
}
}
}
void ImporterMesh::add_blend_shape(const String &p_name) {
ERR_FAIL_COND(surfaces.size() > 0);
blend_shapes.push_back(p_name);
}
int ImporterMesh::get_blend_shape_count() const {
return blend_shapes.size();
}
String ImporterMesh::get_blend_shape_name(int p_blend_shape) const {
ERR_FAIL_INDEX_V(p_blend_shape, blend_shapes.size(), String());
return blend_shapes[p_blend_shape];
}
void ImporterMesh::set_blend_shape_mode(Mesh::BlendShapeMode p_blend_shape_mode) {
blend_shape_mode = p_blend_shape_mode;
}
Mesh::BlendShapeMode ImporterMesh::get_blend_shape_mode() const {
return blend_shape_mode;
}
void ImporterMesh::add_surface(Mesh::PrimitiveType p_primitive, const Array &p_arrays, const TypedArray<Array> &p_blend_shapes, const Dictionary &p_lods, const Ref<Material> &p_material, const String &p_name, const uint64_t p_flags) {
ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
ERR_FAIL_COND(p_arrays.size() != Mesh::ARRAY_MAX);
Surface s;
s.primitive = p_primitive;
s.arrays = p_arrays;
s.name = p_name;
s.flags = p_flags;
Vector<Vector3> vertex_array = p_arrays[Mesh::ARRAY_VERTEX];
int vertex_count = vertex_array.size();
ERR_FAIL_COND(vertex_count == 0);
for (int i = 0; i < blend_shapes.size(); i++) {
Array bsdata = p_blend_shapes[i];
ERR_FAIL_COND(bsdata.size() != Mesh::ARRAY_MAX);
Vector<Vector3> vertex_data = bsdata[Mesh::ARRAY_VERTEX];
ERR_FAIL_COND(vertex_data.size() != vertex_count);
Surface::BlendShape bs;
bs.arrays = bsdata;
s.blend_shape_data.push_back(bs);
}
List<Variant> lods;
p_lods.get_key_list(&lods);
for (const Variant &E : lods) {
ERR_CONTINUE(!E.is_num());
Surface::LOD lod;
lod.distance = E;
lod.indices = p_lods[E];
ERR_CONTINUE(lod.indices.is_empty());
s.lods.push_back(lod);
}
s.material = p_material;
surfaces.push_back(s);
mesh.unref();
}
int ImporterMesh::get_surface_count() const {
return surfaces.size();
}
Mesh::PrimitiveType ImporterMesh::get_surface_primitive_type(int p_surface) {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Mesh::PRIMITIVE_MAX);
return surfaces[p_surface].primitive;
}
Array ImporterMesh::get_surface_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return surfaces[p_surface].arrays;
}
String ImporterMesh::get_surface_name(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), String());
return surfaces[p_surface].name;
}
void ImporterMesh::set_surface_name(int p_surface, const String &p_name) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
surfaces.write[p_surface].name = p_name;
mesh.unref();
}
Array ImporterMesh::get_surface_blend_shape_arrays(int p_surface, int p_blend_shape) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
ERR_FAIL_INDEX_V(p_blend_shape, surfaces[p_surface].blend_shape_data.size(), Array());
return surfaces[p_surface].blend_shape_data[p_blend_shape].arrays;
}
int ImporterMesh::get_surface_lod_count(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
return surfaces[p_surface].lods.size();
}
Vector<int> ImporterMesh::get_surface_lod_indices(int p_surface, int p_lod) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Vector<int>());
ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), Vector<int>());
return surfaces[p_surface].lods[p_lod].indices;
}
float ImporterMesh::get_surface_lod_size(int p_surface, int p_lod) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
ERR_FAIL_INDEX_V(p_lod, surfaces[p_surface].lods.size(), 0);
return surfaces[p_surface].lods[p_lod].distance;
}
uint64_t ImporterMesh::get_surface_format(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), 0);
return surfaces[p_surface].flags;
}
Ref<Material> ImporterMesh::get_surface_material(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Ref<Material>());
return surfaces[p_surface].material;
}
void ImporterMesh::set_surface_material(int p_surface, const Ref<Material> &p_material) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
surfaces.write[p_surface].material = p_material;
mesh.unref();
}
void ImporterMesh::optimize_indices_for_cache() {
if (!SurfaceTool::optimize_vertex_cache_func) {
return;
}
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX];
unsigned int index_count = indices.size();
unsigned int vertex_count = vertices.size();
if (index_count == 0) {
continue;
}
int *indices_ptr = indices.ptrw();
SurfaceTool::optimize_vertex_cache_func((unsigned int *)indices_ptr, (const unsigned int *)indices_ptr, index_count, vertex_count);
surfaces.write[i].arrays[RS::ARRAY_INDEX] = indices;
}
}
#define VERTEX_SKIN_FUNC(bone_count, vert_idx, read_array, write_array, transform_array, bone_array, weight_array) \
Vector3 transformed_vert; \
for (unsigned int weight_idx = 0; weight_idx < bone_count; weight_idx++) { \
int bone_idx = bone_array[vert_idx * bone_count + weight_idx]; \
float w = weight_array[vert_idx * bone_count + weight_idx]; \
if (w < FLT_EPSILON) { \
continue; \
} \
ERR_FAIL_INDEX(bone_idx, static_cast<int>(transform_array.size())); \
transformed_vert += transform_array[bone_idx].xform(read_array[vert_idx]) * w; \
} \
write_array[vert_idx] = transformed_vert;
void ImporterMesh::generate_lods(float p_normal_merge_angle, float p_normal_split_angle, Array p_bone_transform_array, bool p_raycast_normals) {
if (!SurfaceTool::simplify_scale_func) {
return;
}
if (!SurfaceTool::simplify_with_attrib_func) {
return;
}
if (!SurfaceTool::optimize_vertex_cache_func) {
return;
}
LocalVector<Transform3D> bone_transform_vector;
for (int i = 0; i < p_bone_transform_array.size(); i++) {
ERR_FAIL_COND(p_bone_transform_array[i].get_type() != Variant::TRANSFORM3D);
bone_transform_vector.push_back(p_bone_transform_array[i]);
}
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].primitive != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
surfaces.write[i].lods.clear();
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
PackedInt32Array indices = surfaces[i].arrays[RS::ARRAY_INDEX];
Vector<Vector3> normals = surfaces[i].arrays[RS::ARRAY_NORMAL];
Vector<float> tangents = surfaces[i].arrays[RS::ARRAY_TANGENT];
Vector<Vector2> uvs = surfaces[i].arrays[RS::ARRAY_TEX_UV];
Vector<Vector2> uv2s = surfaces[i].arrays[RS::ARRAY_TEX_UV2];
Vector<int> bones = surfaces[i].arrays[RS::ARRAY_BONES];
Vector<float> weights = surfaces[i].arrays[RS::ARRAY_WEIGHTS];
unsigned int index_count = indices.size();
unsigned int vertex_count = vertices.size();
if (index_count == 0) {
continue; //no lods if no indices
}
const Vector3 *vertices_ptr = vertices.ptr();
const int *indices_ptr = indices.ptr();
if (normals.is_empty()) {
normals.resize(index_count);
Vector3 *n_ptr = normals.ptrw();
for (unsigned int j = 0; j < index_count; j += 3) {
const Vector3 &v0 = vertices_ptr[indices_ptr[j + 0]];
const Vector3 &v1 = vertices_ptr[indices_ptr[j + 1]];
const Vector3 &v2 = vertices_ptr[indices_ptr[j + 2]];
Vector3 n = vec3_cross(v0 - v2, v0 - v1).normalized();
n_ptr[j + 0] = n;
n_ptr[j + 1] = n;
n_ptr[j + 2] = n;
}
}
if (bones.size() > 0 && weights.size() && bone_transform_vector.size() > 0) {
Vector3 *vertices_ptrw = vertices.ptrw();
// Apply bone transforms to regular surface.
unsigned int bone_weight_length = surfaces[i].flags & Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS ? 8 : 4;
const int *bo = bones.ptr();
const float *we = weights.ptr();
for (unsigned int j = 0; j < vertex_count; j++) {
VERTEX_SKIN_FUNC(bone_weight_length, j, vertices_ptr, vertices_ptrw, bone_transform_vector, bo, we)
}
vertices_ptr = vertices.ptr();
}
float normal_merge_threshold = Math::cos(Math::deg_to_rad(p_normal_merge_angle));
float normal_pre_split_threshold = Math::cos(Math::deg_to_rad(MIN(180.0f, p_normal_split_angle * 2.0f)));
float normal_split_threshold = Math::cos(Math::deg_to_rad(p_normal_split_angle));
const Vector3 *normals_ptr = normals.ptr();
HashMap<Vector3, LocalVector<Pair<int, int>>> unique_vertices;
LocalVector<int> vertex_remap;
LocalVector<int> vertex_inverse_remap;
LocalVector<Vector3> merged_vertices;
LocalVector<Vector3> merged_normals;
LocalVector<int> merged_normals_counts;
const Vector2 *uvs_ptr = uvs.ptr();
const Vector2 *uv2s_ptr = uv2s.ptr();
const float *tangents_ptr = tangents.ptr();
for (unsigned int j = 0; j < vertex_count; j++) {
const Vector3 &v = vertices_ptr[j];
const Vector3 &n = normals_ptr[j];
HashMap<Vector3, LocalVector<Pair<int, int>>>::Iterator E = unique_vertices.find(v);
if (E) {
const LocalVector<Pair<int, int>> &close_verts = E->value;
bool found = false;
for (const Pair<int, int> &idx : close_verts) {
bool is_uvs_close = (!uvs_ptr || uvs_ptr[j].distance_squared_to(uvs_ptr[idx.second]) < CMP_EPSILON2);
bool is_uv2s_close = (!uv2s_ptr || uv2s_ptr[j].distance_squared_to(uv2s_ptr[idx.second]) < CMP_EPSILON2);
bool is_tang_aligned = !tangents_ptr || (tangents_ptr[j * 4 + 3] < 0) == (tangents_ptr[idx.second * 4 + 3] < 0);
ERR_FAIL_INDEX(idx.second, normals.size());
bool is_normals_close = normals[idx.second].dot(n) > normal_merge_threshold;
if (is_uvs_close && is_uv2s_close && is_normals_close && is_tang_aligned) {
vertex_remap.push_back(idx.first);
merged_normals[idx.first] += normals[idx.second];
merged_normals_counts[idx.first]++;
found = true;
break;
}
}
if (!found) {
int vcount = merged_vertices.size();
unique_vertices[v].push_back(Pair<int, int>(vcount, j));
vertex_inverse_remap.push_back(j);
merged_vertices.push_back(v);
vertex_remap.push_back(vcount);
merged_normals.push_back(normals_ptr[j]);
merged_normals_counts.push_back(1);
}
} else {
int vcount = merged_vertices.size();
unique_vertices[v] = LocalVector<Pair<int, int>>();
unique_vertices[v].push_back(Pair<int, int>(vcount, j));
vertex_inverse_remap.push_back(j);
merged_vertices.push_back(v);
vertex_remap.push_back(vcount);
merged_normals.push_back(normals_ptr[j]);
merged_normals_counts.push_back(1);
}
}
LocalVector<int> merged_indices;
merged_indices.resize(index_count);
for (unsigned int j = 0; j < index_count; j++) {
merged_indices[j] = vertex_remap[indices[j]];
}
unsigned int merged_vertex_count = merged_vertices.size();
const Vector3 *merged_vertices_ptr = merged_vertices.ptr();
const int32_t *merged_indices_ptr = merged_indices.ptr();
{
const int *counts_ptr = merged_normals_counts.ptr();
Vector3 *merged_normals_ptrw = merged_normals.ptr();
for (unsigned int j = 0; j < merged_vertex_count; j++) {
merged_normals_ptrw[j] /= counts_ptr[j];
}
}
const float normal_weights[3] = {
// Give some weight to normal preservation, may be worth exposing as an import setting
2.0f, 2.0f, 2.0f
};
Vector<float> merged_vertices_f32 = vector3_to_float32_array(merged_vertices_ptr, merged_vertex_count);
float scale = SurfaceTool::simplify_scale_func(merged_vertices_f32.ptr(), merged_vertex_count, sizeof(float) * 3);
unsigned int index_target = 12; // Start with the smallest target, 4 triangles
unsigned int last_index_count = 0;
// Only used for normal raycasting
int split_vertex_count = vertex_count;
LocalVector<Vector3> split_vertex_normals;
LocalVector<int> split_vertex_indices;
split_vertex_normals.reserve(index_count / 3);
split_vertex_indices.reserve(index_count / 3);
RandomPCG pcg;
pcg.seed(123456789); // Keep seed constant across imports
Ref<StaticRaycaster> raycaster = p_raycast_normals ? StaticRaycaster::create() : Ref<StaticRaycaster>();
if (raycaster.is_valid()) {
raycaster->add_mesh(vertices, indices, 0);
raycaster->commit();
}
const float max_mesh_error = FLT_MAX; // We don't want to limit by error, just by index target
float mesh_error = 0.0f;
while (index_target < index_count) {
PackedInt32Array new_indices;
new_indices.resize(index_count);
Vector<float> merged_normals_f32 = vector3_to_float32_array(merged_normals.ptr(), merged_normals.size());
const int simplify_options = SurfaceTool::SIMPLIFY_LOCK_BORDER;
size_t new_index_count = SurfaceTool::simplify_with_attrib_func(
(unsigned int *)new_indices.ptrw(),
(const uint32_t *)merged_indices_ptr, index_count,
merged_vertices_f32.ptr(), merged_vertex_count,
sizeof(float) * 3, // Vertex stride
merged_normals_f32.ptr(),
sizeof(float) * 3, // Attribute stride
normal_weights, 3,
index_target,
max_mesh_error,
simplify_options,
&mesh_error);
if (new_index_count < last_index_count * 1.5f) {
index_target = index_target * 1.5f;
continue;
}
if (new_index_count == 0 || (new_index_count >= (index_count * 0.75f))) {
break;
}
if (new_index_count > 5000000) {
// This limit theoretically shouldn't be needed, but it's here
// as an ad-hoc fix to prevent a crash with complex meshes.
// The crash still happens with limit of 6000000, but 5000000 works.
// In the future, identify what's causing that crash and fix it.
WARN_PRINT("Mesh LOD generation failed for mesh " + get_name() + " surface " + itos(i) + ", mesh is too complex. Some automatic LODs were not generated.");
break;
}
new_indices.resize(new_index_count);
{
int *ptrw = new_indices.ptrw();
for (unsigned int j = 0; j < new_index_count; j++) {
ptrw[j] = vertex_inverse_remap[ptrw[j]];
}
}
if (raycaster.is_valid()) {
LocalVector<LocalVector<int>> vertex_corners;
vertex_corners.resize(vertex_count);
int *ptrw = new_indices.ptrw();
for (unsigned int j = 0; j < new_index_count; j++) {
vertex_corners[ptrw[j]].push_back(j);
}
float error_factor = 1.0f / (scale * MAX(mesh_error, 0.15));
const float ray_bias = 0.05;
float ray_length = ray_bias + mesh_error * scale * 3.0f;
Vector<StaticRaycaster::Ray> rays;
LocalVector<Vector2> ray_uvs;
int32_t *new_indices_ptr = new_indices.ptrw();
int current_ray_count = 0;
for (unsigned int j = 0; j < new_index_count; j += 3) {
const Vector3 &v0 = vertices_ptr[new_indices_ptr[j + 0]];
const Vector3 &v1 = vertices_ptr[new_indices_ptr[j + 1]];
const Vector3 &v2 = vertices_ptr[new_indices_ptr[j + 2]];
Vector3 face_normal = vec3_cross(v0 - v2, v0 - v1);
float face_area = face_normal.length(); // Actually twice the face area, since it's the same error_factor on all faces, we don't care
if (!Math::is_finite(face_area) || face_area == 0) {
WARN_PRINT_ONCE("Ignoring face with non-finite normal in LOD generation.");
continue;
}
Vector3 dir = face_normal / face_area;
int ray_count = CLAMP(5.0 * face_area * error_factor, 16, 64);
rays.resize(current_ray_count + ray_count);
StaticRaycaster::Ray *rays_ptr = rays.ptrw();
ray_uvs.resize(current_ray_count + ray_count);
Vector2 *ray_uvs_ptr = ray_uvs.ptr();
for (int k = 0; k < ray_count; k++) {
float u = pcg.randf();
float v = pcg.randf();
if (u + v >= 1.0f) {
u = 1.0f - u;
v = 1.0f - v;
}
u = 0.9f * u + 0.05f / 3.0f; // Give barycentric coordinates some padding, we don't want to sample right on the edge
v = 0.9f * v + 0.05f / 3.0f; // v = (v - one_third) * 0.95f + one_third;
float w = 1.0f - u - v;
Vector3 org = v0 * w + v1 * u + v2 * v;
org -= dir * ray_bias;
rays_ptr[current_ray_count + k] = StaticRaycaster::Ray(org, dir, 0.0f, ray_length);
rays_ptr[current_ray_count + k].id = j / 3;
ray_uvs_ptr[current_ray_count + k] = Vector2(u, v);
}
current_ray_count += ray_count;
}
raycaster->intersect(rays);
LocalVector<Vector3> ray_normals;
LocalVector<real_t> ray_normal_weights;
ray_normals.resize(new_index_count);
ray_normal_weights.resize(new_index_count);
for (unsigned int j = 0; j < new_index_count; j++) {
ray_normal_weights[j] = 0.0f;
}
const StaticRaycaster::Ray *rp = rays.ptr();
for (int j = 0; j < rays.size(); j++) {
if (rp[j].geomID != 0) { // Ray missed
continue;
}
if (rp[j].normal.normalized().dot(rp[j].dir) > 0.0f) { // Hit a back face.
continue;
}
const float &u = rp[j].u;
const float &v = rp[j].v;
const float w = 1.0f - u - v;
const unsigned int &hit_tri_id = rp[j].primID;
const unsigned int &orig_tri_id = rp[j].id;
const Vector3 &n0 = normals_ptr[indices_ptr[hit_tri_id * 3 + 0]];
const Vector3 &n1 = normals_ptr[indices_ptr[hit_tri_id * 3 + 1]];
const Vector3 &n2 = normals_ptr[indices_ptr[hit_tri_id * 3 + 2]];
Vector3 normal = n0 * w + n1 * u + n2 * v;
Vector2 orig_uv = ray_uvs[j];
const real_t orig_bary[3] = { 1.0f - orig_uv.x - orig_uv.y, orig_uv.x, orig_uv.y };
for (int k = 0; k < 3; k++) {
int idx = orig_tri_id * 3 + k;
real_t weight = orig_bary[k];
ray_normals[idx] += normal * weight;
ray_normal_weights[idx] += weight;
}
}
for (unsigned int j = 0; j < new_index_count; j++) {
if (ray_normal_weights[j] < 1.0f) { // Not enough data, the new normal would be just a bad guess
ray_normals[j] = Vector3();
} else {
ray_normals[j] /= ray_normal_weights[j];
}
}
LocalVector<LocalVector<int>> normal_group_indices;
LocalVector<Vector3> normal_group_averages;
normal_group_indices.reserve(24);
normal_group_averages.reserve(24);
for (unsigned int j = 0; j < vertex_count; j++) {
const LocalVector<int> &corners = vertex_corners[j];
const Vector3 &vertex_normal = normals_ptr[j];
for (const int &corner_idx : corners) {
const Vector3 &ray_normal = ray_normals[corner_idx];
if (ray_normal.length_squared() < CMP_EPSILON2) {
continue;
}
bool found = false;
for (unsigned int l = 0; l < normal_group_indices.size(); l++) {
LocalVector<int> &group_indices = normal_group_indices[l];
Vector3 n = normal_group_averages[l] / group_indices.size();
if (n.dot(ray_normal) > normal_pre_split_threshold) {
found = true;
group_indices.push_back(corner_idx);
normal_group_averages[l] += ray_normal;
break;
}
}
if (!found) {
normal_group_indices.push_back({ corner_idx });
normal_group_averages.push_back(ray_normal);
}
}
for (unsigned int k = 0; k < normal_group_indices.size(); k++) {
LocalVector<int> &group_indices = normal_group_indices[k];
Vector3 n = normal_group_averages[k] / group_indices.size();
if (vertex_normal.dot(n) < normal_split_threshold) {
split_vertex_indices.push_back(j);
split_vertex_normals.push_back(n);
int new_idx = split_vertex_count++;
for (const int &index : group_indices) {
new_indices_ptr[index] = new_idx;
}
}
}
normal_group_indices.clear();
normal_group_averages.clear();
}
}
Surface::LOD lod;
lod.distance = MAX(mesh_error * scale, CMP_EPSILON2);
lod.indices = new_indices;
surfaces.write[i].lods.push_back(lod);
index_target = MAX(new_index_count, index_target) * 2;
last_index_count = new_index_count;
if (mesh_error == 0.0f) {
break;
}
}
if (raycaster.is_valid()) {
surfaces.write[i].split_normals(split_vertex_indices, split_vertex_normals);
}
surfaces.write[i].lods.sort_custom<Surface::LODComparator>();
for (int j = 0; j < surfaces.write[i].lods.size(); j++) {
Surface::LOD &lod = surfaces.write[i].lods.write[j];
unsigned int *lod_indices_ptr = (unsigned int *)lod.indices.ptrw();
SurfaceTool::optimize_vertex_cache_func(lod_indices_ptr, lod_indices_ptr, lod.indices.size(), split_vertex_count);
}
}
}
void ImporterMesh::_generate_lods_bind(float p_normal_merge_angle, float p_normal_split_angle, Array p_skin_pose_transform_array) {
generate_lods(p_normal_merge_angle, p_normal_split_angle, p_skin_pose_transform_array);
}
bool ImporterMesh::has_mesh() const {
return mesh.is_valid();
}
Ref<ArrayMesh> ImporterMesh::get_mesh(const Ref<ArrayMesh> &p_base) {
ERR_FAIL_COND_V(surfaces.is_empty(), Ref<ArrayMesh>());
if (mesh.is_null()) {
if (p_base.is_valid()) {
mesh = p_base;
}
if (mesh.is_null()) {
mesh.instantiate();
}
mesh->set_name(get_name());
if (has_meta("import_id")) {
mesh->set_meta("import_id", get_meta("import_id"));
}
for (int i = 0; i < blend_shapes.size(); i++) {
mesh->add_blend_shape(blend_shapes[i]);
}
mesh->set_blend_shape_mode(blend_shape_mode);
for (int i = 0; i < surfaces.size(); i++) {
Array bs_data;
if (surfaces[i].blend_shape_data.size()) {
for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
}
}
Dictionary lods;
if (surfaces[i].lods.size()) {
for (int j = 0; j < surfaces[i].lods.size(); j++) {
lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
}
}
mesh->add_surface_from_arrays(surfaces[i].primitive, surfaces[i].arrays, bs_data, lods, surfaces[i].flags);
if (surfaces[i].material.is_valid()) {
mesh->surface_set_material(mesh->get_surface_count() - 1, surfaces[i].material);
}
if (!surfaces[i].name.is_empty()) {
mesh->surface_set_name(mesh->get_surface_count() - 1, surfaces[i].name);
}
}
mesh->set_lightmap_size_hint(lightmap_size_hint);
if (shadow_mesh.is_valid()) {
Ref<ArrayMesh> shadow = shadow_mesh->get_mesh();
mesh->set_shadow_mesh(shadow);
}
}
return mesh;
}
void ImporterMesh::clear() {
surfaces.clear();
blend_shapes.clear();
mesh.unref();
}
void ImporterMesh::create_shadow_mesh() {
if (shadow_mesh.is_valid()) {
shadow_mesh.unref();
}
//no shadow mesh for blendshapes
if (blend_shapes.size() > 0) {
return;
}
//no shadow mesh for skeletons
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].arrays[RS::ARRAY_BONES].get_type() != Variant::NIL) {
return;
}
if (surfaces[i].arrays[RS::ARRAY_WEIGHTS].get_type() != Variant::NIL) {
return;
}
}
shadow_mesh.instantiate();
for (int i = 0; i < surfaces.size(); i++) {
LocalVector<int> vertex_remap;
Vector<Vector3> new_vertices;
Vector<Vector3> vertices = surfaces[i].arrays[RS::ARRAY_VERTEX];
int vertex_count = vertices.size();
{
HashMap<Vector3, int> unique_vertices;
const Vector3 *vptr = vertices.ptr();
for (int j = 0; j < vertex_count; j++) {
const Vector3 &v = vptr[j];
HashMap<Vector3, int>::Iterator E = unique_vertices.find(v);
if (E) {
vertex_remap.push_back(E->value);
} else {
int vcount = unique_vertices.size();
unique_vertices[v] = vcount;
vertex_remap.push_back(vcount);
new_vertices.push_back(v);
}
}
}
Array new_surface;
new_surface.resize(RS::ARRAY_MAX);
Dictionary lods;
// print_line("original vertex count: " + itos(vertices.size()) + " new vertex count: " + itos(new_vertices.size()));
new_surface[RS::ARRAY_VERTEX] = new_vertices;
Vector<int> indices = surfaces[i].arrays[RS::ARRAY_INDEX];
if (indices.size()) {
int index_count = indices.size();
const int *index_rptr = indices.ptr();
Vector<int> new_indices;
new_indices.resize(indices.size());
int *index_wptr = new_indices.ptrw();
for (int j = 0; j < index_count; j++) {
int index = index_rptr[j];
ERR_FAIL_INDEX(index, vertex_count);
index_wptr[j] = vertex_remap[index];
}
if (SurfaceTool::optimize_vertex_cache_func) {
SurfaceTool::optimize_vertex_cache_func((unsigned int *)index_wptr, (const unsigned int *)index_wptr, index_count, new_vertices.size());
}
new_surface[RS::ARRAY_INDEX] = new_indices;
// Make sure the same LODs as the full version are used.
// This makes it more coherent between rendered model and its shadows.
for (int j = 0; j < surfaces[i].lods.size(); j++) {
indices = surfaces[i].lods[j].indices;
index_count = indices.size();
index_rptr = indices.ptr();
new_indices.resize(indices.size());
index_wptr = new_indices.ptrw();
for (int k = 0; k < index_count; k++) {
int index = index_rptr[k];
ERR_FAIL_INDEX(index, vertex_count);
index_wptr[k] = vertex_remap[index];
}
if (SurfaceTool::optimize_vertex_cache_func) {
SurfaceTool::optimize_vertex_cache_func((unsigned int *)index_wptr, (const unsigned int *)index_wptr, index_count, new_vertices.size());
}
lods[surfaces[i].lods[j].distance] = new_indices;
}
}
shadow_mesh->add_surface(surfaces[i].primitive, new_surface, Array(), lods, Ref<Material>(), surfaces[i].name, surfaces[i].flags);
}
}
Ref<ImporterMesh> ImporterMesh::get_shadow_mesh() const {
return shadow_mesh;
}
void ImporterMesh::_set_data(const Dictionary &p_data) {
clear();
if (p_data.has("blend_shape_names")) {
blend_shapes = p_data["blend_shape_names"];
}
if (p_data.has("surfaces")) {
Array surface_arr = p_data["surfaces"];
for (int i = 0; i < surface_arr.size(); i++) {
Dictionary s = surface_arr[i];
ERR_CONTINUE(!s.has("primitive"));
ERR_CONTINUE(!s.has("arrays"));
Mesh::PrimitiveType prim = Mesh::PrimitiveType(int(s["primitive"]));
ERR_CONTINUE(prim >= Mesh::PRIMITIVE_MAX);
Array arr = s["arrays"];
Dictionary lods;
String surf_name;
if (s.has("name")) {
surf_name = s["name"];
}
if (s.has("lods")) {
lods = s["lods"];
}
Array b_shapes;
if (s.has("b_shapes")) {
b_shapes = s["b_shapes"];
}
Ref<Material> material;
if (s.has("material")) {
material = s["material"];
}
uint64_t flags = 0;
if (s.has("flags")) {
flags = s["flags"];
}
add_surface(prim, arr, b_shapes, lods, material, surf_name, flags);
}
}
}
Dictionary ImporterMesh::_get_data() const {
Dictionary data;
if (blend_shapes.size()) {
data["blend_shape_names"] = blend_shapes;
}
Array surface_arr;
for (int i = 0; i < surfaces.size(); i++) {
Dictionary d;
d["primitive"] = surfaces[i].primitive;
d["arrays"] = surfaces[i].arrays;
if (surfaces[i].blend_shape_data.size()) {
Array bs_data;
for (int j = 0; j < surfaces[i].blend_shape_data.size(); j++) {
bs_data.push_back(surfaces[i].blend_shape_data[j].arrays);
}
d["blend_shapes"] = bs_data;
}
if (surfaces[i].lods.size()) {
Dictionary lods;
for (int j = 0; j < surfaces[i].lods.size(); j++) {
lods[surfaces[i].lods[j].distance] = surfaces[i].lods[j].indices;
}
d["lods"] = lods;
}
if (surfaces[i].material.is_valid()) {
d["material"] = surfaces[i].material;
}
if (!surfaces[i].name.is_empty()) {
d["name"] = surfaces[i].name;
}
d["flags"] = surfaces[i].flags;
surface_arr.push_back(d);
}
data["surfaces"] = surface_arr;
return data;
}
Vector<Face3> ImporterMesh::get_faces() const {
Vector<Face3> faces;
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].primitive == Mesh::PRIMITIVE_TRIANGLES) {
Vector<Vector3> vertices = surfaces[i].arrays[Mesh::ARRAY_VERTEX];
Vector<int> indices = surfaces[i].arrays[Mesh::ARRAY_INDEX];
if (indices.size()) {
for (int j = 0; j < indices.size(); j += 3) {
Face3 f;
f.vertex[0] = vertices[indices[j + 0]];
f.vertex[1] = vertices[indices[j + 1]];
f.vertex[2] = vertices[indices[j + 2]];
faces.push_back(f);
}
} else {
for (int j = 0; j < vertices.size(); j += 3) {
Face3 f;
f.vertex[0] = vertices[j + 0];
f.vertex[1] = vertices[j + 1];
f.vertex[2] = vertices[j + 2];
faces.push_back(f);
}
}
}
}
return faces;
}
Vector<Ref<Shape3D>> ImporterMesh::convex_decompose(const Ref<MeshConvexDecompositionSettings> &p_settings) const {
ERR_FAIL_NULL_V(Mesh::convex_decomposition_function, Vector<Ref<Shape3D>>());
const Vector<Face3> faces = get_faces();
int face_count = faces.size();
Vector<Vector3> vertices;
uint32_t vertex_count = 0;
vertices.resize(face_count * 3);
Vector<uint32_t> indices;
indices.resize(face_count * 3);
{
HashMap<Vector3, uint32_t> vertex_map;
Vector3 *vertex_w = vertices.ptrw();
uint32_t *index_w = indices.ptrw();
for (int i = 0; i < face_count; i++) {
for (int j = 0; j < 3; j++) {
const Vector3 &vertex = faces[i].vertex[j];
HashMap<Vector3, uint32_t>::Iterator found_vertex = vertex_map.find(vertex);
uint32_t index;
if (found_vertex) {
index = found_vertex->value;
} else {
index = vertex_count++;
vertex_map[vertex] = index;
vertex_w[index] = vertex;
}
index_w[i * 3 + j] = index;
}
}
}
vertices.resize(vertex_count);
Vector<Vector<Vector3>> decomposed = Mesh::convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), face_count, p_settings, nullptr);
Vector<Ref<Shape3D>> ret;
for (int i = 0; i < decomposed.size(); i++) {
Ref<ConvexPolygonShape3D> shape;
shape.instantiate();
shape->set_points(decomposed[i]);
ret.push_back(shape);
}
return ret;
}
Ref<ConvexPolygonShape3D> ImporterMesh::create_convex_shape(bool p_clean, bool p_simplify) const {
if (p_simplify) {
Ref<MeshConvexDecompositionSettings> settings;
settings.instantiate();
settings->set_max_convex_hulls(1);
Vector<Ref<Shape3D>> decomposed = convex_decompose(settings);
if (decomposed.size() == 1) {
return decomposed[0];
} else {
ERR_PRINT("Convex shape simplification failed, falling back to simpler process.");
}
}
Vector<Vector3> vertices;
for (int i = 0; i < get_surface_count(); i++) {
Array a = get_surface_arrays(i);
ERR_FAIL_COND_V(a.is_empty(), Ref<ConvexPolygonShape3D>());
Vector<Vector3> v = a[Mesh::ARRAY_VERTEX];
vertices.append_array(v);
}
Ref<ConvexPolygonShape3D> shape = memnew(ConvexPolygonShape3D);
if (p_clean) {
Geometry3D::MeshData md;
Error err = ConvexHullComputer::convex_hull(vertices, md);
if (err == OK) {
shape->set_points(md.vertices);
return shape;
} else {
ERR_PRINT("Convex shape cleaning failed, falling back to simpler process.");
}
}
shape->set_points(vertices);
return shape;
}
Ref<ConcavePolygonShape3D> ImporterMesh::create_trimesh_shape() const {
Vector<Face3> faces = get_faces();
if (faces.size() == 0) {
return Ref<ConcavePolygonShape3D>();
}
Vector<Vector3> face_points;
face_points.resize(faces.size() * 3);
for (int i = 0; i < face_points.size(); i += 3) {
Face3 f = faces.get(i / 3);
face_points.set(i, f.vertex[0]);
face_points.set(i + 1, f.vertex[1]);
face_points.set(i + 2, f.vertex[2]);
}
Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
shape->set_faces(face_points);
return shape;
}
Ref<NavigationMesh> ImporterMesh::create_navigation_mesh() {
Vector<Face3> faces = get_faces();
if (faces.size() == 0) {
return Ref<NavigationMesh>();
}
HashMap<Vector3, int> unique_vertices;
Vector<Vector<int>> face_polygons;
face_polygons.resize(faces.size());
for (int i = 0; i < faces.size(); i++) {
Vector<int> face_indices;
face_indices.resize(3);
for (int j = 0; j < 3; j++) {
Vector3 v = faces[i].vertex[j];
int idx;
if (unique_vertices.has(v)) {
idx = unique_vertices[v];
} else {
idx = unique_vertices.size();
unique_vertices[v] = idx;
}
face_indices.write[j] = idx;
}
face_polygons.write[i] = face_indices;
}
Vector<Vector3> vertices;
vertices.resize(unique_vertices.size());
for (const KeyValue<Vector3, int> &E : unique_vertices) {
vertices.write[E.value] = E.key;
}
Ref<NavigationMesh> nm;
nm.instantiate();
nm->set_data(vertices, face_polygons);
return nm;
}
extern bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y);
struct EditorSceneFormatImporterMeshLightmapSurface {
Ref<Material> material;
LocalVector<SurfaceTool::Vertex> vertices;
Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
uint64_t format = 0;
String name;
};
static const uint32_t custom_shift[RS::ARRAY_CUSTOM_COUNT] = { Mesh::ARRAY_FORMAT_CUSTOM0_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM1_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM2_SHIFT, Mesh::ARRAY_FORMAT_CUSTOM3_SHIFT };
Error ImporterMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache) {
ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
LocalVector<float> vertices;
LocalVector<float> normals;
LocalVector<int> indices;
LocalVector<float> uv;
LocalVector<Pair<int, int>> uv_indices;
Vector<EditorSceneFormatImporterMeshLightmapSurface> lightmap_surfaces;
// Keep only the scale
Basis basis = p_base_transform.get_basis();
Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length());
Transform3D transform;
transform.scale(scale);
Basis normal_basis = transform.basis.inverse().transposed();
for (int i = 0; i < get_surface_count(); i++) {
EditorSceneFormatImporterMeshLightmapSurface s;
s.primitive = get_surface_primitive_type(i);
ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
Array arrays = get_surface_arrays(i);
s.material = get_surface_material(i);
s.name = get_surface_name(i);
SurfaceTool::create_vertex_array_from_arrays(arrays, s.vertices, &s.format);
PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX];
int vc = rvertices.size();
PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL];
if (!rnormals.size()) {
continue;
}
int vertex_ofs = vertices.size() / 3;
vertices.resize((vertex_ofs + vc) * 3);
normals.resize((vertex_ofs + vc) * 3);
uv_indices.resize(vertex_ofs + vc);
for (int j = 0; j < vc; j++) {
Vector3 v = transform.xform(rvertices[j]);
Vector3 n = normal_basis.xform(rnormals[j]).normalized();
vertices[(j + vertex_ofs) * 3 + 0] = v.x;
vertices[(j + vertex_ofs) * 3 + 1] = v.y;
vertices[(j + vertex_ofs) * 3 + 2] = v.z;
normals[(j + vertex_ofs) * 3 + 0] = n.x;
normals[(j + vertex_ofs) * 3 + 1] = n.y;
normals[(j + vertex_ofs) * 3 + 2] = n.z;
uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
}
PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX];
int ic = rindices.size();
float eps = 1.19209290e-7F; // Taken from xatlas.h
if (ic == 0) {
for (int j = 0; j < vc / 3; j++) {
Vector3 p0 = transform.xform(rvertices[j * 3 + 0]);
Vector3 p1 = transform.xform(rvertices[j * 3 + 1]);
Vector3 p2 = transform.xform(rvertices[j * 3 + 2]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + j * 3 + 0);
indices.push_back(vertex_ofs + j * 3 + 1);
indices.push_back(vertex_ofs + j * 3 + 2);
}
} else {
for (int j = 0; j < ic / 3; j++) {
ERR_FAIL_INDEX_V(rindices[j * 3 + 0], rvertices.size(), ERR_INVALID_DATA);
ERR_FAIL_INDEX_V(rindices[j * 3 + 1], rvertices.size(), ERR_INVALID_DATA);
ERR_FAIL_INDEX_V(rindices[j * 3 + 2], rvertices.size(), ERR_INVALID_DATA);
Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]);
Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]);
Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + rindices[j * 3 + 0]);
indices.push_back(vertex_ofs + rindices[j * 3 + 1]);
indices.push_back(vertex_ofs + rindices[j * 3 + 2]);
}
}
lightmap_surfaces.push_back(s);
}
//unwrap
bool use_cache = true; // Used to request cache generation and to know if cache was used
uint8_t *gen_cache;
int gen_cache_size;
float *gen_uvs;
int *gen_vertices;
int *gen_indices;
int gen_vertex_count;
int gen_index_count;
int size_x;
int size_y;
bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
if (!ok) {
return ERR_CANT_CREATE;
}
//create surfacetools for each surface..
LocalVector<Ref<SurfaceTool>> surfaces_tools;
for (int i = 0; i < lightmap_surfaces.size(); i++) {
Ref<SurfaceTool> st;
st.instantiate();
st->set_skin_weight_count((lightmap_surfaces[i].format & Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? SurfaceTool::SKIN_8_WEIGHTS : SurfaceTool::SKIN_4_WEIGHTS);
st->begin(Mesh::PRIMITIVE_TRIANGLES);
st->set_material(lightmap_surfaces[i].material);
st->set_meta("name", lightmap_surfaces[i].name);
for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) {
st->set_custom_format(custom_i, (SurfaceTool::CustomFormat)((lightmap_surfaces[i].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK));
}
surfaces_tools.push_back(st); //stay there
}
//remove surfaces
clear();
print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
//go through all indices
for (int i = 0; i < gen_index_count; i += 3) {
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
for (int j = 0; j < 3; j++) {
SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_COLOR) {
surfaces_tools[surface]->set_color(v.color);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TEX_UV) {
surfaces_tools[surface]->set_uv(v.uv);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_NORMAL) {
surfaces_tools[surface]->set_normal(v.normal);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_TANGENT) {
Plane t;
t.normal = v.tangent;
t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
surfaces_tools[surface]->set_tangent(t);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_BONES) {
surfaces_tools[surface]->set_bones(v.bones);
}
if (lightmap_surfaces[surface].format & Mesh::ARRAY_FORMAT_WEIGHTS) {
surfaces_tools[surface]->set_weights(v.weights);
}
for (int custom_i = 0; custom_i < RS::ARRAY_CUSTOM_COUNT; custom_i++) {
if ((lightmap_surfaces[surface].format >> custom_shift[custom_i]) & RS::ARRAY_FORMAT_CUSTOM_MASK) {
surfaces_tools[surface]->set_custom(custom_i, v.custom[custom_i]);
}
}
Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
surfaces_tools[surface]->set_uv2(uv2);
surfaces_tools[surface]->add_vertex(v.vertex);
}
}
//generate surfaces
for (int i = 0; i < lightmap_surfaces.size(); i++) {
Ref<SurfaceTool> &tool = surfaces_tools[i];
tool->index();
Array arrays = tool->commit_to_arrays();
uint64_t format = lightmap_surfaces[i].format;
if (tool->get_skin_weight_count() == SurfaceTool::SKIN_8_WEIGHTS) {
format |= RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
} else {
format &= ~RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
}
add_surface(tool->get_primitive_type(), arrays, Array(), Dictionary(), tool->get_material(), tool->get_meta("name"), format);
}
set_lightmap_size_hint(Size2(size_x, size_y));
if (gen_cache_size > 0) {
r_dst_cache.resize(gen_cache_size);
memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size);
memfree(gen_cache);
}
if (!use_cache) {
// Cache was not used, free the buffers
memfree(gen_vertices);
memfree(gen_indices);
memfree(gen_uvs);
}
return OK;
}
void ImporterMesh::set_lightmap_size_hint(const Size2i &p_size) {
lightmap_size_hint = p_size;
}
Size2i ImporterMesh::get_lightmap_size_hint() const {
return lightmap_size_hint;
}
void ImporterMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ImporterMesh::add_blend_shape);
ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ImporterMesh::get_blend_shape_count);
ClassDB::bind_method(D_METHOD("get_blend_shape_name", "blend_shape_idx"), &ImporterMesh::get_blend_shape_name);
ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ImporterMesh::set_blend_shape_mode);
ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ImporterMesh::get_blend_shape_mode);
ClassDB::bind_method(D_METHOD("add_surface", "primitive", "arrays", "blend_shapes", "lods", "material", "name", "flags"), &ImporterMesh::add_surface, DEFVAL(TypedArray<Array>()), DEFVAL(Dictionary()), DEFVAL(Ref<Material>()), DEFVAL(String()), DEFVAL(0));
ClassDB::bind_method(D_METHOD("get_surface_count"), &ImporterMesh::get_surface_count);
ClassDB::bind_method(D_METHOD("get_surface_primitive_type", "surface_idx"), &ImporterMesh::get_surface_primitive_type);
ClassDB::bind_method(D_METHOD("get_surface_name", "surface_idx"), &ImporterMesh::get_surface_name);
ClassDB::bind_method(D_METHOD("get_surface_arrays", "surface_idx"), &ImporterMesh::get_surface_arrays);
ClassDB::bind_method(D_METHOD("get_surface_blend_shape_arrays", "surface_idx", "blend_shape_idx"), &ImporterMesh::get_surface_blend_shape_arrays);
ClassDB::bind_method(D_METHOD("get_surface_lod_count", "surface_idx"), &ImporterMesh::get_surface_lod_count);
ClassDB::bind_method(D_METHOD("get_surface_lod_size", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_size);
ClassDB::bind_method(D_METHOD("get_surface_lod_indices", "surface_idx", "lod_idx"), &ImporterMesh::get_surface_lod_indices);
ClassDB::bind_method(D_METHOD("get_surface_material", "surface_idx"), &ImporterMesh::get_surface_material);
ClassDB::bind_method(D_METHOD("get_surface_format", "surface_idx"), &ImporterMesh::get_surface_format);
ClassDB::bind_method(D_METHOD("set_surface_name", "surface_idx", "name"), &ImporterMesh::set_surface_name);
ClassDB::bind_method(D_METHOD("set_surface_material", "surface_idx", "material"), &ImporterMesh::set_surface_material);
ClassDB::bind_method(D_METHOD("generate_lods", "normal_merge_angle", "normal_split_angle", "bone_transform_array"), &ImporterMesh::_generate_lods_bind);
ClassDB::bind_method(D_METHOD("get_mesh", "base_mesh"), &ImporterMesh::get_mesh, DEFVAL(Ref<ArrayMesh>()));
ClassDB::bind_method(D_METHOD("clear"), &ImporterMesh::clear);
ClassDB::bind_method(D_METHOD("_set_data", "data"), &ImporterMesh::_set_data);
ClassDB::bind_method(D_METHOD("_get_data"), &ImporterMesh::_get_data);
ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &ImporterMesh::set_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &ImporterMesh::get_lightmap_size_hint);
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data");
}