386 lines
9.2 KiB
C++
386 lines
9.2 KiB
C++
#ifndef GIM_RADIXSORT_H_INCLUDED
|
|
#define GIM_RADIXSORT_H_INCLUDED
|
|
/*! \file gim_radixsort.h
|
|
\author Francisco Leon Najera.
|
|
Based on the work of Michael Herf : "fast floating-point radix sort"
|
|
Avaliable on http://www.stereopsis.com/radix.html
|
|
*/
|
|
/*
|
|
-----------------------------------------------------------------------------
|
|
This source file is part of GIMPACT Library.
|
|
|
|
For the latest info, see http://gimpact.sourceforge.net/
|
|
|
|
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
|
|
email: projectileman@yahoo.com
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of EITHER:
|
|
(1) The GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 2.1 of the License, or (at
|
|
your option) any later version. The text of the GNU Lesser
|
|
General Public License is included with this library in the
|
|
file GIMPACT-LICENSE-LGPL.TXT.
|
|
(2) The BSD-style license that is included with this library in
|
|
the file GIMPACT-LICENSE-BSD.TXT.
|
|
(3) The zlib/libpng license that is included with this library in
|
|
the file GIMPACT-LICENSE-ZLIB.TXT.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
|
|
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
|
|
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "gim_memory.h"
|
|
|
|
///Macros for sorting.
|
|
//! Prototype for comparators
|
|
class less_comparator
|
|
{
|
|
public:
|
|
template <class T, class Z>
|
|
inline int operator()(const T& a, const Z& b)
|
|
{
|
|
return (a < b ? -1 : (a > b ? 1 : 0));
|
|
}
|
|
};
|
|
|
|
//! Prototype for comparators
|
|
class integer_comparator
|
|
{
|
|
public:
|
|
template <class T>
|
|
inline int operator()(const T& a, const T& b)
|
|
{
|
|
return (int)(a - b);
|
|
}
|
|
};
|
|
|
|
//!Prototype for getting the integer representation of an object
|
|
class uint_key_func
|
|
{
|
|
public:
|
|
template <class T>
|
|
inline GUINT operator()(const T& a)
|
|
{
|
|
return (GUINT)a;
|
|
}
|
|
};
|
|
|
|
//!Prototype for copying elements
|
|
class copy_elements_func
|
|
{
|
|
public:
|
|
template <class T>
|
|
inline void operator()(T& a, T& b)
|
|
{
|
|
a = b;
|
|
}
|
|
};
|
|
|
|
//!Prototype for copying elements
|
|
class memcopy_elements_func
|
|
{
|
|
public:
|
|
template <class T>
|
|
inline void operator()(T& a, T& b)
|
|
{
|
|
gim_simd_memcpy(&a, &b, sizeof(T));
|
|
}
|
|
};
|
|
|
|
//! @{
|
|
struct GIM_RSORT_TOKEN
|
|
{
|
|
GUINT m_key;
|
|
GUINT m_value;
|
|
GIM_RSORT_TOKEN()
|
|
{
|
|
}
|
|
GIM_RSORT_TOKEN(const GIM_RSORT_TOKEN& rtoken)
|
|
{
|
|
m_key = rtoken.m_key;
|
|
m_value = rtoken.m_value;
|
|
}
|
|
|
|
inline bool operator<(const GIM_RSORT_TOKEN& other) const
|
|
{
|
|
return (m_key < other.m_key);
|
|
}
|
|
|
|
inline bool operator>(const GIM_RSORT_TOKEN& other) const
|
|
{
|
|
return (m_key > other.m_key);
|
|
}
|
|
};
|
|
|
|
//! Prototype for comparators
|
|
class GIM_RSORT_TOKEN_COMPARATOR
|
|
{
|
|
public:
|
|
inline int operator()(const GIM_RSORT_TOKEN& a, const GIM_RSORT_TOKEN& b)
|
|
{
|
|
return (int)((a.m_key) - (b.m_key));
|
|
}
|
|
};
|
|
|
|
#define kHist 2048
|
|
// ---- utils for accessing 11-bit quantities
|
|
#define D11_0(x) (x & 0x7FF)
|
|
#define D11_1(x) (x >> 11 & 0x7FF)
|
|
#define D11_2(x) (x >> 22)
|
|
|
|
///Radix sort for unsigned integer keys
|
|
inline void gim_radix_sort_rtokens(
|
|
GIM_RSORT_TOKEN* array,
|
|
GIM_RSORT_TOKEN* sorted, GUINT element_count)
|
|
{
|
|
GUINT i;
|
|
GUINT b0[kHist * 3];
|
|
GUINT* b1 = b0 + kHist;
|
|
GUINT* b2 = b1 + kHist;
|
|
for (i = 0; i < kHist * 3; ++i)
|
|
{
|
|
b0[i] = 0;
|
|
}
|
|
GUINT fi;
|
|
GUINT pos;
|
|
for (i = 0; i < element_count; ++i)
|
|
{
|
|
fi = array[i].m_key;
|
|
b0[D11_0(fi)]++;
|
|
b1[D11_1(fi)]++;
|
|
b2[D11_2(fi)]++;
|
|
}
|
|
{
|
|
GUINT sum0 = 0, sum1 = 0, sum2 = 0;
|
|
GUINT tsum;
|
|
for (i = 0; i < kHist; ++i)
|
|
{
|
|
tsum = b0[i] + sum0;
|
|
b0[i] = sum0 - 1;
|
|
sum0 = tsum;
|
|
tsum = b1[i] + sum1;
|
|
b1[i] = sum1 - 1;
|
|
sum1 = tsum;
|
|
tsum = b2[i] + sum2;
|
|
b2[i] = sum2 - 1;
|
|
sum2 = tsum;
|
|
}
|
|
}
|
|
for (i = 0; i < element_count; ++i)
|
|
{
|
|
fi = array[i].m_key;
|
|
pos = D11_0(fi);
|
|
pos = ++b0[pos];
|
|
sorted[pos].m_key = array[i].m_key;
|
|
sorted[pos].m_value = array[i].m_value;
|
|
}
|
|
for (i = 0; i < element_count; ++i)
|
|
{
|
|
fi = sorted[i].m_key;
|
|
pos = D11_1(fi);
|
|
pos = ++b1[pos];
|
|
array[pos].m_key = sorted[i].m_key;
|
|
array[pos].m_value = sorted[i].m_value;
|
|
}
|
|
for (i = 0; i < element_count; ++i)
|
|
{
|
|
fi = array[i].m_key;
|
|
pos = D11_2(fi);
|
|
pos = ++b2[pos];
|
|
sorted[pos].m_key = array[i].m_key;
|
|
sorted[pos].m_value = array[i].m_value;
|
|
}
|
|
}
|
|
|
|
/// Get the sorted tokens from an array. For generic use. Tokens are IRR_RSORT_TOKEN
|
|
/*!
|
|
*\param array Array of elements to sort
|
|
*\param sorted_tokens Tokens of sorted elements
|
|
*\param element_count element count
|
|
*\param uintkey_macro Functor which retrieves the integer representation of an array element
|
|
*/
|
|
template <typename T, class GETKEY_CLASS>
|
|
void gim_radix_sort_array_tokens(
|
|
T* array,
|
|
GIM_RSORT_TOKEN* sorted_tokens,
|
|
GUINT element_count, GETKEY_CLASS uintkey_macro)
|
|
{
|
|
GIM_RSORT_TOKEN* _unsorted = (GIM_RSORT_TOKEN*)gim_alloc(sizeof(GIM_RSORT_TOKEN) * element_count);
|
|
for (GUINT _i = 0; _i < element_count; ++_i)
|
|
{
|
|
_unsorted[_i].m_key = uintkey_macro(array[_i]);
|
|
_unsorted[_i].m_value = _i;
|
|
}
|
|
gim_radix_sort_rtokens(_unsorted, sorted_tokens, element_count);
|
|
gim_free(_unsorted);
|
|
gim_free(_unsorted);
|
|
}
|
|
|
|
/// Sorts array in place. For generic use
|
|
/*!
|
|
\param type Type of the array
|
|
\param array
|
|
\param element_count
|
|
\param get_uintkey_macro Macro for extract the Integer value of the element. Similar to SIMPLE_GET_UINTKEY
|
|
\param copy_elements_macro Macro for copy elements, similar to SIMPLE_COPY_ELEMENTS
|
|
*/
|
|
template <typename T, class GETKEY_CLASS, class COPY_CLASS>
|
|
void gim_radix_sort(
|
|
T* array, GUINT element_count,
|
|
GETKEY_CLASS get_uintkey_macro, COPY_CLASS copy_elements_macro)
|
|
{
|
|
GIM_RSORT_TOKEN* _sorted = (GIM_RSORT_TOKEN*)gim_alloc(sizeof(GIM_RSORT_TOKEN) * element_count);
|
|
gim_radix_sort_array_tokens(array, _sorted, element_count, get_uintkey_macro);
|
|
T* _original_array = (T*)gim_alloc(sizeof(T) * element_count);
|
|
gim_simd_memcpy(_original_array, array, sizeof(T) * element_count);
|
|
for (GUINT _i = 0; _i < element_count; ++_i)
|
|
{
|
|
copy_elements_macro(array[_i], _original_array[_sorted[_i].m_value]);
|
|
}
|
|
gim_free(_original_array);
|
|
gim_free(_sorted);
|
|
}
|
|
|
|
//! Failsafe Iterative binary search,
|
|
/*!
|
|
If the element is not found, it returns the nearest upper element position, may be the further position after the last element.
|
|
\param _array
|
|
\param _start_i the beginning of the array
|
|
\param _end_i the ending index of the array
|
|
\param _search_key Value to find
|
|
\param _comp_macro macro for comparing elements
|
|
\param _found If true the value has found. Boolean
|
|
\param _result_index the index of the found element, or if not found then it will get the index of the closest bigger value
|
|
*/
|
|
template <class T, typename KEYCLASS, typename COMP_CLASS>
|
|
bool gim_binary_search_ex(
|
|
const T* _array, GUINT _start_i,
|
|
GUINT _end_i, GUINT& _result_index,
|
|
const KEYCLASS& _search_key,
|
|
COMP_CLASS _comp_macro)
|
|
{
|
|
GUINT _k;
|
|
int _comp_result;
|
|
GUINT _i = _start_i;
|
|
GUINT _j = _end_i + 1;
|
|
while (_i < _j)
|
|
{
|
|
_k = (_j + _i - 1) / 2;
|
|
_comp_result = _comp_macro(_array[_k], _search_key);
|
|
if (_comp_result == 0)
|
|
{
|
|
_result_index = _k;
|
|
return true;
|
|
}
|
|
else if (_comp_result < 0)
|
|
{
|
|
_i = _k + 1;
|
|
}
|
|
else
|
|
{
|
|
_j = _k;
|
|
}
|
|
}
|
|
_result_index = _i;
|
|
return false;
|
|
}
|
|
|
|
//! Failsafe Iterative binary search,Template version
|
|
/*!
|
|
If the element is not found, it returns the nearest upper element position, may be the further position after the last element.
|
|
\param _array
|
|
\param _start_i the beginning of the array
|
|
\param _end_i the ending index of the array
|
|
\param _search_key Value to find
|
|
\param _result_index the index of the found element, or if not found then it will get the index of the closest bigger value
|
|
\return true if found, else false
|
|
*/
|
|
template <class T>
|
|
bool gim_binary_search(
|
|
const T* _array, GUINT _start_i,
|
|
GUINT _end_i, const T& _search_key,
|
|
GUINT& _result_index)
|
|
{
|
|
GUINT _i = _start_i;
|
|
GUINT _j = _end_i + 1;
|
|
GUINT _k;
|
|
while (_i < _j)
|
|
{
|
|
_k = (_j + _i - 1) / 2;
|
|
if (_array[_k] == _search_key)
|
|
{
|
|
_result_index = _k;
|
|
return true;
|
|
}
|
|
else if (_array[_k] < _search_key)
|
|
{
|
|
_i = _k + 1;
|
|
}
|
|
else
|
|
{
|
|
_j = _k;
|
|
}
|
|
}
|
|
_result_index = _i;
|
|
return false;
|
|
}
|
|
|
|
///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
|
|
template <typename T, typename COMP_CLASS>
|
|
void gim_down_heap(T* pArr, GUINT k, GUINT n, COMP_CLASS CompareFunc)
|
|
{
|
|
/* PRE: a[k+1..N] is a heap */
|
|
/* POST: a[k..N] is a heap */
|
|
|
|
T temp = pArr[k - 1];
|
|
/* k has child(s) */
|
|
while (k <= n / 2)
|
|
{
|
|
int child = 2 * k;
|
|
|
|
if ((child < (int)n) && CompareFunc(pArr[child - 1], pArr[child]) < 0)
|
|
{
|
|
child++;
|
|
}
|
|
/* pick larger child */
|
|
if (CompareFunc(temp, pArr[child - 1]) < 0)
|
|
{
|
|
/* move child up */
|
|
pArr[k - 1] = pArr[child - 1];
|
|
k = child;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
pArr[k - 1] = temp;
|
|
} /*downHeap*/
|
|
|
|
template <typename T, typename COMP_CLASS>
|
|
void gim_heap_sort(T* pArr, GUINT element_count, COMP_CLASS CompareFunc)
|
|
{
|
|
/* sort a[0..N-1], N.B. 0 to N-1 */
|
|
GUINT k;
|
|
GUINT n = element_count;
|
|
for (k = n / 2; k > 0; k--)
|
|
{
|
|
gim_down_heap(pArr, k, n, CompareFunc);
|
|
}
|
|
|
|
/* a[1..N] is now a heap */
|
|
while (n >= 2)
|
|
{
|
|
gim_swap_elements(pArr, 0, n - 1); /* largest of a[0..n-1] */
|
|
--n;
|
|
/* restore a[1..i-1] heap */
|
|
gim_down_heap(pArr, 1, n, CompareFunc);
|
|
}
|
|
}
|
|
|
|
#endif // GIM_RADIXSORT_H_INCLUDED
|