virtualx-engine/thirdparty/recastnavigation/Recast/Include/Recast.h
Graham Pentheny 36de150c74 Updated Recast to 4fef044
In some cases Godot can generate input parameters to Recast that cause it to crash.  Specifically when baking NavigationMeshes for input meshes that have axis extents less than half the NavigationMesh CellSize.

This has been fixed upstream in Recast (in 3901c5854c).  Updating Godot's Recast integration fixes this crash issue in Godot as well.
2022-11-27 19:22:33 -05:00

1205 lines
54 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_H
#define RECAST_H
/// The value of PI used by Recast.
static const float RC_PI = 3.14159265f;
/// Used to ignore unused function parameters and silence any compiler warnings.
template<class T> void rcIgnoreUnused(const T&) { }
/// Recast log categories.
/// @see rcContext
enum rcLogCategory
{
RC_LOG_PROGRESS = 1, ///< A progress log entry.
RC_LOG_WARNING, ///< A warning log entry.
RC_LOG_ERROR ///< An error log entry.
};
/// Recast performance timer categories.
/// @see rcContext
enum rcTimerLabel
{
/// The user defined total time of the build.
RC_TIMER_TOTAL,
/// A user defined build time.
RC_TIMER_TEMP,
/// The time to rasterize the triangles. (See: #rcRasterizeTriangle)
RC_TIMER_RASTERIZE_TRIANGLES,
/// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield)
RC_TIMER_BUILD_COMPACTHEIGHTFIELD,
/// The total time to build the contours. (See: #rcBuildContours)
RC_TIMER_BUILD_CONTOURS,
/// The time to trace the boundaries of the contours. (See: #rcBuildContours)
RC_TIMER_BUILD_CONTOURS_TRACE,
/// The time to simplify the contours. (See: #rcBuildContours)
RC_TIMER_BUILD_CONTOURS_SIMPLIFY,
/// The time to filter ledge spans. (See: #rcFilterLedgeSpans)
RC_TIMER_FILTER_BORDER,
/// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans)
RC_TIMER_FILTER_WALKABLE,
/// The time to apply the median filter. (See: #rcMedianFilterWalkableArea)
RC_TIMER_MEDIAN_AREA,
/// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles)
RC_TIMER_FILTER_LOW_OBSTACLES,
/// The time to build the polygon mesh. (See: #rcBuildPolyMesh)
RC_TIMER_BUILD_POLYMESH,
/// The time to merge polygon meshes. (See: #rcMergePolyMeshes)
RC_TIMER_MERGE_POLYMESH,
/// The time to erode the walkable area. (See: #rcErodeWalkableArea)
RC_TIMER_ERODE_AREA,
/// The time to mark a box area. (See: #rcMarkBoxArea)
RC_TIMER_MARK_BOX_AREA,
/// The time to mark a cylinder area. (See: #rcMarkCylinderArea)
RC_TIMER_MARK_CYLINDER_AREA,
/// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea)
RC_TIMER_MARK_CONVEXPOLY_AREA,
/// The total time to build the distance field. (See: #rcBuildDistanceField)
RC_TIMER_BUILD_DISTANCEFIELD,
/// The time to build the distances of the distance field. (See: #rcBuildDistanceField)
RC_TIMER_BUILD_DISTANCEFIELD_DIST,
/// The time to blur the distance field. (See: #rcBuildDistanceField)
RC_TIMER_BUILD_DISTANCEFIELD_BLUR,
/// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
RC_TIMER_BUILD_REGIONS,
/// The total time to apply the watershed algorithm. (See: #rcBuildRegions)
RC_TIMER_BUILD_REGIONS_WATERSHED,
/// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions)
RC_TIMER_BUILD_REGIONS_EXPAND,
/// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions)
RC_TIMER_BUILD_REGIONS_FLOOD,
/// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone)
RC_TIMER_BUILD_REGIONS_FILTER,
/// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers)
RC_TIMER_BUILD_LAYERS,
/// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail)
RC_TIMER_BUILD_POLYMESHDETAIL,
/// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails)
RC_TIMER_MERGE_POLYMESHDETAIL,
/// The maximum number of timers. (Used for iterating timers.)
RC_MAX_TIMERS
};
/// Provides an interface for optional logging and performance tracking of the Recast
/// build process.
/// @ingroup recast
class rcContext
{
public:
/// Contructor.
/// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true]
inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {}
virtual ~rcContext() {}
/// Enables or disables logging.
/// @param[in] state TRUE if logging should be enabled.
inline void enableLog(bool state) { m_logEnabled = state; }
/// Clears all log entries.
inline void resetLog() { if (m_logEnabled) doResetLog(); }
/// Logs a message.
/// @param[in] category The category of the message.
/// @param[in] format The message.
void log(const rcLogCategory category, const char* format, ...);
/// Enables or disables the performance timers.
/// @param[in] state TRUE if timers should be enabled.
inline void enableTimer(bool state) { m_timerEnabled = state; }
/// Clears all peformance timers. (Resets all to unused.)
inline void resetTimers() { if (m_timerEnabled) doResetTimers(); }
/// Starts the specified performance timer.
/// @param label The category of the timer.
inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); }
/// Stops the specified performance timer.
/// @param label The category of the timer.
inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); }
/// Returns the total accumulated time of the specified performance timer.
/// @param label The category of the timer.
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; }
protected:
/// Clears all log entries.
virtual void doResetLog();
/// Logs a message.
/// @param[in] category The category of the message.
/// @param[in] msg The formatted message.
/// @param[in] len The length of the formatted message.
virtual void doLog(const rcLogCategory category, const char* msg, const int len) { rcIgnoreUnused(category); rcIgnoreUnused(msg); rcIgnoreUnused(len); }
/// Clears all timers. (Resets all to unused.)
virtual void doResetTimers() {}
/// Starts the specified performance timer.
/// @param[in] label The category of timer.
virtual void doStartTimer(const rcTimerLabel label) { rcIgnoreUnused(label); }
/// Stops the specified performance timer.
/// @param[in] label The category of the timer.
virtual void doStopTimer(const rcTimerLabel label) { rcIgnoreUnused(label); }
/// Returns the total accumulated time of the specified performance timer.
/// @param[in] label The category of the timer.
/// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started.
virtual int doGetAccumulatedTime(const rcTimerLabel label) const { rcIgnoreUnused(label); return -1; }
/// True if logging is enabled.
bool m_logEnabled;
/// True if the performance timers are enabled.
bool m_timerEnabled;
};
/// A helper to first start a timer and then stop it when this helper goes out of scope.
/// @see rcContext
class rcScopedTimer
{
public:
/// Constructs an instance and starts the timer.
/// @param[in] ctx The context to use.
/// @param[in] label The category of the timer.
inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); }
inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); }
private:
// Explicitly disabled copy constructor and copy assignment operator.
rcScopedTimer(const rcScopedTimer&);
rcScopedTimer& operator=(const rcScopedTimer&);
rcContext* const m_ctx;
const rcTimerLabel m_label;
};
/// Specifies a configuration to use when performing Recast builds.
/// @ingroup recast
struct rcConfig
{
/// The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
int width;
/// The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
int height;
/// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx]
int tileSize;
/// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx]
int borderSize;
/// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu]
float cs;
/// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu]
float ch;
/// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
float bmin[3];
/// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
float bmax[3];
/// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees]
float walkableSlopeAngle;
/// Minimum floor to 'ceiling' height that will still allow the floor area to
/// be considered walkable. [Limit: >= 3] [Units: vx]
int walkableHeight;
/// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx]
int walkableClimb;
/// The distance to erode/shrink the walkable area of the heightfield away from
/// obstructions. [Limit: >=0] [Units: vx]
int walkableRadius;
/// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx]
int maxEdgeLen;
/// The maximum distance a simplfied contour's border edges should deviate
/// the original raw contour. [Limit: >=0] [Units: vx]
float maxSimplificationError;
/// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx]
int minRegionArea;
/// Any regions with a span count smaller than this value will, if possible,
/// be merged with larger regions. [Limit: >=0] [Units: vx]
int mergeRegionArea;
/// The maximum number of vertices allowed for polygons generated during the
/// contour to polygon conversion process. [Limit: >= 3]
int maxVertsPerPoly;
/// Sets the sampling distance to use when generating the detail mesh.
/// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu]
float detailSampleDist;
/// The maximum distance the detail mesh surface should deviate from heightfield
/// data. (For height detail only.) [Limit: >=0] [Units: wu]
float detailSampleMaxError;
};
/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_HEIGHT_BITS = 13;
/// Defines the maximum value for rcSpan::smin and rcSpan::smax.
static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1;
/// The number of spans allocated per span spool.
/// @see rcSpanPool
static const int RC_SPANS_PER_POOL = 2048;
/// Represents a span in a heightfield.
/// @see rcHeightfield
struct rcSpan
{
unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax]
unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT]
unsigned int area : 6; ///< The area id assigned to the span.
rcSpan* next; ///< The next span higher up in column.
};
/// A memory pool used for quick allocation of spans within a heightfield.
/// @see rcHeightfield
struct rcSpanPool
{
rcSpanPool* next; ///< The next span pool.
rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool.
};
/// A dynamic heightfield representing obstructed space.
/// @ingroup recast
struct rcHeightfield
{
rcHeightfield();
~rcHeightfield();
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
rcSpan** spans; ///< Heightfield of spans (width*height).
rcSpanPool* pools; ///< Linked list of span pools.
rcSpan* freelist; ///< The next free span.
private:
// Explicitly-disabled copy constructor and copy assignment operator.
rcHeightfield(const rcHeightfield&);
rcHeightfield& operator=(const rcHeightfield&);
};
/// Provides information on the content of a cell column in a compact heightfield.
struct rcCompactCell
{
unsigned int index : 24; ///< Index to the first span in the column.
unsigned int count : 8; ///< Number of spans in the column.
};
/// Represents a span of unobstructed space within a compact heightfield.
struct rcCompactSpan
{
unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.)
unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.)
unsigned int con : 24; ///< Packed neighbor connection data.
unsigned int h : 8; ///< The height of the span. (Measured from #y.)
};
/// A compact, static heightfield representing unobstructed space.
/// @ingroup recast
struct rcCompactHeightfield
{
rcCompactHeightfield();
~rcCompactHeightfield();
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
int spanCount; ///< The number of spans in the heightfield.
int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight)
int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb)
int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize)
unsigned short maxDistance; ///< The maximum distance value of any span within the field.
unsigned short maxRegions; ///< The maximum region id of any span within the field.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
rcCompactCell* cells; ///< Array of cells. [Size: #width*#height]
rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount]
unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount]
unsigned char* areas; ///< Array containing area id data. [Size: #spanCount]
};
/// Represents a heightfield layer within a layer set.
/// @see rcHeightfieldLayerSet
struct rcHeightfieldLayer
{
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
int width; ///< The width of the heightfield. (Along the x-axis in cell units.)
int height; ///< The height of the heightfield. (Along the z-axis in cell units.)
int minx; ///< The minimum x-bounds of usable data.
int maxx; ///< The maximum x-bounds of usable data.
int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.)
int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.)
int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.)
int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.)
unsigned char* heights; ///< The heightfield. [Size: width * height]
unsigned char* areas; ///< Area ids. [Size: Same as #heights]
unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights]
};
/// Represents a set of heightfield layers.
/// @ingroup recast
/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet
struct rcHeightfieldLayerSet
{
rcHeightfieldLayerSet();
~rcHeightfieldLayerSet();
rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers]
int nlayers; ///< The number of layers in the set.
};
/// Represents a simple, non-overlapping contour in field space.
struct rcContour
{
int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts]
int nverts; ///< The number of vertices in the simplified contour.
int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts]
int nrverts; ///< The number of vertices in the raw contour.
unsigned short reg; ///< The region id of the contour.
unsigned char area; ///< The area id of the contour.
};
/// Represents a group of related contours.
/// @ingroup recast
struct rcContourSet
{
rcContourSet();
~rcContourSet();
rcContour* conts; ///< An array of the contours in the set. [Size: #nconts]
int nconts; ///< The number of contours in the set.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
int width; ///< The width of the set. (Along the x-axis in cell units.)
int height; ///< The height of the set. (Along the z-axis in cell units.)
int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived.
float maxError; ///< The max edge error that this contour set was simplified with.
};
/// Represents a polygon mesh suitable for use in building a navigation mesh.
/// @ingroup recast
struct rcPolyMesh
{
rcPolyMesh();
~rcPolyMesh();
unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts]
unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp]
unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys]
unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys]
unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys]
int nverts; ///< The number of vertices.
int npolys; ///< The number of polygons.
int maxpolys; ///< The number of allocated polygons.
int nvp; ///< The maximum number of vertices per polygon.
float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)]
float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)]
float cs; ///< The size of each cell. (On the xz-plane.)
float ch; ///< The height of each cell. (The minimum increment along the y-axis.)
int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived.
float maxEdgeError; ///< The max error of the polygon edges in the mesh.
};
/// Contains triangle meshes that represent detailed height data associated
/// with the polygons in its associated polygon mesh object.
/// @ingroup recast
struct rcPolyMeshDetail
{
unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes]
float* verts; ///< The mesh vertices. [Size: 3*#nverts]
unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris]
int nmeshes; ///< The number of sub-meshes defined by #meshes.
int nverts; ///< The number of vertices in #verts.
int ntris; ///< The number of triangles in #tris.
};
/// @name Allocation Functions
/// Functions used to allocate and de-allocate Recast objects.
/// @see rcAllocSetCustom
/// @{
/// Allocates a heightfield object using the Recast allocator.
/// @return A heightfield that is ready for initialization, or null on failure.
/// @ingroup recast
/// @see rcCreateHeightfield, rcFreeHeightField
rcHeightfield* rcAllocHeightfield();
/// Frees the specified heightfield object using the Recast allocator.
/// @param[in] hf A heightfield allocated using #rcAllocHeightfield
/// @ingroup recast
/// @see rcAllocHeightfield
void rcFreeHeightField(rcHeightfield* hf);
/// Allocates a compact heightfield object using the Recast allocator.
/// @return A compact heightfield that is ready for initialization, or null on failure.
/// @ingroup recast
/// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield
rcCompactHeightfield* rcAllocCompactHeightfield();
/// Frees the specified compact heightfield object using the Recast allocator.
/// @param[in] chf A compact heightfield allocated using #rcAllocCompactHeightfield
/// @ingroup recast
/// @see rcAllocCompactHeightfield
void rcFreeCompactHeightfield(rcCompactHeightfield* chf);
/// Allocates a heightfield layer set using the Recast allocator.
/// @return A heightfield layer set that is ready for initialization, or null on failure.
/// @ingroup recast
/// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet();
/// Frees the specified heightfield layer set using the Recast allocator.
/// @param[in] lset A heightfield layer set allocated using #rcAllocHeightfieldLayerSet
/// @ingroup recast
/// @see rcAllocHeightfieldLayerSet
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset);
/// Allocates a contour set object using the Recast allocator.
/// @return A contour set that is ready for initialization, or null on failure.
/// @ingroup recast
/// @see rcBuildContours, rcFreeContourSet
rcContourSet* rcAllocContourSet();
/// Frees the specified contour set using the Recast allocator.
/// @param[in] cset A contour set allocated using #rcAllocContourSet
/// @ingroup recast
/// @see rcAllocContourSet
void rcFreeContourSet(rcContourSet* cset);
/// Allocates a polygon mesh object using the Recast allocator.
/// @return A polygon mesh that is ready for initialization, or null on failure.
/// @ingroup recast
/// @see rcBuildPolyMesh, rcFreePolyMesh
rcPolyMesh* rcAllocPolyMesh();
/// Frees the specified polygon mesh using the Recast allocator.
/// @param[in] pmesh A polygon mesh allocated using #rcAllocPolyMesh
/// @ingroup recast
/// @see rcAllocPolyMesh
void rcFreePolyMesh(rcPolyMesh* pmesh);
/// Allocates a detail mesh object using the Recast allocator.
/// @return A detail mesh that is ready for initialization, or null on failure.
/// @ingroup recast
/// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail
rcPolyMeshDetail* rcAllocPolyMeshDetail();
/// Frees the specified detail mesh using the Recast allocator.
/// @param[in] dmesh A detail mesh allocated using #rcAllocPolyMeshDetail
/// @ingroup recast
/// @see rcAllocPolyMeshDetail
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh);
/// @}
/// Heighfield border flag.
/// If a heightfield region ID has this bit set, then the region is a border
/// region and its spans are considered unwalkable.
/// (Used during the region and contour build process.)
/// @see rcCompactSpan::reg
static const unsigned short RC_BORDER_REG = 0x8000;
/// Polygon touches multiple regions.
/// If a polygon has this region ID it was merged with or created
/// from polygons of different regions during the polymesh
/// build step that removes redundant border vertices.
/// (Used during the polymesh and detail polymesh build processes)
/// @see rcPolyMesh::regs
static const unsigned short RC_MULTIPLE_REGS = 0;
/// Border vertex flag.
/// If a region ID has this bit set, then the associated element lies on
/// a tile border. If a contour vertex's region ID has this bit set, the
/// vertex will later be removed in order to match the segments and vertices
/// at tile boundaries.
/// (Used during the build process.)
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
static const int RC_BORDER_VERTEX = 0x10000;
/// Area border flag.
/// If a region ID has this bit set, then the associated element lies on
/// the border of an area.
/// (Used during the region and contour build process.)
/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts
static const int RC_AREA_BORDER = 0x20000;
/// Contour build flags.
/// @see rcBuildContours
enum rcBuildContoursFlags
{
RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification.
RC_CONTOUR_TESS_AREA_EDGES = 0x02 ///< Tessellate edges between areas during contour simplification.
};
/// Applied to the region id field of contour vertices in order to extract the region id.
/// The region id field of a vertex may have several flags applied to it. So the
/// fields value can't be used directly.
/// @see rcContour::verts, rcContour::rverts
static const int RC_CONTOUR_REG_MASK = 0xffff;
/// An value which indicates an invalid index within a mesh.
/// @note This does not necessarily indicate an error.
/// @see rcPolyMesh::polys
static const unsigned short RC_MESH_NULL_IDX = 0xffff;
/// Represents the null area.
/// When a data element is given this value it is considered to no longer be
/// assigned to a usable area. (E.g. It is unwalkable.)
static const unsigned char RC_NULL_AREA = 0;
/// The default area id used to indicate a walkable polygon.
/// This is also the maximum allowed area id, and the only non-null area id
/// recognized by some steps in the build process.
static const unsigned char RC_WALKABLE_AREA = 63;
/// The value returned by #rcGetCon if the specified direction is not connected
/// to another span. (Has no neighbor.)
static const int RC_NOT_CONNECTED = 0x3f;
/// @name General helper functions
/// @{
/// Swaps the values of the two parameters.
/// @param[in,out] a Value A
/// @param[in,out] b Value B
template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; }
/// Returns the minimum of two values.
/// @param[in] a Value A
/// @param[in] b Value B
/// @return The minimum of the two values.
template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; }
/// Returns the maximum of two values.
/// @param[in] a Value A
/// @param[in] b Value B
/// @return The maximum of the two values.
template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; }
/// Returns the absolute value.
/// @param[in] a The value.
/// @return The absolute value of the specified value.
template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; }
/// Returns the square of the value.
/// @param[in] a The value.
/// @return The square of the value.
template<class T> inline T rcSqr(T a) { return a*a; }
/// Clamps the value to the specified range.
/// @param[in] v The value to clamp.
/// @param[in] mn The minimum permitted return value.
/// @param[in] mx The maximum permitted return value.
/// @return The value, clamped to the specified range.
template<class T> inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
/// Returns the square root of the value.
/// @param[in] x The value.
/// @return The square root of the vlaue.
float rcSqrt(float x);
/// @}
/// @name Vector helper functions.
/// @{
/// Derives the cross product of two vectors. (@p v1 x @p v2)
/// @param[out] dest The cross product. [(x, y, z)]
/// @param[in] v1 A Vector [(x, y, z)]
/// @param[in] v2 A vector [(x, y, z)]
inline void rcVcross(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
/// Derives the dot product of two vectors. (@p v1 . @p v2)
/// @param[in] v1 A Vector [(x, y, z)]
/// @param[in] v2 A vector [(x, y, z)]
/// @return The dot product.
inline float rcVdot(const float* v1, const float* v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] v1 The base vector. [(x, y, z)]
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
inline void rcVmad(float* dest, const float* v1, const float* v2, const float s)
{
dest[0] = v1[0]+v2[0]*s;
dest[1] = v1[1]+v2[1]*s;
dest[2] = v1[2]+v2[2]*s;
}
/// Performs a vector addition. (@p v1 + @p v2)
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] v1 The base vector. [(x, y, z)]
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
inline void rcVadd(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]+v2[0];
dest[1] = v1[1]+v2[1];
dest[2] = v1[2]+v2[2];
}
/// Performs a vector subtraction. (@p v1 - @p v2)
/// @param[out] dest The result vector. [(x, y, z)]
/// @param[in] v1 The base vector. [(x, y, z)]
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
inline void rcVsub(float* dest, const float* v1, const float* v2)
{
dest[0] = v1[0]-v2[0];
dest[1] = v1[1]-v2[1];
dest[2] = v1[2]-v2[2];
}
/// Selects the minimum value of each element from the specified vectors.
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
/// @param[in] v A vector. [(x, y, z)]
inline void rcVmin(float* mn, const float* v)
{
mn[0] = rcMin(mn[0], v[0]);
mn[1] = rcMin(mn[1], v[1]);
mn[2] = rcMin(mn[2], v[2]);
}
/// Selects the maximum value of each element from the specified vectors.
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
/// @param[in] v A vector. [(x, y, z)]
inline void rcVmax(float* mx, const float* v)
{
mx[0] = rcMax(mx[0], v[0]);
mx[1] = rcMax(mx[1], v[1]);
mx[2] = rcMax(mx[2], v[2]);
}
/// Performs a vector copy.
/// @param[out] dest The result. [(x, y, z)]
/// @param[in] v The vector to copy. [(x, y, z)]
inline void rcVcopy(float* dest, const float* v)
{
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
}
/// Returns the distance between two points.
/// @param[in] v1 A point. [(x, y, z)]
/// @param[in] v2 A point. [(x, y, z)]
/// @return The distance between the two points.
inline float rcVdist(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return rcSqrt(dx*dx + dy*dy + dz*dz);
}
/// Returns the square of the distance between two points.
/// @param[in] v1 A point. [(x, y, z)]
/// @param[in] v2 A point. [(x, y, z)]
/// @return The square of the distance between the two points.
inline float rcVdistSqr(const float* v1, const float* v2)
{
float dx = v2[0] - v1[0];
float dy = v2[1] - v1[1];
float dz = v2[2] - v1[2];
return dx*dx + dy*dy + dz*dz;
}
/// Normalizes the vector.
/// @param[in,out] v The vector to normalize. [(x, y, z)]
inline void rcVnormalize(float* v)
{
float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]));
v[0] *= d;
v[1] *= d;
v[2] *= d;
}
/// @}
/// @name Heightfield Functions
/// @see rcHeightfield
/// @{
/// Calculates the bounding box of an array of vertices.
/// @ingroup recast
/// @param[in] verts An array of vertices. [(x, y, z) * @p nv]
/// @param[in] nv The number of vertices in the @p verts array.
/// @param[out] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
/// @param[out] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax);
/// Calculates the grid size based on the bounding box and grid cell size.
/// @ingroup recast
/// @param[in] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu]
/// @param[in] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu]
/// @param[in] cs The xz-plane cell size. [Limit: > 0] [Units: wu]
/// @param[out] w The width along the x-axis. [Limit: >= 0] [Units: vx]
/// @param[out] h The height along the z-axis. [Limit: >= 0] [Units: vx]
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h);
/// Initializes a new heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in,out] hf The allocated heightfield to initialize.
/// @param[in] width The width of the field along the x-axis. [Limit: >= 0] [Units: vx]
/// @param[in] height The height of the field along the z-axis. [Limit: >= 0] [Units: vx]
/// @param[in] bmin The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu]
/// @param[in] bmax The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu]
/// @param[in] cs The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu]
/// @param[in] ch The y-axis cell size to use for field. [Limit: > 0] [Units: wu]
/// @returns True if the operation completed successfully.
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch);
/// Sets the area id of all triangles with a slope below the specified value
/// to #RC_WALKABLE_AREA.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
/// [Limits: 0 <= value < 90] [Units: Degrees]
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
/// @param[in] nv The number of vertices.
/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
/// @param[in] nt The number of triangles.
/// @param[out] areas The triangle area ids. [Length: >= @p nt]
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable.
/// [Limits: 0 <= value < 90] [Units: Degrees]
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
/// @param[in] nv The number of vertices.
/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt]
/// @param[in] nt The number of triangles.
/// @param[out] areas The triangle area ids. [Length: >= @p nt]
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
/// Adds a span to the specified heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in,out] hf An initialized heightfield.
/// @param[in] x The width index where the span is to be added.
/// [Limits: 0 <= value < rcHeightfield::width]
/// @param[in] y The height index where the span is to be added.
/// [Limits: 0 <= value < rcHeightfield::height]
/// @param[in] smin The minimum height of the span. [Limit: < @p smax] [Units: vx]
/// @param[in] smax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx]
/// @param[in] area The area id of the span. [Limit: <= #RC_WALKABLE_AREA)
/// @param[in] flagMergeThr The merge theshold. [Limit: >= 0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr);
/// Rasterizes a triangle into the specified heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] v0 Triangle vertex 0 [(x, y, z)]
/// @param[in] v1 Triangle vertex 1 [(x, y, z)]
/// @param[in] v2 Triangle vertex 2 [(x, y, z)]
/// @param[in] area The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA]
/// @param[in,out] solid An initialized heightfield.
/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
/// [Limit: >= 0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr = 1);
/// Rasterizes an indexed triangle mesh into the specified heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
/// @param[in] nv The number of vertices.
/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
/// @param[in] nt The number of triangles.
/// @param[in,out] solid An initialized heightfield.
/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
/// [Limit: >= 0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes an indexed triangle mesh into the specified heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] verts The vertices. [(x, y, z) * @p nv]
/// @param[in] nv The number of vertices.
/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt]
/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
/// @param[in] nt The number of triangles.
/// @param[in,out] solid An initialized heightfield.
/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
/// [Limit: >= 0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Rasterizes triangles into the specified heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt]
/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt]
/// @param[in] nt The number of triangles.
/// @param[in,out] solid An initialized heightfield.
/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag.
/// [Limit: >= 0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr = 1);
/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neighbor.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
/// [Limit: >=0] [Units: vx]
/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid);
/// Marks spans that are ledges as not-walkable.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
/// be considered walkable. [Limit: >= 3] [Units: vx]
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
/// [Limit: >=0] [Units: vx]
/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight,
const int walkableClimb, rcHeightfield& solid);
/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to
/// be considered walkable. [Limit: >= 3] [Units: vx]
/// @param[in,out] solid A fully built heightfield. (All spans have been added.)
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid);
/// Returns the number of spans contained in the specified heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] hf An initialized heightfield.
/// @returns The number of spans in the heightfield.
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf);
/// @}
/// @name Compact Heightfield Functions
/// @see rcCompactHeightfield
/// @{
/// Builds a compact heightfield representing open space, from a heightfield representing solid space.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
/// to be considered walkable. [Limit: >= 3] [Units: vx]
/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable.
/// [Limit: >=0] [Units: vx]
/// @param[in] hf The heightfield to be compacted.
/// @param[out] chf The resulting compact heightfield. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
rcHeightfield& hf, rcCompactHeightfield& chf);
/// Erodes the walkable area within the heightfield by the specified radius.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx]
/// @param[in,out] chf The populated compact heightfield to erode.
/// @returns True if the operation completed successfully.
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf);
/// Applies a median filter to walkable area types (based on area id), removing noise.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in,out] chf A populated compact heightfield.
/// @returns True if the operation completed successfully.
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf);
/// Applies an area id to all spans within the specified bounding box. (AABB)
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] bmin The minimum of the bounding box. [(x, y, z)]
/// @param[in] bmax The maximum of the bounding box. [(x, y, z)]
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
/// @param[in,out] chf A populated compact heightfield.
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
rcCompactHeightfield& chf);
/// Applies the area id to the all spans within the specified convex polygon.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts]
/// @param[in] nverts The number of vertices in the polygon.
/// @param[in] hmin The height of the base of the polygon.
/// @param[in] hmax The height of the top of the polygon.
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
/// @param[in,out] chf A populated compact heightfield.
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
rcCompactHeightfield& chf);
/// Helper function to offset voncex polygons for rcMarkConvexPolyArea.
/// @ingroup recast
/// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p nverts]
/// @param[in] nverts The number of vertices in the polygon.
/// @param[in] offset How much to offset the polygon by. [Units: wu]
/// @param[out] outVerts The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value]
/// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts.
/// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts.
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
float* outVerts, const int maxOutVerts);
/// Applies the area id to all spans within the specified cylinder.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)]
/// @param[in] r The radius of the cylinder.
/// @param[in] h The height of the cylinder.
/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA]
/// @param[in,out] chf A populated compact heightfield.
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
const float r, const float h, unsigned char areaId,
rcCompactHeightfield& chf);
/// Builds the distance field for the specified compact heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in,out] chf A populated compact heightfield.
/// @returns True if the operation completed successfully.
bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf);
/// Builds region data for the heightfield using watershed partitioning.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in,out] chf A populated compact heightfield.
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
/// [Limit: >=0] [Units: vx]
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
/// [Limit: >=0] [Units: vx].
/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
/// be merged with larger regions. [Limit: >=0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in,out] chf A populated compact heightfield.
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
/// [Limit: >=0] [Units: vx]
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
/// [Limit: >=0] [Units: vx].
/// @returns True if the operation completed successfully.
bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea);
/// Builds region data for the heightfield using simple monotone partitioning.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in,out] chf A populated compact heightfield.
/// @param[in] borderSize The size of the non-navigable border around the heightfield.
/// [Limit: >=0] [Units: vx]
/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas.
/// [Limit: >=0] [Units: vx].
/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible,
/// be merged with larger regions. [Limit: >=0] [Units: vx]
/// @returns True if the operation completed successfully.
bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
/// Sets the neighbor connection data for the specified direction.
/// @param[in] s The span to update.
/// @param[in] dir The direction to set. [Limits: 0 <= value < 4]
/// @param[in] i The index of the neighbor span.
inline void rcSetCon(rcCompactSpan& s, int dir, int i)
{
const unsigned int shift = (unsigned int)dir*6;
unsigned int con = s.con;
s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift);
}
/// Gets neighbor connection data for the specified direction.
/// @param[in] s The span to check.
/// @param[in] dir The direction to check. [Limits: 0 <= value < 4]
/// @return The neighbor connection data for the specified direction,
/// or #RC_NOT_CONNECTED if there is no connection.
inline int rcGetCon(const rcCompactSpan& s, int dir)
{
const unsigned int shift = (unsigned int)dir*6;
return (s.con >> shift) & 0x3f;
}
/// Gets the standard width (x-axis) offset for the specified direction.
/// @param[in] dir The direction. [Limits: 0 <= value < 4]
/// @return The width offset to apply to the current cell position to move
/// in the direction.
inline int rcGetDirOffsetX(int dir)
{
static const int offset[4] = { -1, 0, 1, 0, };
return offset[dir&0x03];
}
/// Gets the standard height (z-axis) offset for the specified direction.
/// @param[in] dir The direction. [Limits: 0 <= value < 4]
/// @return The height offset to apply to the current cell position to move
/// in the direction.
inline int rcGetDirOffsetY(int dir)
{
static const int offset[4] = { 0, 1, 0, -1 };
return offset[dir&0x03];
}
/// Gets the direction for the specified offset. One of x and y should be 0.
/// @param[in] x The x offset. [Limits: -1 <= value <= 1]
/// @param[in] y The y offset. [Limits: -1 <= value <= 1]
/// @return The direction that represents the offset.
inline int rcGetDirForOffset(int x, int y)
{
static const int dirs[5] = { 3, 0, -1, 2, 1 };
return dirs[((y+1)<<1)+x];
}
/// @}
/// @name Layer, Contour, Polymesh, and Detail Mesh Functions
/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail
/// @{
/// Builds a layer set from the specified compact heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] chf A fully built compact heightfield.
/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0]
/// [Units: vx]
/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area
/// to be considered walkable. [Limit: >= 3] [Units: vx]
/// @param[out] lset The resulting layer set. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int walkableHeight,
rcHeightfieldLayerSet& lset);
/// Builds a contour set from the region outlines in the provided compact heightfield.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] chf A fully built compact heightfield.
/// @param[in] maxError The maximum distance a simplfied contour's border edges should deviate
/// the original raw contour. [Limit: >=0] [Units: wu]
/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh.
/// [Limit: >=0] [Units: vx]
/// @param[out] cset The resulting contour set. (Must be pre-allocated.)
/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags)
/// @returns True if the operation completed successfully.
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
rcContourSet& cset, const int buildFlags = RC_CONTOUR_TESS_WALL_EDGES);
/// Builds a polygon mesh from the provided contours.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] cset A fully built contour set.
/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the
/// contour to polygon conversion process. [Limit: >= 3]
/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.)
/// @returns True if the operation completed successfully.
bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh);
/// Merges multiple polygon meshes into a single mesh.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes]
/// @param[in] nmeshes The number of polygon meshes in the meshes array.
/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh);
/// Builds a detail mesh from the provided polygon mesh.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] mesh A fully built polygon mesh.
/// @param[in] chf The compact heightfield used to build the polygon mesh.
/// @param[in] sampleDist Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu]
/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from
/// heightfield data. [Limit: >=0] [Units: wu]
/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
const float sampleDist, const float sampleMaxError,
rcPolyMeshDetail& dmesh);
/// Copies the poly mesh data from src to dst.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] src The source mesh to copy from.
/// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.)
/// @returns True if the operation completed successfully.
bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst);
/// Merges multiple detail meshes into a single detail mesh.
/// @ingroup recast
/// @param[in,out] ctx The build context to use during the operation.
/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes]
/// @param[in] nmeshes The number of detail meshes in the meshes array.
/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.)
/// @returns True if the operation completed successfully.
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh);
/// @}
#endif // RECAST_H
///////////////////////////////////////////////////////////////////////////
// Due to the large amount of detail documentation for this file,
// the content normally located at the end of the header file has been separated
// out to a file in /Docs/Extern.