virtualx-engine/core/math/quat.cpp
Rémi Verschelde c7bc44d5ad Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!
2017-01-01 22:03:33 +01:00

267 lines
7.3 KiB
C++

/*************************************************************************/
/* quat.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "quat.h"
#include "print_string.h"
void Quat::set_euler(const Vector3& p_euler) {
real_t half_yaw = p_euler.x * 0.5;
real_t half_pitch = p_euler.y * 0.5;
real_t half_roll = p_euler.z * 0.5;
real_t cos_yaw = Math::cos(half_yaw);
real_t sin_yaw = Math::sin(half_yaw);
real_t cos_pitch = Math::cos(half_pitch);
real_t sin_pitch = Math::sin(half_pitch);
real_t cos_roll = Math::cos(half_roll);
real_t sin_roll = Math::sin(half_roll);
set(cos_roll * sin_pitch * cos_yaw+sin_roll * cos_pitch * sin_yaw,
cos_roll * cos_pitch * sin_yaw - sin_roll * sin_pitch * cos_yaw,
sin_roll * cos_pitch * cos_yaw - cos_roll * sin_pitch * sin_yaw,
cos_roll * cos_pitch * cos_yaw+sin_roll * sin_pitch * sin_yaw);
}
void Quat::operator*=(const Quat& q) {
set(w * q.x+x * q.w+y * q.z - z * q.y,
w * q.y+y * q.w+z * q.x - x * q.z,
w * q.z+z * q.w+x * q.y - y * q.x,
w * q.w - x * q.x - y * q.y - z * q.z);
}
Quat Quat::operator*(const Quat& q) const {
Quat r=*this;
r*=q;
return r;
}
real_t Quat::length() const {
return Math::sqrt(length_squared());
}
void Quat::normalize() {
*this /= length();
}
Quat Quat::normalized() const {
return *this / length();
}
Quat Quat::inverse() const {
return Quat( -x, -y, -z, w );
}
Quat Quat::slerp(const Quat& q, const real_t& t) const {
#if 0
Quat dst=q;
Quat src=*this;
src.normalize();
dst.normalize();
real_t cosine = dst.dot(src);
if (cosine < 0 && true) {
cosine = -cosine;
dst = -dst;
} else {
dst = dst;
}
if (Math::abs(cosine) < 1 - CMP_EPSILON) {
// Standard case (slerp)
real_t sine = Math::sqrt(1 - cosine*cosine);
real_t angle = Math::atan2(sine, cosine);
real_t inv_sine = 1.0f / sine;
real_t coeff_0 = Math::sin((1.0f - t) * angle) * inv_sine;
real_t coeff_1 = Math::sin(t * angle) * inv_sine;
Quat ret= src * coeff_0 + dst * coeff_1;
return ret;
} else {
// There are two situations:
// 1. "rkP" and "q" are very close (cosine ~= +1), so we can do a linear
// interpolation safely.
// 2. "rkP" and "q" are almost invedste of each other (cosine ~= -1), there
// are an infinite number of possibilities interpolation. but we haven't
// have method to fix this case, so just use linear interpolation here.
Quat ret = src * (1.0f - t) + dst *t;
// taking the complement requires renormalisation
ret.normalize();
return ret;
}
#else
real_t to1[4];
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = x * q.x + y * q.y + z * q.z
+ w * q.w;
// adjust signs (if necessary)
if ( cosom <0.0 ) {
cosom = -cosom; to1[0] = - q.x;
to1[1] = - q.y;
to1[2] = - q.z;
to1[3] = - q.w;
} else {
to1[0] = q.x;
to1[1] = q.y;
to1[2] = q.z;
to1[3] = q.w;
}
// calculate coefficients
if ( (1.0 - cosom) > CMP_EPSILON ) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
scale0 = Math::sin((1.0 - t) * omega) / sinom;
scale1 = Math::sin(t * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
return Quat(
scale0 * x + scale1 * to1[0],
scale0 * y + scale1 * to1[1],
scale0 * z + scale1 * to1[2],
scale0 * w + scale1 * to1[3]
);
#endif
}
Quat Quat::slerpni(const Quat& q, const real_t& t) const {
const Quat &from = *this;
float dot = from.dot(q);
if (Math::absf(dot) > 0.9999f) return from;
float theta = Math::acos(dot),
sinT = 1.0f / Math::sin(theta),
newFactor = Math::sin(t * theta) * sinT,
invFactor = Math::sin((1.0f - t) * theta) * sinT;
return Quat( invFactor * from.x + newFactor * q.x,
invFactor * from.y + newFactor * q.y,
invFactor * from.z + newFactor * q.z,
invFactor * from.w + newFactor * q.w );
#if 0
real_t to1[4];
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = x * q.x + y * q.y + z * q.z
+ w * q.w;
// adjust signs (if necessary)
if ( cosom <0.0 && false) {
cosom = -cosom; to1[0] = - q.x;
to1[1] = - q.y;
to1[2] = - q.z;
to1[3] = - q.w;
} else {
to1[0] = q.x;
to1[1] = q.y;
to1[2] = q.z;
to1[3] = q.w;
}
// calculate coefficients
if ( (1.0 - cosom) > CMP_EPSILON ) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
scale0 = Math::sin((1.0 - t) * omega) / sinom;
scale1 = Math::sin(t * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
return Quat(
scale0 * x + scale1 * to1[0],
scale0 * y + scale1 * to1[1],
scale0 * z + scale1 * to1[2],
scale0 * w + scale1 * to1[3]
);
#endif
}
Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const {
//the only way to do slerp :|
float t2 = (1.0-t)*t*2;
Quat sp = this->slerp(q,t);
Quat sq = prep.slerpni(postq,t);
return sp.slerpni(sq,t2);
}
Quat::operator String() const {
return String::num(x)+", "+String::num(y)+", "+ String::num(z)+", "+ String::num(w);
}
Quat::Quat(const Vector3& axis, const real_t& angle) {
real_t d = axis.length();
if (d==0)
set(0,0,0,0);
else {
real_t s = Math::sin(-angle * 0.5) / d;
set(axis.x * s, axis.y * s, axis.z * s,
Math::cos(-angle * 0.5));
}
}