virtualx-engine/servers/rendering/renderer_rd/cluster_builder_rd.h
2024-08-20 12:11:06 +02:00

398 lines
13 KiB
C++

/**************************************************************************/
/* cluster_builder_rd.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef CLUSTER_BUILDER_RD_H
#define CLUSTER_BUILDER_RD_H
#include "servers/rendering/renderer_rd/shaders/cluster_debug.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/cluster_render.glsl.gen.h"
#include "servers/rendering/renderer_rd/shaders/cluster_store.glsl.gen.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
class ClusterBuilderSharedDataRD {
friend class ClusterBuilderRD;
RID sphere_vertex_buffer;
RID sphere_vertex_array;
RID sphere_index_buffer;
RID sphere_index_array;
float sphere_overfit = 0.0; // Because an icosphere is not a perfect sphere, we need to enlarge it to cover the sphere area.
RID cone_vertex_buffer;
RID cone_vertex_array;
RID cone_index_buffer;
RID cone_index_array;
float cone_overfit = 0.0; // Because an cone mesh is not a perfect cone, we need to enlarge it to cover the actual cone area.
RID box_vertex_buffer;
RID box_vertex_array;
RID box_index_buffer;
RID box_index_array;
enum Divisor {
DIVISOR_1,
DIVISOR_2,
DIVISOR_4,
};
struct ClusterRender {
struct PushConstant {
uint32_t base_index;
uint32_t pad0;
uint32_t pad1;
uint32_t pad2;
};
ClusterRenderShaderRD cluster_render_shader;
RID shader_version;
RID shader;
enum PipelineVersion {
PIPELINE_NORMAL,
PIPELINE_MSAA,
PIPELINE_MAX
};
RID shader_pipelines[PIPELINE_MAX];
} cluster_render;
struct ClusterStore {
struct PushConstant {
uint32_t cluster_render_data_size; // how much data for a single cluster takes
uint32_t max_render_element_count_div_32; // divided by 32
uint32_t cluster_screen_size[2];
uint32_t render_element_count_div_32; // divided by 32
uint32_t max_cluster_element_count_div_32; // divided by 32
uint32_t pad1;
uint32_t pad2;
};
ClusterStoreShaderRD cluster_store_shader;
RID shader_version;
RID shader;
RID shader_pipeline;
} cluster_store;
struct ClusterDebug {
struct PushConstant {
uint32_t screen_size[2];
uint32_t cluster_screen_size[2];
uint32_t cluster_shift;
uint32_t cluster_type;
float z_near;
float z_far;
uint32_t orthogonal;
uint32_t max_cluster_element_count_div_32;
uint32_t pad1;
uint32_t pad2;
};
ClusterDebugShaderRD cluster_debug_shader;
RID shader_version;
RID shader;
RID shader_pipeline;
} cluster_debug;
public:
ClusterBuilderSharedDataRD();
~ClusterBuilderSharedDataRD();
};
class ClusterBuilderRD {
public:
static constexpr float WIDE_SPOT_ANGLE_THRESHOLD_DEG = 60.0f;
enum LightType {
LIGHT_TYPE_OMNI,
LIGHT_TYPE_SPOT
};
enum BoxType {
BOX_TYPE_REFLECTION_PROBE,
BOX_TYPE_DECAL,
};
enum ElementType {
ELEMENT_TYPE_OMNI_LIGHT,
ELEMENT_TYPE_SPOT_LIGHT,
ELEMENT_TYPE_DECAL,
ELEMENT_TYPE_REFLECTION_PROBE,
ELEMENT_TYPE_MAX,
};
private:
ClusterBuilderSharedDataRD *shared = nullptr;
struct RenderElementData {
uint32_t type; // 0-4
uint32_t touches_near;
uint32_t touches_far;
uint32_t original_index;
float transform_inv[12]; // Transposed transform for less space.
float scale[3];
uint32_t has_wide_spot_angle;
}; // Keep aligned to 32 bytes.
uint32_t cluster_count_by_type[ELEMENT_TYPE_MAX] = {};
uint32_t max_elements_by_type = 0;
RenderElementData *render_elements = nullptr;
uint32_t render_element_count = 0;
uint32_t render_element_max = 0;
Transform3D view_xform;
Projection adjusted_projection;
Projection projection;
float z_far = 0;
float z_near = 0;
bool camera_orthogonal = false;
enum Divisor {
DIVISOR_1,
DIVISOR_2,
DIVISOR_4,
};
uint32_t cluster_size = 32;
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
// Results in visual artifacts on macOS and iOS when using MSAA and subgroups.
// Using subgroups and disabling MSAA is the optimal solution for now and also works
// with MoltenVK.
bool use_msaa = false;
#else
bool use_msaa = true;
#endif
Divisor divisor = DIVISOR_4;
Size2i screen_size;
Size2i cluster_screen_size;
RID framebuffer;
RID cluster_render_buffer; // Used for creating.
RID cluster_buffer; // Used for rendering.
RID element_buffer; // Used for storing, to hint element touches far plane or near plane.
uint32_t cluster_render_buffer_size = 0;
uint32_t cluster_buffer_size = 0;
RID cluster_render_uniform_set;
RID cluster_store_uniform_set;
// Persistent data.
void _clear();
struct StateUniform {
float projection[16];
float inv_z_far;
uint32_t screen_to_clusters_shift; // Shift to obtain coordinates in block indices.
uint32_t cluster_screen_width;
uint32_t cluster_data_size; // How much data is needed for a single cluster.
uint32_t cluster_depth_offset;
uint32_t pad0;
uint32_t pad1;
uint32_t pad2;
};
RID state_uniform;
RID debug_uniform_set;
public:
void setup(Size2i p_screen_size, uint32_t p_max_elements, RID p_depth_buffer, RID p_depth_buffer_sampler, RID p_color_buffer);
void begin(const Transform3D &p_view_transform, const Projection &p_cam_projection, bool p_flip_y);
_FORCE_INLINE_ void add_light(LightType p_type, const Transform3D &p_transform, float p_radius, float p_spot_aperture) {
if (p_type == LIGHT_TYPE_OMNI && cluster_count_by_type[ELEMENT_TYPE_OMNI_LIGHT] == max_elements_by_type) {
return; // Max number elements reached.
}
if (p_type == LIGHT_TYPE_SPOT && cluster_count_by_type[ELEMENT_TYPE_SPOT_LIGHT] == max_elements_by_type) {
return; // Max number elements reached.
}
RenderElementData &e = render_elements[render_element_count];
Transform3D xform = view_xform * p_transform;
float radius = xform.basis.get_uniform_scale();
if (radius < 0.98 || radius > 1.02) {
xform.basis.orthonormalize();
}
radius *= p_radius;
if (p_type == LIGHT_TYPE_OMNI) {
radius *= shared->sphere_overfit; // Overfit icosphere.
float depth = -xform.origin.z;
if (camera_orthogonal) {
e.touches_near = (depth - radius) < z_near;
} else {
// Contains camera inside light.
float radius2 = radius * shared->sphere_overfit; // Overfit again for outer size (camera may be outside actual sphere but behind an icosphere vertex)
e.touches_near = xform.origin.length_squared() < radius2 * radius2;
}
e.touches_far = (depth + radius) > z_far;
e.scale[0] = radius;
e.scale[1] = radius;
e.scale[2] = radius;
e.type = ELEMENT_TYPE_OMNI_LIGHT;
e.original_index = cluster_count_by_type[ELEMENT_TYPE_OMNI_LIGHT];
RendererRD::MaterialStorage::store_transform_transposed_3x4(xform, e.transform_inv);
cluster_count_by_type[ELEMENT_TYPE_OMNI_LIGHT]++;
} else /*LIGHT_TYPE_SPOT */ {
radius *= shared->cone_overfit; // Overfit icosphere
real_t len = Math::tan(Math::deg_to_rad(p_spot_aperture)) * radius;
// Approximate, probably better to use a cone support function.
float max_d = -1e20;
float min_d = 1e20;
#define CONE_MINMAX(m_x, m_y) \
{ \
float d = -xform.xform(Vector3(len * m_x, len * m_y, -radius)).z; \
min_d = MIN(d, min_d); \
max_d = MAX(d, max_d); \
}
CONE_MINMAX(1, 1);
CONE_MINMAX(-1, 1);
CONE_MINMAX(-1, -1);
CONE_MINMAX(1, -1);
if (camera_orthogonal) {
e.touches_near = min_d < z_near;
} else {
Plane base_plane(-xform.basis.get_column(Vector3::AXIS_Z), xform.origin);
float dist = base_plane.distance_to(Vector3());
if (dist >= 0 && dist < radius) {
// Contains camera inside light, check angle.
float angle = Math::rad_to_deg(Math::acos((-xform.origin.normalized()).dot(-xform.basis.get_column(Vector3::AXIS_Z))));
e.touches_near = angle < p_spot_aperture * 1.05; //overfit aperture a little due to cone overfit
} else {
e.touches_near = false;
}
}
e.touches_far = max_d > z_far;
// If the spot angle is above the threshold, use a sphere instead of a cone for building the clusters
// since the cone gets too flat/large (spot angle close to 90 degrees) or
// can't even cover the affected area of the light (spot angle above 90 degrees).
if (p_spot_aperture > WIDE_SPOT_ANGLE_THRESHOLD_DEG) {
e.scale[0] = radius;
e.scale[1] = radius;
e.scale[2] = radius;
e.has_wide_spot_angle = true;
} else {
e.scale[0] = len * shared->cone_overfit;
e.scale[1] = len * shared->cone_overfit;
e.scale[2] = radius;
e.has_wide_spot_angle = false;
}
e.type = ELEMENT_TYPE_SPOT_LIGHT;
e.original_index = cluster_count_by_type[ELEMENT_TYPE_SPOT_LIGHT]; // Use omni light since they share index.
RendererRD::MaterialStorage::store_transform_transposed_3x4(xform, e.transform_inv);
cluster_count_by_type[ELEMENT_TYPE_SPOT_LIGHT]++;
}
render_element_count++;
}
_FORCE_INLINE_ void add_box(BoxType p_box_type, const Transform3D &p_transform, const Vector3 &p_half_size) {
if (p_box_type == BOX_TYPE_DECAL && cluster_count_by_type[ELEMENT_TYPE_DECAL] == max_elements_by_type) {
return; // Max number elements reached.
}
if (p_box_type == BOX_TYPE_REFLECTION_PROBE && cluster_count_by_type[ELEMENT_TYPE_REFLECTION_PROBE] == max_elements_by_type) {
return; // Max number elements reached.
}
RenderElementData &e = render_elements[render_element_count];
Transform3D xform = view_xform * p_transform;
// Extract scale and scale the matrix by it, makes things simpler.
Vector3 scale = p_half_size;
for (uint32_t i = 0; i < 3; i++) {
float s = xform.basis.rows[i].length();
scale[i] *= s;
xform.basis.rows[i] /= s;
};
float box_depth = Math::abs(xform.basis.xform_inv(Vector3(0, 0, -1)).dot(scale));
float depth = -xform.origin.z;
if (camera_orthogonal) {
e.touches_near = depth - box_depth < z_near;
} else {
// Contains camera inside box.
Vector3 inside = xform.xform_inv(Vector3(0, 0, 0)).abs();
e.touches_near = inside.x < scale.x && inside.y < scale.y && inside.z < scale.z;
}
e.touches_far = depth + box_depth > z_far;
e.scale[0] = scale.x;
e.scale[1] = scale.y;
e.scale[2] = scale.z;
e.type = (p_box_type == BOX_TYPE_DECAL) ? ELEMENT_TYPE_DECAL : ELEMENT_TYPE_REFLECTION_PROBE;
e.original_index = cluster_count_by_type[e.type];
RendererRD::MaterialStorage::store_transform_transposed_3x4(xform, e.transform_inv);
cluster_count_by_type[e.type]++;
render_element_count++;
}
void bake_cluster();
void debug(ElementType p_element);
RID get_cluster_buffer() const;
uint32_t get_cluster_size() const;
uint32_t get_max_cluster_elements() const;
void set_shared(ClusterBuilderSharedDataRD *p_shared);
ClusterBuilderRD();
~ClusterBuilderRD();
};
#endif // CLUSTER_BUILDER_RD_H