virtualx-engine/servers/physics/body_sw.h

390 lines
15 KiB
C++

/*************************************************************************/
/* body_sw.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2015 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef BODY_SW_H
#define BODY_SW_H
#include "collision_object_sw.h"
#include "vset.h"
#include "area_sw.h"
class ConstraintSW;
class BodySW : public CollisionObjectSW {
PhysicsServer::BodyMode mode;
Vector3 linear_velocity;
Vector3 angular_velocity;
Vector3 biased_linear_velocity;
Vector3 biased_angular_velocity;
real_t mass;
real_t bounce;
real_t friction;
real_t linear_damp;
real_t angular_damp;
real_t gravity_scale;
PhysicsServer::BodyAxisLock axis_lock;
real_t _inv_mass;
Vector3 _inv_inertia;
Matrix3 _inv_inertia_tensor;
Vector3 gravity;
real_t still_time;
Vector3 applied_force;
Vector3 applied_torque;
float area_angular_damp;
float area_linear_damp;
SelfList<BodySW> active_list;
SelfList<BodySW> inertia_update_list;
SelfList<BodySW> direct_state_query_list;
VSet<RID> exceptions;
bool omit_force_integration;
bool active;
bool continuous_cd;
bool can_sleep;
bool first_time_kinematic;
void _update_inertia();
virtual void _shapes_changed();
Transform new_transform;
Map<ConstraintSW*,int> constraint_map;
struct AreaCMP {
AreaSW *area;
_FORCE_INLINE_ bool operator==(const AreaCMP& p_cmp) const { return area->get_self() == p_cmp.area->get_self();}
_FORCE_INLINE_ bool operator<(const AreaCMP& p_cmp) const { return area->get_priority() < p_cmp.area->get_priority();}
_FORCE_INLINE_ AreaCMP() {}
_FORCE_INLINE_ AreaCMP(AreaSW *p_area) { area=p_area;}
};
Vector<AreaCMP> areas;
struct Contact {
Vector3 local_pos;
Vector3 local_normal;
float depth;
int local_shape;
Vector3 collider_pos;
int collider_shape;
ObjectID collider_instance_id;
RID collider;
Vector3 collider_velocity_at_pos;
};
Vector<Contact> contacts; //no contacts by default
int contact_count;
struct ForceIntegrationCallback {
ObjectID id;
StringName method;
Variant udata;
};
ForceIntegrationCallback *fi_callback;
uint64_t island_step;
BodySW *island_next;
BodySW *island_list_next;
_FORCE_INLINE_ void _compute_area_gravity(const AreaSW *p_area);
_FORCE_INLINE_ void _update_inertia_tensor();
friend class PhysicsDirectBodyStateSW; // i give up, too many functions to expose
public:
void set_force_integration_callback(ObjectID p_id,const StringName& p_method,const Variant& p_udata=Variant());
_FORCE_INLINE_ void add_area(AreaSW *p_area) { areas.ordered_insert(AreaCMP(p_area)); }
_FORCE_INLINE_ void remove_area(AreaSW *p_area) { areas.erase(AreaCMP(p_area)); }
_FORCE_INLINE_ void set_max_contacts_reported(int p_size) { contacts.resize(p_size); contact_count=0; if (mode==PhysicsServer::BODY_MODE_KINEMATIC && p_size) set_active(true);}
_FORCE_INLINE_ int get_max_contacts_reported() const { return contacts.size(); }
_FORCE_INLINE_ bool can_report_contacts() const { return !contacts.empty(); }
_FORCE_INLINE_ void add_contact(const Vector3& p_local_pos,const Vector3& p_local_normal, float p_depth, int p_local_shape, const Vector3& p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID& p_collider,const Vector3& p_collider_velocity_at_pos);
_FORCE_INLINE_ void add_exception(const RID& p_exception) { exceptions.insert(p_exception);}
_FORCE_INLINE_ void remove_exception(const RID& p_exception) { exceptions.erase(p_exception);}
_FORCE_INLINE_ bool has_exception(const RID& p_exception) const { return exceptions.has(p_exception);}
_FORCE_INLINE_ const VSet<RID>& get_exceptions() const { return exceptions;}
_FORCE_INLINE_ uint64_t get_island_step() const { return island_step; }
_FORCE_INLINE_ void set_island_step(uint64_t p_step) { island_step=p_step; }
_FORCE_INLINE_ BodySW* get_island_next() const { return island_next; }
_FORCE_INLINE_ void set_island_next(BodySW* p_next) { island_next=p_next; }
_FORCE_INLINE_ BodySW* get_island_list_next() const { return island_list_next; }
_FORCE_INLINE_ void set_island_list_next(BodySW* p_next) { island_list_next=p_next; }
_FORCE_INLINE_ void add_constraint(ConstraintSW* p_constraint, int p_pos) { constraint_map[p_constraint]=p_pos; }
_FORCE_INLINE_ void remove_constraint(ConstraintSW* p_constraint) { constraint_map.erase(p_constraint); }
const Map<ConstraintSW*,int>& get_constraint_map() const { return constraint_map; }
_FORCE_INLINE_ void set_omit_force_integration(bool p_omit_force_integration) { omit_force_integration=p_omit_force_integration; }
_FORCE_INLINE_ bool get_omit_force_integration() const { return omit_force_integration; }
_FORCE_INLINE_ void set_linear_velocity(const Vector3& p_velocity) {linear_velocity=p_velocity; }
_FORCE_INLINE_ Vector3 get_linear_velocity() const { return linear_velocity; }
_FORCE_INLINE_ void set_angular_velocity(const Vector3& p_velocity) { angular_velocity=p_velocity; }
_FORCE_INLINE_ Vector3 get_angular_velocity() const { return angular_velocity; }
_FORCE_INLINE_ const Vector3& get_biased_linear_velocity() const { return biased_linear_velocity; }
_FORCE_INLINE_ const Vector3& get_biased_angular_velocity() const { return biased_angular_velocity; }
_FORCE_INLINE_ void apply_impulse(const Vector3& p_pos, const Vector3& p_j) {
linear_velocity += p_j * _inv_mass;
angular_velocity += _inv_inertia_tensor.xform( p_pos.cross(p_j) );
}
_FORCE_INLINE_ void apply_bias_impulse(const Vector3& p_pos, const Vector3& p_j) {
biased_linear_velocity += p_j * _inv_mass;
biased_angular_velocity += _inv_inertia_tensor.xform( p_pos.cross(p_j) );
}
_FORCE_INLINE_ void apply_torque_impulse(const Vector3& p_j) {
angular_velocity += _inv_inertia_tensor.xform(p_j);
}
_FORCE_INLINE_ void add_force(const Vector3& p_force, const Vector3& p_pos) {
applied_force += p_force;
applied_torque += p_pos.cross(p_force);
}
void set_active(bool p_active);
_FORCE_INLINE_ bool is_active() const { return active; }
_FORCE_INLINE_ void wakeup() {
if ((!get_space()) || mode==PhysicsServer::BODY_MODE_STATIC || mode==PhysicsServer::BODY_MODE_KINEMATIC)
return;
set_active(true);
}
void set_param(PhysicsServer::BodyParameter p_param, float);
float get_param(PhysicsServer::BodyParameter p_param) const;
void set_mode(PhysicsServer::BodyMode p_mode);
PhysicsServer::BodyMode get_mode() const;
void set_state(PhysicsServer::BodyState p_state, const Variant& p_variant);
Variant get_state(PhysicsServer::BodyState p_state) const;
void set_applied_force(const Vector3& p_force) { applied_force=p_force; }
Vector3 get_applied_force() const { return applied_force; }
void set_applied_torque(const Vector3& p_torque) { applied_torque=p_torque; }
Vector3 get_applied_torque() const { return applied_torque; }
_FORCE_INLINE_ void set_continuous_collision_detection(bool p_enable) { continuous_cd=p_enable; }
_FORCE_INLINE_ bool is_continuous_collision_detection_enabled() const { return continuous_cd; }
void set_space(SpaceSW *p_space);
void update_inertias();
_FORCE_INLINE_ real_t get_inv_mass() const { return _inv_mass; }
_FORCE_INLINE_ Vector3 get_inv_inertia() const { return _inv_inertia; }
_FORCE_INLINE_ Matrix3 get_inv_inertia_tensor() const { return _inv_inertia_tensor; }
_FORCE_INLINE_ real_t get_friction() const { return friction; }
_FORCE_INLINE_ Vector3 get_gravity() const { return gravity; }
_FORCE_INLINE_ real_t get_bounce() const { return bounce; }
_FORCE_INLINE_ void set_axis_lock(PhysicsServer::BodyAxisLock p_lock) { axis_lock=p_lock; }
_FORCE_INLINE_ PhysicsServer::BodyAxisLock get_axis_lock() const { return axis_lock; }
void integrate_forces(real_t p_step);
void integrate_velocities(real_t p_step);
_FORCE_INLINE_ Vector3 get_velocity_in_local_point(const Vector3& rel_pos) const {
return linear_velocity + angular_velocity.cross(rel_pos);
}
_FORCE_INLINE_ real_t compute_impulse_denominator(const Vector3& p_pos, const Vector3& p_normal) const {
Vector3 r0 = p_pos - get_transform().origin;
Vector3 c0 = (r0).cross(p_normal);
Vector3 vec = (_inv_inertia_tensor.xform_inv(c0)).cross(r0);
return _inv_mass + p_normal.dot(vec);
}
_FORCE_INLINE_ real_t compute_angular_impulse_denominator(const Vector3& p_axis) const {
return p_axis.dot( _inv_inertia_tensor.xform_inv(p_axis) );
}
//void simulate_motion(const Transform& p_xform,real_t p_step);
void call_queries();
void wakeup_neighbours();
bool sleep_test(real_t p_step);
BodySW();
~BodySW();
};
//add contact inline
void BodySW::add_contact(const Vector3& p_local_pos,const Vector3& p_local_normal, float p_depth, int p_local_shape, const Vector3& p_collider_pos, int p_collider_shape, ObjectID p_collider_instance_id, const RID& p_collider,const Vector3& p_collider_velocity_at_pos) {
int c_max=contacts.size();
if (c_max==0)
return;
Contact *c = &contacts[0];
int idx=-1;
if (contact_count<c_max) {
idx=contact_count++;
} else {
float least_depth=1e20;
int least_deep=-1;
for(int i=0;i<c_max;i++) {
if (i==0 || c[i].depth<least_depth) {
least_deep=i;
least_depth=c[i].depth;
}
}
if (least_deep>=0 && least_depth<p_depth) {
idx=least_deep;
}
if (idx==-1)
return; //none least deepe than this
}
c[idx].local_pos=p_local_pos;
c[idx].local_normal=p_local_normal;
c[idx].depth=p_depth;
c[idx].local_shape=p_local_shape;
c[idx].collider_pos=p_collider_pos;
c[idx].collider_shape=p_collider_shape;
c[idx].collider_instance_id=p_collider_instance_id;
c[idx].collider=p_collider;
c[idx].collider_velocity_at_pos=p_collider_velocity_at_pos;
}
class PhysicsDirectBodyStateSW : public PhysicsDirectBodyState {
OBJ_TYPE( PhysicsDirectBodyStateSW, PhysicsDirectBodyState );
public:
static PhysicsDirectBodyStateSW *singleton;
BodySW *body;
real_t step;
virtual Vector3 get_total_gravity() const { return body->gravity; } // get gravity vector working on this body space/area
virtual float get_total_angular_damp() const { return body->area_angular_damp; } // get density of this body space/area
virtual float get_total_linear_damp() const { return body->area_linear_damp; } // get density of this body space/area
virtual float get_inverse_mass() const { return body->get_inv_mass(); } // get the mass
virtual Vector3 get_inverse_inertia() const { return body->get_inv_inertia(); } // get density of this body space
virtual Matrix3 get_inverse_inertia_tensor() const { return body->get_inv_inertia_tensor(); } // get density of this body space
virtual void set_linear_velocity(const Vector3& p_velocity) { body->set_linear_velocity(p_velocity); }
virtual Vector3 get_linear_velocity() const { return body->get_linear_velocity(); }
virtual void set_angular_velocity(const Vector3& p_velocity) { body->set_angular_velocity(p_velocity); }
virtual Vector3 get_angular_velocity() const { return body->get_angular_velocity(); }
virtual void set_transform(const Transform& p_transform) { body->set_state(PhysicsServer::BODY_STATE_TRANSFORM,p_transform); }
virtual Transform get_transform() const { return body->get_transform(); }
virtual void add_force(const Vector3& p_force, const Vector3& p_pos) { body->add_force(p_force,p_pos); }
virtual void apply_impulse(const Vector3& p_pos, const Vector3& p_j) { body->apply_impulse(p_pos,p_j); }
virtual void set_sleep_state(bool p_enable) { body->set_active(!p_enable); }
virtual bool is_sleeping() const { return !body->is_active(); }
virtual int get_contact_count() const { return body->contact_count; }
virtual Vector3 get_contact_local_pos(int p_contact_idx) const {
ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3());
return body->contacts[p_contact_idx].local_pos;
}
virtual Vector3 get_contact_local_normal(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3()); return body->contacts[p_contact_idx].local_normal; }
virtual int get_contact_local_shape(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,-1); return body->contacts[p_contact_idx].local_shape; }
virtual RID get_contact_collider(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,RID()); return body->contacts[p_contact_idx].collider; }
virtual Vector3 get_contact_collider_pos(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3()); return body->contacts[p_contact_idx].collider_pos; }
virtual ObjectID get_contact_collider_id(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,0); return body->contacts[p_contact_idx].collider_instance_id; }
virtual int get_contact_collider_shape(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,0); return body->contacts[p_contact_idx].collider_shape; }
virtual Vector3 get_contact_collider_velocity_at_pos(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx,body->contact_count,Vector3()); return body->contacts[p_contact_idx].collider_velocity_at_pos; }
virtual PhysicsDirectSpaceState* get_space_state();
virtual real_t get_step() const { return step; }
PhysicsDirectBodyStateSW() { singleton=this; body=NULL; }
};
#endif // BODY__SW_H